
VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Introduction to
Parallel Performance Engineering

Marc-André Hermanns
Jülich Supercomputing Centre

(with content used with permission from tutorials
by Bernd Mohr/JSC and Luiz DeRose/Cray)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Performance: an old problem

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017) 2

“The most constant difficulty in contriving
the engine has arisen from the desire to
reduce the time in which the calculations
were executed to the shortest which is
possible.”

Charles Babbage
1791 – 1871

Difference Engine

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Today: the “free lunch” is over

■ Moore's law is still in charge, but
■ Clock rates no longer increase
■ Performance gains only through

increased parallelism
■ Optimizations of applications more

difficult
■ Increasing application complexity

■ Multi-physics
■ Multi-scale

■ Increasing machine complexity
■ Hierarchical networks / memory
■ More CPUs / multi-core

 Every doubling of scale reveals a new bottleneck!

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017) 3

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Performance factors of parallel applications

■ “Sequential” performance factors
■ Computation

 Choose right algorithm, use optimizing compiler
■ Cache and memory

 Tough! Only limited tool support, hope compiler gets it right
■ Input / output

 Often not given enough attention

■ “Parallel” performance factors
■ Partitioning / decomposition
■ Communication (i.e., message passing)
■ Multithreading
■ Synchronization / locking

 More or less understood, good tool support

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017) 4

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Tuning basics

■ Successful engineering is a combination of
■ Careful setting of various tuning parameters
■ The right algorithms and libraries
■ Compiler flags and directives
■ …
■ Thinking !!!

■ Measurement is better than guessing
■ To determine performance bottlenecks
■ To compare alternatives
■ To validate tuning decisions and optimizations

 After each step!

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017) 5

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Performance engineering workflow

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017) 6

• Calculation of metrics
• Identification of performance

problems
• Presentation of results

• Modifications intended to

eliminate/reduce performance
problem

• Collection of performance data
• Aggregation of performance

data

• Prepare application with
symbols

• Insert extra code
(probes/hooks)

Preparation Measurement

Analysis Optimization

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

The 80/20 rule

■ Programs typically spend 80% of their time in 20% of the code

■ Programmers typically spend 20% of their effort to get 80% of the total speedup
possible for the application
 Know when to stop!

■ Don't optimize what does not matter

 Make the common case fast!

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017) 7

“If you optimize everything,
you will always be unhappy.”

Donald E. Knuth

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Metrics of performance

■ What can be measured?
■ A count of how often an event occurs

■ E.g., the number of MPI point-to-point messages sent
■ The duration of some interval

■ E.g., the time spent these send calls
■ The size of some parameter

■ E.g., the number of bytes transmitted by these calls

■ Derived metrics
■ E.g., rates / throughput
■ Needed for normalization

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017) 8

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Example metrics

■ Execution time
■ Number of function calls
■ CPI

■ CPU cycles per instruction
■ FLOPS

■ Floating-point operations executed per second

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017) 9

“math” Operations?
 HW Operations?
 HW Instructions?

 32-/64-bit? …

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Execution time

■ Wall-clock time
■ Includes waiting time: I/O, memory, other system activities
■ In time-sharing environments also the time consumed by other applications

■ CPU time
■ Time spent by the CPU to execute the application
■ Does not include time the program was context-switched out

■ Problem: Does not include inherent waiting time (e.g., I/O)
■ Problem: Portability? What is user, what is system time?

■ Problem: Execution time is non-deterministic

■ Use mean or minimum of several runs

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017) 10

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Inclusive vs. Exclusive values

■ Inclusive
■ Information of all sub-elements aggregated into single value

■ Exclusive
■ Information cannot be subdivided further

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017) 11

Inclusive Exclusive

int foo()
{
 int a;
 a = 1 + 1;

 bar();

 a = a + 1;
 return a;

}

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Classification of measurement techniques

■ How are performance measurements triggered?
■ Sampling
■ Code instrumentation

■ How is performance data recorded?

