
Olly Perks & Florent Lebeau

Olly.Perks@arm.com

Florent.Lebeau@arm.com

Accelerate HPC Development with

Allinea Performance Tools

mailto:Olly.Perk@arm.com
mailto:Florent.Lebeau@arm.com

Agenda

• 09:00 – 09:15 Introduction to Allinea Tools

• 09:15 – 09:30 Analyse your Applications on ARCHER

• 09:30 – 09:45 Retrieve Hardware Counters’ Data

• 09:45 – 10:15 Write Application-specific Metrics

• 10:15 – 10:30 Wrap-up and questions

• Afternoon: Hands-on coaching on your own codes

Example: Weather and Forecasting models

Building blocks for better science

Scalability

Efficiency

Simplicity

• Enable multi-physics simulations

• Run larger, more accurate models

• Resolve ground-breaking scientific problems

• Reduce wasted resources (energy…)

• Maximize science output per $

• Minimize time to result

• Pro-actively and automatically detect faults

• Provide applications on various hardware

• Facilitate technical dialogue with scientists

About Allinea

• Allinea: leading toolkit for HPC application developers

• As of December 2016 Allinea is now part of ARM
– Objective: continue to be the trusted HPC Tools leader in tools across every platform

• This means:
– The same team will continue to work with you, our customers and partners, and the wider

HPC community

– Being part of ARM gives us strength to deliver on our roadmap faster

– We remain 100% committed to providing cross-platform tools for HPC

– Our engineering roadmap is aligned with upcoming architectures from every vendor

Allinea’s vision

• Helping maximize HPC efficiency

Reduce HPC systems operating costs

Resolve cutting-edge challenges

Promote Efficiency (as opposed to Utilization)

Transfer knowledge to HPC communities

• Helping the HPC community design the best applications

Reach highest levels of performance and scalability

Improve scientific code quality and accuracy

Where to find Allinea tools

• From small to very large tools provision

Over 65% of Top 100 HPC systems

• From 1,000 to 700,000 core tools usage

6 of the Top 10 HPC systems

• Millions of cores usage

Future leadership systems

“Learn” with Allinea Performance Reports

Very simple start-up

No source code needed

Fully scalable, very low overhead

Rich set of metrics

Powerful data analysis

Maintaining a high efficiency production

Speeds up
benchmarking

• Documents
jobs in a
single run,
easily

Reduce
analysis costs

• Centralizes
and
processes
data

Guides code
development

• Highlights
aspects of
the code to
be reworked

Allinea MAP: Performance made easy

Low overhead measurement

• Accurate, non-intrusive application performance profiling

• Seamless – no instrumentation required

Easy to use

• Source code viewer pinpoints bottleneck locations

• Zoom in to explore iterations, functions and loops

• Re-compile with “-g” and profile by adding “map” to the mpirun command

Deep

• Measures CPU, communication, I/O and memory to identify problem causes

• Identifies vectorization and cache performance

Allinea MAP and tracing tools: a great synergy

Simple
optimization

with
Allinea MAP

• Characterize performance at-scale with a lightweight tool

• See which lines of code are hotspots

• Identify common problems at once

Prepare
optimization
strategy with
Allinea MAP

• Identify loop(s) to instrument

• Identify performance counter(s) to record

• Document performance issues to communicate to profiling experts

Fine tune the
code

with tracing tool

• Retrieve low-level details using traces

• Fix up CPU usage to make the code fly

Getting started on ARCHER: Set the environment

• Load the Allinea tools modules
$ module load allinea/7.0 allinea-reports/7.0

• Use the temporary licence for the workshop:
$ export ALLINEA_LICENCE_DIR=/fs4/y14/shared/allinea_licence

• Copy the NPB archive
$ cp /fs4/y14/shared/tutorial/NPB3.3-MZ-MPI.tar.gz .

$ tar xzvf NPB3.3-MZ-MPI.tar.gz

$ cd NPB3.3-MZ-MPI

Getting started: Prepare the code for profiling on Cray

• Compile the MAP wrapper libraries
$ mkdir allinea_libs

$ cd allinea_libs

$ make-profiler-libraries

$ cd ..

The “make-profiler-libraries” command will display instructions to compile the application.

• Edit the config/make.def file and edit the following lines to add the extra

parameters in bold
Line 11: COMPILER = -Gfast –homp –N 255

Line 62: F_LIB = -dynamic –L/path/to/allinea_libs

\ -lmap-sampler-pmpi -lmap-sampler

\ -Wl,--eh-frame-hdr

\ -Wl,-rpath=/path/to/allinea_libs

• Compile bt-mz
$ make bt-mz CLASS=C NPROCS=24

Getting started: Submit the job to profile the application

• Copy a job script
$ cp /fs4/y14/shared/job.archer bin/

$ cd bin/

• Edit “job.archer” to have the following lines instead of the execution

command line 29
– To run Allinea Performance Reports:

