

Performance Optimization and Productivity

EU H2020 Center of Excellence (CoE)

1 October 2015 – 31 March 2018 (30 months)

• A Center of Excellence

- On Performance Optimization and Productivity
- Promoting best practices in performance analysis and parallel programming
- Providing Services
 - Precise understanding of application and system behavior
 - Suggestion/support on how to refactor code in the most productive way
- Horizontal
 - Transversal across application areas, platforms, scales
- For academic AND industrial codes and users

Partners

• Who?

- BSC (coordinator), ES
- HLRS, DE
- JSC, DE
- NAG, UK
- RWTH Aachen, IT Center, DE
- TERATEC, FR

A team with

- Excellence in performance tools and tuning
- Excellence in programming models and practices
- Research and development background AND proven commitment in application to real academic and industrial use cases

Barcelona

Center

BSC

Supercomputing

Centro Nacional de Supercomputación

ILICH

FORSCHUNGSZENTRUM

e

tec

Н

Motivation

Why?

- Complexity of machines and codes
 - ightarrow Frequent lack of quantified understanding of actual behavior
 - \rightarrow Not clear most productive direction of code refactoring
- Important to maximize efficiency (performance, power) of compute intensive applications and the productivity of the development efforts

Target

 Parallel programs , mainly MPI /OpenMP ... although can also look at CUDA, OpenCL, Python, ...

3 levels of services

? Application Performance Audit

- Primary service
- Identify performance issues of customer code (at customer site)
- Small Effort (< 1 month)

! Application Performance Plan

- Follow-up on the service
- Identifies the root causes of the issues found and qualifies and quantifies approaches to address the issues
- Longer effort (1-3 months)

✓ Proof-of-Concept

- Experiments and mock-up tests for customer codes
- Kernel extraction, parallelization, mini-apps experiments to show effect of proposed optimizations
- 6 months effort

	C Q Seat	0004	*
Most Visted 🔹 Getting Started 🔘 Pu	TUR, Website for th 🔒 Projects		
000	Performance Optimisation and Proc	ductivity	
	Performance Optimisation and Proc A Centre of Excellence in Computing Applications		
			1.0
		Parts / Region	110
Blog	Request Service Form		
News	Request service ronn		
Partners	Contact Details		
Services	Applicant's Name *		
Request Service Form			
Target Customers	Institution *		
Further Information			
Contact	e-mail*		
	Code		
	Name of the code "		
	Name of the coor -		
	Scientific/technical area and class of problems it solves *		
	-Select -		
	Contribution *		

Reports

demonstrator

Software

Target customers

Code developers

- Assessment of detailed actual behavior
- Suggestion of more productive directions to refactor code

• Users

- Assessment of achieved performance on specific production conditions
- Possible improvements modifying environment setup
- Evidences to interact with code provider

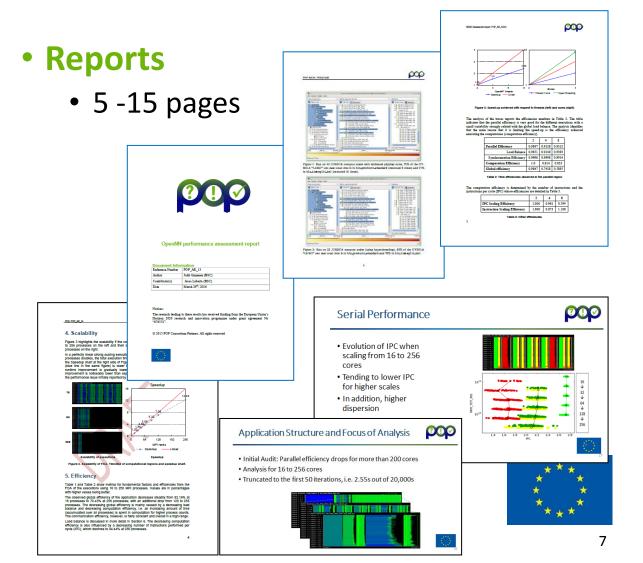
• Infrastructure operators

- Assessment of achieved performance in production conditions
- Possible improvements modifying environment setup
- Information for allocation processes
- Training of support staff

Vendors

- Benchmarking
- Customer support
- System dimensioning/design

Activities (Feb 2017)



• Services

- Completed/reporting: 54
- Codes being analyzed: 16
- Waiting user / New: 15
- Cancelled: 7

