
Performance Optimization
and Productivity

EU H2020 Center of Excellence (CoE)

1 October 2015 – 31 March 2018 (30 months)

POP CoE

• A Center of Excellence
• On Performance Optimization and Productivity
• Promoting best practices in performance analysis and parallel programming

• Providing Services
• Precise understanding of application and system behavior
• Suggestion/support on how to refactor code in the most productive

way

• Horizontal
• Transversal across application areas, platforms, scales

• For academic AND industrial codes and users

2

Partners

• Who?
• BSC (coordinator), ES

• HLRS, DE

• JSC, DE

• NAG, UK

• RWTH Aachen, IT Center, DE

• TERATEC, FR

A team with

• Excellence in performance tools and tuning

• Excellence in programming models and practices

• Research and development background AND
proven commitment in application to real academic and industrial use cases

3

Motivation

Why?
• Complexity of machines and codes
  Frequent lack of quantified understanding of actual behavior
  Not clear most productive direction of code refactoring

• Important to maximize efficiency (performance, power) of compute
intensive applications and the productivity of the development
efforts

Target

• Parallel programs , mainly MPI /OpenMP … although can also look at
CUDA, OpenCL, Python, …

4

3 levels of services

? Application Performance Audit
• Primary service

• Identify performance issues of customer code (at customer site)

• Small Effort (< 1 month)

! Application Performance Plan
• Follow-up on the service

• Identifies the root causes of the issues found and qualifies and
quantifies approaches to address the issues

• Longer effort (1-3 months)

 Proof-of-Concept
• Experiments and mock-up tests for customer codes

• Kernel extraction, parallelization, mini-apps experiments to show
effect of proposed optimizations

• 6 months effort

5

R
ep

o
rts

So
ftw

are
d

e
m

o
n

strato
r

Apply @
http://www.pop-coe.eu

Target customers

• Code developers
• Assessment of detailed actual

behavior
• Suggestion of more productive

directions to refactor code

• Users
• Assessment of achieved performance

on specific production conditions
• Possible improvements modifying

environment setup
• Evidences to interact with code

provider

6

• Infrastructure operators
• Assessment of achieved performance in

production conditions
• Possible improvements modifying

environment setup
• Information for allocation processes
• Training of support staff

• Vendors
• Benchmarking
• Customer support
• System dimensioning/design

• Services
• Completed/reporting: 54

• Codes being analyzed: 16

• Waiting user / New: 15

• Cancelled: 7

• By type
• Audits: 68

• Plan: 11

• Proof of concept: 6

• Reports
• 5 -15 pages

Activities (Feb 2017)

7

Other activities

• Promotion and dissemination
• Market and community development
• Dissemination material and events

• Customer advocacy
• Gather customers feedback, ensure satisfaction, steer activities

• Sustainability
• Explore business models

• Training
• Best practices on the use of the tools and programming models (MPI + OpenMP)

• Lot of interest … customers want to learn how to do it themselves

8

WP4 – Audit characterization
Code

• Parallel programming model
• 77% MPI or MPI+X
• 17% pure OpenMP
• Few from new paradigms

• Programming language
• 64% Fortran (+X) as expected
• 9.4% Python (+X) not really expected

9

WP4 – Audit characterization
Code

• Scientific/technical area
• Dominated by Engineering and

Physics
• 90.5% of the requests from

traditional HPC sectors
• But also some requests on Data

analytics, Deep learning, Medical,
Media film, Text processing

10

WP4 – Audit characterization

11/23/2016

User profile

• Country
• 23% requests from countries outside the

consortium
• 33.9% UK, 26.3% DE, 13.2% ES, 3.6% FR

• Company /department sector
• 26.4% request from the materials

sectors while only 3.7% of the codes
classified as material by the user

11

WP4 – Audit characterization

11/23/2016

Performance Audit results

IPC

Parallel efficiency

>0.9 >0.8

• Parallel efficiency
• At least 67% would benefit / require

optimizations (acceptable + bad)
• Most frequent reason for acceptable efficiency

is data transfer and for bad efficiency is load
balance (+ data transfer)

• Serial performance (IPC)
• 44% have IPC >1 for all regions
• Others may benefit from a serial performance

improvement
• 24% general IPC < 1

12

Case study: FDS Audit

• User: Spanish SME

• Code: FDS (Fire dynamics simulation)
• Simulates fire and smoke development

in structures

• Code Area: Engineering

• Performance Audit:
• Parallel efficiency drops for more than

200 cores

• Evaluate efficiency running @
MareNostrum

1,00
1,86

2,82
3,69

5,32

7,08

12,23

0

4

8

12

16

0 64 128 192 256

MPI ranks

Speedup

Speedup Linear
13

FDS Efficiency Analysis

• Analysis of MPI version with 32 – 256 ranks @ MN3

0

0,4

0,8

1,2

0 50 100 150 200 250 300

Parallel Efficiency

Computation
Scalability

0

0,4

0,8

1,2

0 50 100 150 200 250 300

Load Balance

Serialization

Transfer

• Efficiencies still good at that scale

• Main lose of efficiency: unbalanced amount of work

• In MN3 a XYZ decomposition would improve balance and improve 20%

14

Case study: GraGLeS2D Audit

• User: German University

• Code: GraGLeS2D
• Simulates the grain growth in

polycrystalline materials

• Code Area: Material Science

• Performance Audit:
• Poor scaling on a NUMA machine with

128 cores

15

GraGLeS2D Audit Analysis

• Analysis of OpenMP with 8 – 128
cores
• 4 boards x 4 sockets x 8 cores

• Observations from Audit
• Work balance good except for the first

iteration

• Data sharing causing remote memory
access reduces scalability

• Detected consuming loops that can be
vectorised

• PoC proposed and implemented
16

GraGLeS2D Proof of Concept

• PoC Plan
• improve data-locality by thread pinning

and load-distribution

• improve vectorisation and serial
performance

• Results on test input
• parallel regions: speedup 6.4

• overall application: speedup 2.2

17

Case study: GS2 Audit

• User: UK national fusion laboratory (core
developer) ITER project

• Code: GS2
• Simulates low-frequency turbulence in

magnetized plasma

• Code Area: Physics

• Performance Audit:
• Code has strong scaling up to ~2000 cores. Want to

confirm /identify bottleneck to improve scalability

18

GS2 Efficiency Analysis

• Analysis of MPI + SHMEM version for 4 – 48 nodes @ Archer
UK

• Efficiencies bad even with 4 nodes (96 cores)

• Main loss of efficiency: communication efficiency

• Main problem for scaling: code replication

Performance Plan proposed and being implemented

19

GS2 Performance Plan

• Analysis on larger production input set, MPI only
• Frequent redistribution of data -> poor communication efficiency

• Evaluating EPCC improvement

• Improved scaling but still far from 80% of
ideal

• Load imbalance: potential for ~50%
performance improvement

• Large reduction in data transferred but still
inefficient due to dependencies

• Considering to apply a PoC

0

5

10

15

20

25

30

35

40

0 1000 2000 3000 4000 5000 6000 7000 8000

Sp
ee

d
 u

p

Number of MPI ranks

Ideal 80% of ideal original ROI updated ROI

20

11/23/2016

Contact:
 https://www.pop-coe.eu
 mailto:pop@bsc.es

This project has received funding from the European Union‘s Horizon 2020 research and innovation programme under grant agreement No 676553.

Performance Optimisation and Productivity
A Centre of Excellence in Computing Applications