module load allinea-reports/7.0

export ALLINEA_LICENCE_DIR=/fs4/y14/shared/allinea_licence

perf-report aprun -n 24 ./bt-mz_C.24

– Or to run Allinea MAP:

module load allinea/7.0

export ALLINEA_LICENCE_DIR=/fs4/y14/shared/allinea_licence

map --profile aprun -n 24 ./bt-mz_C.24

Default Metrics – Background

• Already covered the introduction to profiling

• Basic metrics for understanding performance

Activity Timeline

• What happens over time

• Breakdown of % by CPU / MPI / I/O / Overheads

CPU Instructions

• What type of instructions are being executed

• FP / Integer / Memory / Vector / Branch

I/O Breakdown

• Time spent in reads / writes

• Data for Posix I/O

MPI Time Breakdown

• Rate of calls (send / recv / collectives)

• Data communicated and time taken

Advanced Metrics

• Energy (RAPL + IPMI)

• Lustre I/O metrics

• PAPI hardware counters

New Metrics:

• Custom metrics interface

• JSON export

New Capabilities:

Energy Profiling

• Want to link energy consumption to application activity

• Two ways of collecting energy information
– RAPL – CPU centric energy data on Intel CPUs (after Sandy Bridge)

– IPMI – Node level energy collection on compatible hardware

• If available MAP will report this energy data

Lustre I/O Metrics

• Query the kernel for Lustre data activity

• Stores read / write rates, volume, file opens and metadata activity

PAPI Hardware Counters

• Metric to interface with the PAPI library

• Limited to a subset of hardware counters
– Select a PAPI ‘profile’ for the run

– Configure in .allinea/map/metrics/PAPI.config

Custom metric set

Possible values are

Overview : FLOPS and cycles per instruction

CacheMisses : L1, L2, L3 total cache misses. Fallback of data

cache misses if total cache misses unavailable.

BranchPrediction : Total and mispredicted branch instructions

FloatingPoint : Scalar and vector f loating point instructions.

Recommendation is Overview

set = Overview

PAPI Metrics: Overview & Cache Misses

How to use PAPI metrics on ARCHER

• Load the PAPI module
$ module load papi

• Install the Allinea PAPI library
$ cd /home/y07/y07/cse/allinea/forge/7.0

$./papi_install.sh

Should pick up the PAPI lib

Select ‘P’ for Personal install

By default, this will be installed in $HOME/.allinea/map/metrics/ but $HOME is not

accessible on the compute nodes … let’s copy it in /work

$ cp $HOME/.allinea/ /work/y14/y14/$USER/

• Export the following environment variables in the job script
$ export ALLINEA_CONFIG_DIR=/work/y14/y14/$USER/.allinea/

$ export ALLINEA_PAPI_CONFIG=

\ /work/y14/y14/$USER/.allinea/map/metrics/PAPI.config

New Capabilities: Custom Metrics in MAP

• Write your own metrics

• Must be async signal safe – quite limiting

Addition of a custom metrics interface

• System introspection – Specific counters / files

• Application introspection – Tracking application
characteristics

Types of metric:

Application Specific Custom Metric

• NPB-LU
– Track the iteration number

– Track the error term over time (for all 5 arrays)

Writing a Custom Metric

XML
Description

• Define multiple variables

• Function to call to get variables

• Library where functions exist

Functions
Library

• Async signal safe functions

• Limit flexibility

• Return data to MAP

Makefile

• To build against MAP

• Install to metrics directory

• $ALLINEA_CONFIG_DIR/map/metrics

Writing a Custom Application Metric

Application

Application

Library

Profile

Library

MAP

Profile

XML

Application
Library

• Library with application variables

• Called from profiling library

• Should maintain own data – with application getters / setters

Application Profiler

Guide: LU Custom Metrics

• Install the LU Custom Metrics library
$ cp -r /fs4/y14/shared/allinea/custom_metric_lu .

$ cd custom_metric_lu

$ make install

Will install the metric in /work/y14/y14/$USER/.allinea/map/metrics/

• Go to the NPB root directory and compile lu-mz
$ cd NPB3.3-MZ-MPI

$ make lu-mz CLASS=C NPROCS=24

• Submit the job to profile in bin/
map --profile aprun -n 24 ./lu-mz_C.24

System Specific Custom Metric

• MUSCLE-2 Communication
– Inter-MPI program communication library

– Record communication performance data – Like MPI

JSON Export

• Export map profile data to JSON file
– Command line or GUI

– Provides meta data + samples

JSON Ideas

• JSON exposes the ~1000 sample data arrays
– Min, Max, Mean, STD and sum

• Plot these with Python scripts

• Integrate with regression testing suite
– Jenkins plugin developed

• Compatibility with Performance Reports JSON export
– Multisource data visualisation / analytics

Questions? Olly.Perks@arm.com

Florent.Lebeau@arm.com

Support: support@allinea.com

Thank you!

mailto:Olly.Perks@arm.com
mailto:Florent.Lebeau@arm.com
mailto:support@allinea.com