• By type

- Audits: 68
- Plan: 11
- Proof of concept: 6

Other activities

Promotion and dissemination

- Market and community development
- Dissemination material and events

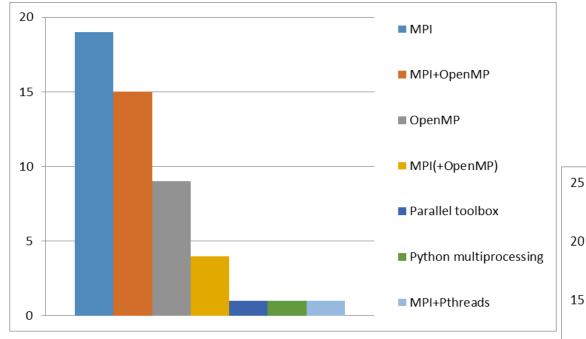
Customer advocacy

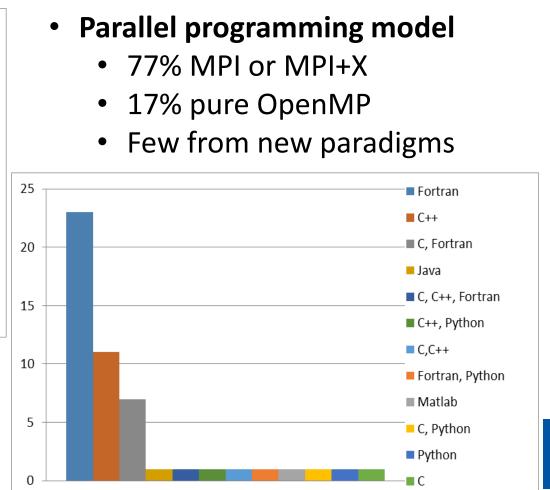
• Gather customers feedback, ensure satisfaction, steer activities

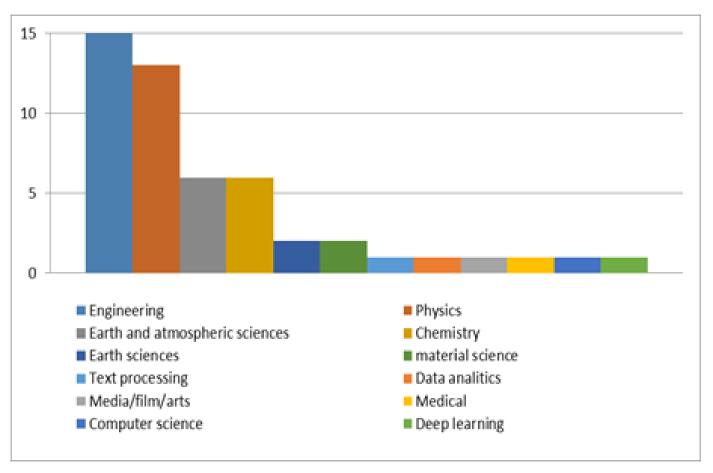
Sustainability

• Explore business models

Training

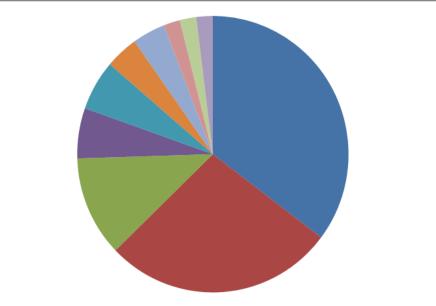

- Best practices on the use of the tools and programming models (MPI + OpenMP)
 - Lot of interest ... customers want to learn how to do it themselves




<u>Code</u>

- Programming language
 - 64% Fortran (+X) as expected
 - 9.4% Python (+X) not really expected

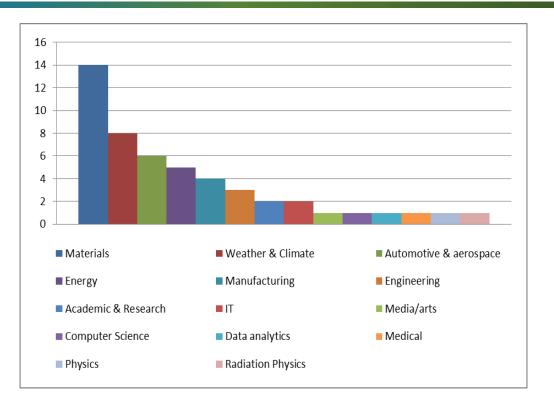
<u>Code</u>


Scientific/technical area

- Dominated by Engineering and Physics
- 90.5% of the requests from traditional HPC sectors
- But also some requests on Data analytics, Deep learning, Medical, Media film, Text processing

