
VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P – A Joint Performance Measurement Run-Time

Infrastructure for Periscope, Scalasca, TAU, and Vampir

VI-HPS Team

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Congratulations!?

 If you made it this far, you successfully used Score-P to
 instrument the application

 analyze its execution with a summary measurement, and

 examine it with one the interactive analysis report explorer GUIs

 ... revealing the call-path profile annotated with
 the “Time” metric

 Visit counts

 MPI message statistics (bytes sent/received)

 ... but how good was the measurement?
 The measured execution produced the desired valid result

 however, the execution took rather longer than expected!
 even when ignoring measurement start-up/completion, therefore

 it was probably dilated by instrumentation/measurement overhead

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Performance analysis steps

 0.0 Reference preparation for validation

 1.0 Program instrumentation

 1.1 Summary measurement collection

 1.2 Summary analysis report examination

 2.0 Summary experiment scoring

 2.1 Summary measurement collection with filtering

 2.2 Filtered summary analysis report examination

 3.0 Event trace collection

 3.1 Event trace examination & analysis

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

BT-MZ summary analysis result scoring

 Report scoring as textual

output

 Region/callpath classification

 MPI pure MPI functions

 OMP pure OpenMP regions

 USR user-level computation

 COM “combined” USR+OpenMP/MPI

 ANY/ALL aggregate of all region

types

% scorep-score scorep_bt-mz_sum/profile.cubex

Estimated aggregate size of event trace: 160 GB

Estimated requirements for largest trace buffer (max_buf): 21 GB

Estimated memory requirements (SCOREP_TOTAL_MEMORY): 21 GB

(warning: The memory requirements cannot be satisfied by Score-P to avoid

 intermediate flushes when tracing. Set SCOREP_TOTAL_MEMORY=4G to get the

 maximum supported memory or reduce requirements using USR regions filters.)

flt type max_buf[B] visits time[s] time[%] time/visit[us] region

 ALL 21,518,477,680 6,591,910,441 2825.52 100.0 0.43 ALL

 USR 21,431,996,118 6,574,793,529 1166.25 41.3 0.18 USR

 OMP 83,841,856 16,359,424 1533.00 54.3 93.71 OMP

 COM 2,351,570 723,560 2.33 0.1 3.22 COM

 MPI 288,136 33,928 123.94 4.4 3653.01 MPI

150 GB total memory

21 GB per rank!

USR

USR

COM

COM USR

OMP MPI

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

BT-MZ summary analysis report breakdown

 Score report breakdown by region

% scorep-score -r scorep_bt-mz_sum/profile.cubex

 [...]

 [...]

flt type max_buf[B] visits time[s] time[%] time/visit[us] region

 ALL 21,518,477,680 6,591,910,441 2825.52 100.0 0.43 ALL

 USR 21,431,996,118 6,574,793,529 1166.25 41.3 0.18 USR

 OMP 83,841,856 16,359,424 1533.00 54.3 93.71 OMP

 COM 2,351,570 723,560 2.33 0.1 3.22 COM

 MPI 288,136 33,928 123.94 4.4 3653.01 MPI

 USR 6,883,222,086 2,110,313,472 359.08 12.7 0.17 matmul_sub_

 USR 6,883,222,086 2,110,313,472 263.79 9.3 0.12 matvec_sub_

 USR 6,883,222,086 2,110,313,472 501.53 17.8 0.24 binvcrhs_

 USR 293,617,584 87,475,200 11.75 0.4 0.13 binvrhs_

 USR 293,617,584 87,475,200 21.75 0.8 0.25 lhsinit_

 USR 224,028,792 68,892,672 8.36 0.3 0.12 exact_solution_

USR

USR

COM

COM USR

OMP MPI

More than

20 GB just for these 6

regions

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

BT-MZ summary analysis score

 Summary measurement analysis score reveals

 Total size of event trace would be ~160 GB

 Maximum trace buffer size would be ~21 GB per rank

 smaller buffer would require flushes to disk during measurement resulting in substantial perturbation

 99.9% of the trace requirements are for USR regions

 purely computational routines never found on COM call-paths common to communication routines or OpenMP parallel

regions

 These USR regions contribute around 39% of total time

 however, much of that is very likely to be measurement overhead for frequently-executed small routines

 Advisable to tune measurement configuration

 Specify an adequate trace buffer size

 Specify a filter file listing (USR) regions not to be measured

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

BT-MZ summary analysis report filtering

 Report scoring with

prospective filter listing 6

USR regions

% cat ../config/scorep.filt

SCOREP_REGION_NAMES_BEGIN

 EXCLUDE

 binvcrhs*

 matmul_sub*

 matvec_sub*

 exact_solution*

 binvrhs*

 lhs*init*

 timer_*

SCOREP_REGION_NAMES_END

% scorep-score -f ../config/scorep.filt –c 2 \

 scorep_bt-mz_sum/profile.cubex

Estimated aggregate size of event trace: 1624MB

Estimated requirements for largest trace buffer (max_buf): 203MB

Estimated memory requirements (SCOREP_TOTAL_MEMORY): 215MB

(hint: When tracing set SCOREP_TOTAL_MEMORY=215MB to avoid intermediate flushes

 or reduce requirements using USR regions filters.)