■ Profiling / Runtime summarization
■ Tracing

■ How is performance data analyzed?

■ Online
■ Post mortem

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017) 12

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Sampling

 Running program is periodically interrupted to take
measurement
 Timer interrupt, OS signal, or HWC overflow
 Service routine examines return-address stack
 Addresses are mapped to routines using symbol table

information
 Statistical inference of program behavior
 Not very detailed information on highly volatile metrics
 Requires long-running applications
Works with unmodified executables

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017) 13

Time
main foo(0) foo(1) foo(2) int main()

{
 int i;

 for (i=0; i < 3; i++)
 foo(i);

 return 0;
}

void foo(int i)
{

 if (i > 0)
 foo(i – 1);

}

Measurement

t9 t7 t6 t5 t4 t1 t2 t3 t8

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Instrumentation

Measurement code is inserted such that every event
of interest is captured directly
 Can be done in various ways
 Advantage:
 Much more detailed information
 Disadvantage:
 Processing of source-code / executable

necessary
 Large relative overheads for small functions

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017) 14

Time
Measurement int main()

{
 int i;

 for (i=0; i < 3; i++)
 foo(i);

 return 0;
}

void foo(int i)
{

 if (i > 0)
 foo(i – 1);

}

Time

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14

main foo(0) foo(1) foo(2)

Enter(“main”);

Leave(“main”);

Enter(“foo”);

Leave(“foo”);

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Instrumentation techniques

■ Static instrumentation
■ Program is instrumented prior to execution

■ Dynamic instrumentation
■ Program is instrumented at runtime

■ Code is inserted
■ Manually
■ Automatically

■ By a preprocessor / source-to-source translation tool
■ By a compiler
■ By linking against a pre-instrumented library / runtime system
■ By binary-rewrite / dynamic instrumentation tool

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017) 15

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Critical issues

■ Accuracy
■ Intrusion overhead

■ Measurement itself needs time and thus lowers performance
■ Perturbation

■ Measurement alters program behaviour
■ E.g., memory access pattern

■ Accuracy of timers & counters
■ Granularity

■ How many measurements?
■ How much information / processing during each measurement?

 Tradeoff: Accuracy vs. Expressiveness of data

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017) 16

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Classification of measurement techniques

■ How are performance measurements triggered?
■ Sampling
■ Code instrumentation

■ How is performance data recorded?
■ Profiling / Runtime summarization
■ Tracing

■ How is performance data analyzed?

■ Online
■ Post mortem

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017) 17

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Profiling / Runtime summarization

■ Recording of aggregated information
■ Total, maximum, minimum, …

■ For measurements
■ Time
■ Counts

■ Function calls
■ Bytes transferred
■ Hardware counters

■ Over program and system entities
■ Functions, call sites, basic blocks, loops, …
■ Processes, threads

 Profile = summarization of events over execution interval

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017) 18

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Types of profiles

■ Flat profile
■ Shows distribution of metrics per routine / instrumented region
■ Calling context is not taken into account

■ Call-path profile
■ Shows distribution of metrics per executed call path
■ Sometimes only distinguished by partial calling context

(e.g., two levels)
■ Special-purpose profiles

■ Focus on specific aspects, e.g., MPI calls or OpenMP constructs
■ Comparing processes/threads

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017) 19

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Tracing

■ Recording detailed information about significant points (events) during execution of
the program

■ Enter / leave of a region (function, loop, …)
■ Send / receive a message, …

■ Save information in event record
■ Timestamp, location, event type
■ Plus event-specific information (e.g., communicator,

sender / receiver, …)
■ Abstract execution model on level of defined events

 Event trace = Chronologically ordered sequence of

 event records

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017) 20

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

void bar() {
 trc_enter("bar");
 ...
 recv(A, tag, buf);
 trc_recv(A);
 ...
 trc_exit("bar");
}

void foo() {
 trc_enter("foo");
 ...
 trc_send(B);
 send(B, tag, buf);
 ...
 trc_exit("foo");
}

58 ENTER foo
62 SEND to B
64 EXIT foo

...