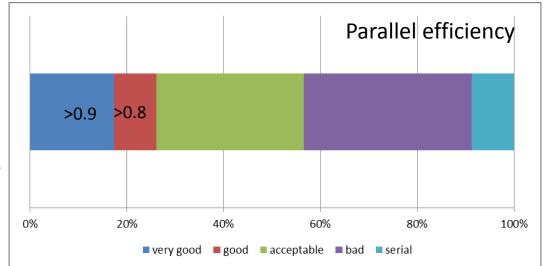
User profile

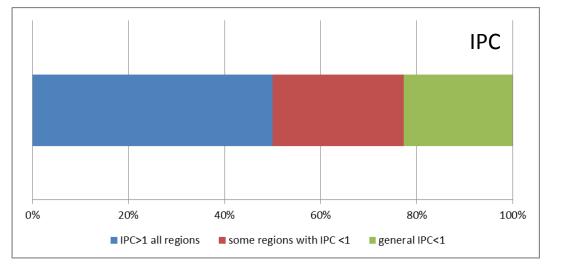
- Company /department sector
 - 26.4% request from the materials sectors while only 3.7% of the codes classified as material by the user



CH

IU

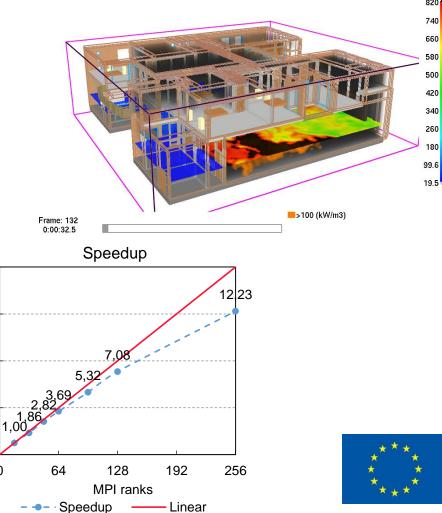

IT



- Country
 - 23% requests from countries outside the consortium
- * * * * * * *
- 33.9% UK, 26.3% DE, 13.2% ES, 3.6% FR

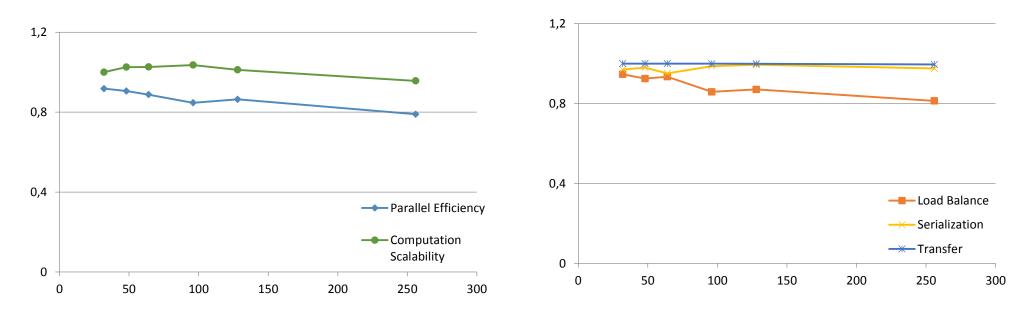
Performance Audit results

- Parallel efficiency
 - At least 67% would benefit / require optimizations (acceptable + bad)
 - Most frequent reason for acceptable efficiency is data transfer and for bad efficiency is load balance (+ data transfer)


- Serial performance (IPC)
 - 44% have IPC >1 for all regions
 - Others may benefit from a serial performance improvement
 - 24% general IPC < 1

Case study: FDS Audit

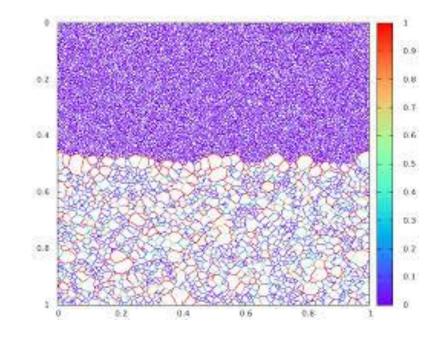
- User: Spanish SME
- Code: FDS (Fire dynamics simulation)
 - Simulates fire and smoke development in structures
- Code Area: Engineering
- Performance Audit:
 - Parallel efficiency drops for more than 200 cores
 - Evaluate efficiency running @ MareNostrum