1.6 GB of memory in total,

203 MB per rank!

(Including 2 metric values)

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

BT-MZ summary analysis report filtering

 Score report breakdown

by region

% scorep-score -r –f ../config/scorep.filt \

 scorep_bt-mz_sum/profile.cubex

flt type max_buf[B] visits time[s] time[%] time/visit[us] region

 - ALL 21,518,477,680 6,591,910,441 2825.52 100.0 0.43 ALL

 - USR 21,431,996,118 6,574,793,529 1166.25 41.3 0.18 USR

 - OMP 83,841,856 16,359,424 1533.00 54.3 93.71 OMP

 - COM 2,351,570 723,560 2.33 0.1 3.22 COM

 - MPI 288,136 33,928 123.94 4.4 3653.01 MPI

 * ALL 86,513,568 17,126,753 1659.27 58.7 96.88 ALL-FLT

 + FLT 21,431,964,112 6,574,783,688 1166.25 41.3 0.18 FLT

 - OMP 83,841,856 16,359,424 1533.00 54.3 93.71 OMP-FLT

 * COM 2,351,570 723,560 2.33 0.1 3.22 COM-FLT

 - MPI 288,136 33,928 123.94 4.4 3653.01 MPI-FLT

 * USR 32,006 9,841 0.00 0.0 0.27 USR-FLT

 + USR 6,883,222,086 2,110,313,472 359.08 12.7 0.17 matmul_sub_

 + USR 6,883,222,086 2,110,313,472 263.79 9.3 0.12 matvec_sub_

 + USR 6,883,222,086 2,110,313,472 501.53 17.8 0.24 binvcrhs_

 + USR 293,617,584 87,475,200 11.75 0.4 0.13 binvrhs_

 + USR 293,617,584 87,475,200 21.75 0.8 0.25 lhsinit_

 + USR 224,028,792 68,892,672 8.36 0.3 0.12 exact_solution_

 - OMP 6,715,008 617,472 0.15 0.0 0.24 !$omp parallel @exch_qbc.f:215

Filtered
routines

marked with
„+‟

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

BT-MZ filtered summary measurement

 Set new experiment

directory and re-run

measurement with new

filter configuration

 Submit job

% cd bin.scorep

% vi scorep.lsf

[...]

export SCOREP_EXPERIMENT_DIRECTORY=scorep_bt-mz_sum_filter

export SCOREP_FILTERING_FILE=../config/scorep.filt

[...]

% bsub < scorep.lsf

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P filtering

 Filtering by source file name

 All regions in files that are excluded by the filter are

ignored

 Filtering by region name

 All regions that are excluded by the filter are ignored

 Overruled by source file filter for excluded files

 Apply filter by

 exporting SCOREP_FILTERING_FILE environment

variable

 Apply filter at

 Run-time

 Compile-time (GCC-plugin only)

 Add cmd-line option --instrument-filter

 No overhead for filtered regions but recompilation

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017)

% cat ../config/scorep.filt

SCOREP_REGION_NAMES_BEGIN

 EXCLUDE

 binvcrhs*

 matmul_sub*

 matvec_sub*

 exact_solution*

 binvrhs*

 lhs*init*

 timer_*

SCOREP_REGION_NAMES_END

% export SCOREP_FILTERING_FILE=\

../config/scorep.filt

Region name
filter block

using wildcards

Apply filter

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Source file name filter block

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017)

This is a comment

SCOREP_FILE_NAMES_BEGIN

 # by default, everything is included

 EXCLUDE */foo/bar*

 INCLUDE */filter_test.c

SCOREP_FILE_NAMES_END

 Keywords

 Case-sensitive

 SCOREP_FILE_NAMES_BEGIN, SCOREP_FILE_NAMES_END

 Define the source file name filter block

 Block contains EXCLUDE, INCLUDE rules

 EXCLUDE, INCLUDE rules

 Followed by one or multiple white-space separated source file names

 Names can contain bash-like wildcards *, ?, []