...

Local trace A

Local trace B

60 ENTER bar
68 RECV from A
69 EXIT bar

...

...

Event tracing Process A

Process B

MONITOR

MONITOR

sy
nc

hr
on

iz
e(

d)

instrument

Global trace view

58 A ENTER foo
60 B ENTER bar
62 A SEND to B
64 A EXIT foo
68 B RECV from A

...

69 B EXIT bar
...

(Virtual merge)

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017) 21

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Tracing Pros & Cons

■ Tracing advantages

■ Event traces preserve the temporal and spatial relationships among individual events
(context)

■ Allows reconstruction of dynamic application behaviour on any required level of abstraction
■ Most general measurement technique

■ Profile data can be reconstructed from event traces

■ Disadvantages

■ Traces can very quickly become extremely large
■ Writing events to file at runtime may causes perturbation

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017) 22

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Classification of measurement techniques

■ How are performance measurements triggered?
■ Sampling
■ Code instrumentation

■ How is performance data recorded?
■ Profiling / Runtime summarization
■ Tracing

■ How is performance data analyzed?

■ Online
■ Post mortem

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017) 23

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Online analysis

■ Performance data is processed during measurement run

■ Process-local profile aggregation

■ Requires formalized knowledge about performance bottlenecks

■ More sophisticated inter-process analysis using

■ “Piggyback” messages

■ Hierarchical network of analysis agents

■ Online analysis often involves application steering to interrupt and re-configure the
measurement

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017) 24

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Post-mortem analysis

■ Performance data is stored at end of measurement run

■ Data analysis is performed afterwards

■ Automatic search for bottlenecks

■ Visual trace analysis

■ Calculation of statistics

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017) 25

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Example: Time-line visualization

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017) 26

58 A ENTER foo
60 B ENTER bar
62 A SEND to B
64 A EXIT foo
68 B RECV from A

...

69 B EXIT bar

...

main
foo
bar

58 60 62 64 66 68 70

B

A

Global trace view

Post-Mortem

Analysis

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

No single solution is sufficient!

A combination of different methods, tools and techniques is typically needed!
 Analysis
 Statistics, visualization, automatic analysis, data mining, ...
Measurement
 Sampling / instrumentation, profiling / tracing, ...
 Instrumentation
 Source code / binary, manual / automatic, ...

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017) 27

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Typical performance analysis procedure

■ Do I have a performance problem at all?
■ Time / speedup / scalability measurements

■ What is the key bottleneck (computation / communication)?
■ MPI / OpenMP / flat profiling

■ Where is the key bottleneck?
■ Call-path profiling, detailed basic block profiling

■ Why is it there?
■ Hardware counter analysis, trace selected parts to keep trace size manageable

■ Does the code have scalability problems?
■ Load imbalance analysis, compare profiles at various sizes function-by-function

25TH VI-HPS TUNING WORKSHOP (RWTH AACHEN, 27-31 MAR 2017) 28

	Introduction to�Parallel Performance Engineering
	Performance: an old problem
	Today: the “free lunch” is over
	Performance factors of parallel applications
	Tuning basics
	Performance engineering workflow
	The 80/20 rule
	Metrics of performance
	Example metrics
	Execution time
	Inclusive vs. Exclusive values
	Classification of measurement techniques
	Sampling
	Instrumentation
	Instrumentation techniques
	Critical issues
	Classification of measurement techniques
	Profiling / Runtime summarization
	Types of profiles
	Tracing
	Foliennummer 21
	Tracing Pros & Cons
	Classification of measurement techniques
	Online analysis
	Post-mortem analysis
	Example: Time-line visualization
	No single solution is sufficient!
	Typical performance analysis procedure