16

12

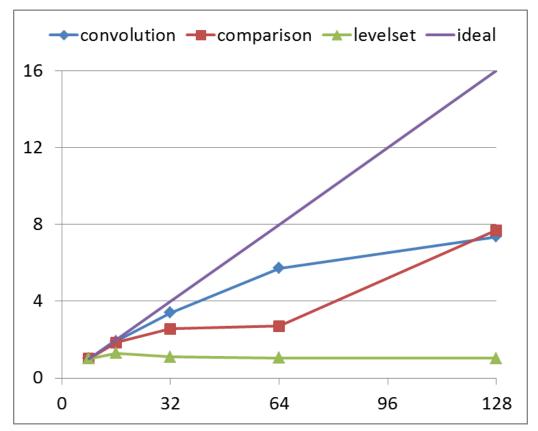
FDS Efficiency Analysis

• Analysis of MPI version with 32 – 256 ranks @ MN3



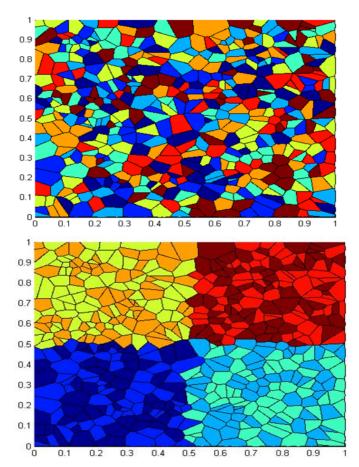
- Efficiencies still good at that scale
- Main lose of efficiency: unbalanced amount of work
- In MN3 a XYZ decomposition would improve balance and improve 20%

Case study: GraGLeS2D Audit


- User: German University
- Code: GraGLeS2D
 - Simulates the grain growth in polycrystalline materials
- Code Area: Material Science
- Performance Audit:
 - Poor scaling on a NUMA machine with 128 cores

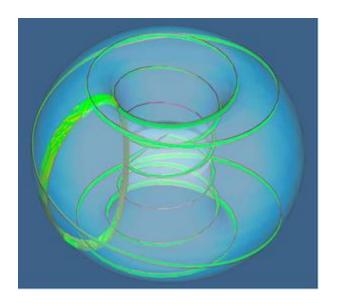
GraGLeS2D Audit Analysis

- Analysis of OpenMP with 8 128 cores
 - 4 boards x 4 sockets x 8 cores
- Observations from Audit
 - Work balance good except for the first iteration
 - Data sharing causing remote memory access reduces scalability
 - Detected consuming loops that can be vectorised
- PoC proposed and implemented



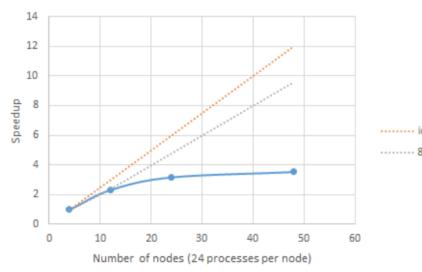
GraGLeS2D Proof of Concept

- PoC Plan
 - improve data-locality by thread pinning and load-distribution
 - improve vectorisation and serial performance
- Results on test input
 - parallel regions: speedup 6.4
 - overall application: speedup 2.2



Case study: GS2 Audit

- User: UK national fusion laboratory (core developer) ITER project
- Code: GS2
 - Simulates low-frequency turbulence in magnetized plasma
- Code Area: Physics
- Performance Audit:
 - Code has strong scaling up to ~2000 cores. Want to confirm /identify bottleneck to improve scalability

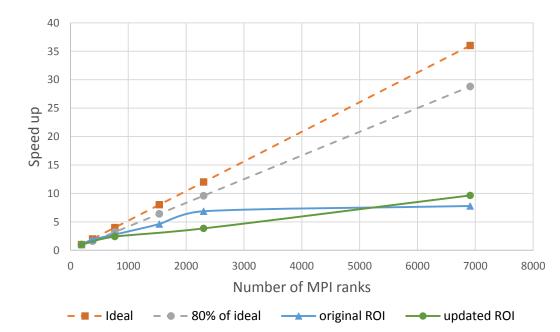


GS2 Efficiency Analysis

• Analysis of MPI + SHMEM version for 4 – 48 nodes @ Archer

Nodes	4	12	24	48
Global Efficiency	47.3%	36.8%	25.2%	14.0%
[↑] Computational Scalability [*]	100.0%	84.9%	67.6%	41.2%
[↑] IPC Scalability [*]	100.0%	100.3%	93.9%	83.1%
[↑] Instructions Scalability [*]	100.0%	85.4%	76.1%	53.9%
ר Parallel Efficiency	47.4%	43.4%	37.2%	34.0~%
[↑] Load Balance	81.1%	78.9%	76.7%	76.3~%
ា Comm. Efficiency	58.4~%	55.0%	48.5~%	44.5%

- Efficiencies bad even with 4 nodes (96 cores)
- Main loss of efficiency: communication efficiency
- Main problem for scaling: code replication


Performance Plan proposed and being implemented

GS2 Performance Plan

- Analysis on larger production input set, MPI only
 - Frequent redistribution of data -> poor communication efficiency
- Evaluating EPCC improvement
 - Improved scaling but still far from 80% of ideal
 - Load imbalance: potential for ~50% performance improvement
 - Large reduction in data transferred but still inefficient due to dependencies
- Considering to apply a PoC

Performance Optimisation and Productivity A Centre of Excellence in Computing Applications

Contact: https://www.pop-coe.eu mailto:pop@bsc.es

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 676553.