 Unlike bash, * may match a string that contains slashes

 EXCLUDE, INCLUDE rules are applied in sequential order

 Regions in source files that are excluded after all rules are evaluated, get filtered

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Region name filter block

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017)

This is a comment

SCOREP_REGION_NAMES_BEGIN

 # by default, everything is included

 EXCLUDE *

 INCLUDE bar foo

 baz

 main

SCOREP_REGION_NAMES_END

 Keywords

 Case-sensitive

 SCOREP_REGION_NAMES_BEGIN,

SCOREP_REGION_NAMES_END

 Define the region name filter block

 Block contains EXCLUDE, INCLUDE rules

 EXCLUDE, INCLUDE rules

 Followed by one or multiple white-space separated region names

 Names can contain bash-like wildcards *, ?, []

 EXCLUDE, INCLUDE rules are applied in sequential order

 Regions that are excluded after all rules are evaluated, get filtered

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Region name filter block, mangling

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017)

void bar(int* a) {

 *a++;

}

int main() {

 int i = 42;

 bar(&i);

 return 0;

}

 Name mangling

 Filtering based on names seen by the measurement

system

 Dependent on compiler

 Actual name may be mangled

 scorep-score names as starting point

(e.g. matvec_sub_)

 Use * for Fortran trailing underscore(s) for

portability

 Use ? and * as needed for full signatures or

overloading

filter bar:

for gcc-plugin, scorep-score

displays ‘void bar(int*)’,

other compilers may differ

SCOREP_REGION_NAMES_BEGIN

 EXCLUDE void?bar(int?)

SCOREP_REGION_NAMES_END

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Further information

 Community instrumentation & measurement infrastructure

 Instrumentation (various methods)

 Basic and advanced profile generation

 Event trace recording

 Online access to profiling data

 Available under New BSD open-source license

 Documentation & Sources:

http://www.score-p.org

 User guide also part of installation:

<prefix>/share/doc/scorep/{pdf,html}/

 Support and feedback: support@score-p.org

 Subscribe to news@score-p.org, to be up to date

 25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P:

Specialized Measurements and Analyses

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering build systems

 Hooking up the Score-P instrumenter scorep into complex build environments like

Autotools or CMake was always challenging

 Score-P provides new convenience wrapper scripts to simplify this (since Score-P 2.0)

 Autotools and CMake need the used compiler already in the configure step, but

instrumentation should not happen in this step, only in the build step

 Allows to pass addition options to the Score-P instrumenter and the compiler via

environment variables without modifying the Makefiles

 Run scorep-wrapper --help for a detailed description and the available wrapper

scripts of the Score-P installation

 25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017)

% SCOREP_WRAPPER=off \

> cmake .. \

> -DCMAKE_C_COMPILER=scorep-icc \

> -DCMAKE_CXX_COMPILER=scorep-icpc

Disable instrumentation in the
configure step

Specify the wrapper scripts as
the compiler to use

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering C++ applications

 Automatic compiler instrumentation greatly disturbs C++ applications because of

frequent/short function calls => Use sampling instead

 Novel combination of sampling events and instrumentation of MPI, OpenMP, …
 Sampling replaces compiler instrumentation (instrument with --nocompiler to further reduce

overhead) => Filtering not needed anymore

 Instrumentation is used to get accurate times for parallel activities to still be able to identifies

patterns of inefficiencies

 Supports profile and trace generation

 Available since Score-P 2.0, only x86-64 supported currently

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017)

% export SCOREP_ENABLE_UNWINDING=true

% # use the default sampling frequency

% #export SCOREP_SAMPLING_EVENTS=perf_cycles@2000000

% OMP_NUM_THREADS=4 mpiexec –np 4 ./bt-mz_W.4

 Set new configuration

variable to enable

sampling

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering C++ applications

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017)

Less disturbed
measurement

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering application memory usage

 Determine the maximum heap usage per process

 Find high frequent small allocation patterns

 Find memory leaks

 Support for:
 C, C++, MPI, and SHMEM (Fortran only for GNU Compilers)

 Profile and trace generation (profile recommended)
 Memory leaks are recorded only in the profile

 Resulting traces are not supported by Scalasca yet

 Available since Score-P 2.0

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017)

% export SCOREP_MEMORY_RECORDING=true

% export SCOREP_MPI_MEMORY_RECORDING=true

% OMP_NUM_THREADS=4 mpiexec –np 4 ./bt-mz_W.4

 Set new configuration

variable to enable

memory recording

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering application memory usage

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017)

Different maximum
heap usages per

ranks

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering application memory usage

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017)

Memory leaks Memory leaks

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering heterogeneous applications

 Record CUDA applications and device activities

 Record OpenCL applications and device activities

 Record OpenACC applications

 Can be combined with CUDA if it is a NVIDIA device

% export SCOREP_CUDA_ENABLE=gpu,kernel,idle

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017)

% export SCOREP_OPENCL_ENABLE=api,kernel

% export SCOREP_OPENACC_ENABLE=yes

% export SCOREP_CUDA_ENABLE=kernel

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering heterogeneous applications

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017)

Host-Device
memory
transfers

OpenACC
directives

CUDA API calls

Device activities

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Enriching measurements with performance counters

 Record metrics from PAPI:

 Use PAPI tools to get available metrics and valid combinations:

 Record metrics from Linux perf:

 Use the perf tool to get available metrics and valid combinations:

 Write your own metric plugin
 Repository of available plugins: https://github.com/score-p

% papi_avail

% papi_native_avail

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017)

% export SCOREP_METRIC_PAPI=PAPI_TOT_CYC

% export SCOREP_METRIC_PAPI_PER_PROCESS=PAPI_L3_TCM

Only the master thread
records the metric
(assuming all threads of
the process access the
same L3 cache)

% export SCOREP_METRIC_PERF=cpu-cycles

% export SCOREP_METRIC_PERF_PER_PROCESS=LLC-load-misses

Only the master thread
records the metric
(assuming all threads of
the process access the
same L3 cache)

% perf list

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P user instrumentation API

 No replacement for automatic compiler instrumentation

 Can be used to further subdivide functions

 E.g., multiple loops inside a function

 Can be used to partition application into coarse grain phases

 E.g., initialization, solver, & finalization

 Enabled with --user flag to Score-P instrumenter

 Available for Fortran / C / C++

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P user instrumentation API (Fortran)

 Requires processing by

the C preprocessor
 For most compilers, this can

be automatically achieved by

having an uppercase file

extension, e.g., main.F or

main.F90

#include "scorep/SCOREP_User.inc"

subroutine foo(…)

 ! Declarations

 SCOREP_USER_REGION_DEFINE(solve)

 ! Some code…

 SCOREP_USER_REGION_BEGIN(solve, “<solver>", \

 SCOREP_USER_REGION_TYPE_LOOP)

 do i=1,100

 [...]

 end do

 SCOREP_USER_REGION_END(solve)

 ! Some more code…

end subroutine

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P user instrumentation API (C/C++)

#include "scorep/SCOREP_User.h"

void foo()

{

 /* Declarations */

 SCOREP_USER_REGION_DEFINE(solve)

 /* Some code… */

 SCOREP_USER_REGION_BEGIN(solve, “<solver>",

 SCOREP_USER_REGION_TYPE_LOOP)

 for (i = 0; i < 100; i++)

 {

 [...]

 }

 SCOREP_USER_REGION_END(solve)

 /* Some more code… */

}

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P user instrumentation API (C++)

#include "scorep/SCOREP_User.h"

void foo()

{

 // Declarations

 // Some code…

 {

 SCOREP_USER_REGION(“<solver>",

 SCOREP_USER_REGION_TYPE_LOOP)

 for (i = 0; i < 100; i++)

 {

 [...]

 }

 }

 // Some more code…

}

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P measurement control API

 Can be used to temporarily disable measurement for certain intervals
 Annotation macros ignored by default

 Enabled with --user flag

#include “scorep/SCOREP_User.inc”

subroutine foo(…)

 ! Some code…

 SCOREP_RECORDING_OFF()

 ! Loop will not be measured

 do i=1,100

 [...]

 end do

 SCOREP_RECORDING_ON()

 ! Some more code…

end subroutine

#include “scorep/SCOREP_User.h”

void foo(…) {

 /* Some code… */

 SCOREP_RECORDING_OFF()

 /* Loop will not be measured */

 for (i = 0; i < 100; i++) {

 [...]

 }

 SCOREP_RECORDING_ON()

 /* Some more code… */

}

Fortran (requires C preprocessor) C / C++

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P:

Conclusion and Outlook

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Project management

 Ensure a single official release version at all times which will always work with the

tools

 Allow experimental versions for new features or research

 Commitment to joint long-term cooperation
 Development based on meritocratic governance model

 Open for contributions and new partners

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Future features

 Scalability to maximum available CPU core count

 Support for emerging architectures and new programming models

 Features currently worked on:
 User provided wrappers to 3rd party libraries

 Hardware and MPI topologies

 Basic support of measurements without re-compiling/-linking

 I/O recording

 Java recording

 Persistent memory recording (e.g., PMEM, NVRAM, …)

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017)

