allinea

Now part of ARM
High performance tools to debug, profile, and analyze your applications

Accelerate HPC Development with
Allinea Performance Tools

Olly Perks & Florent Lebeau N ﬁ
Olly.Perks@arm.com x i i ;
. @ allinea allinea allinea allinea

Florent.Lebeau@arm.com FORGE DDT M AP REPORTS

mailto:Olly.Perk@arm.com
mailto:Florent.Lebeau@arm.com

Agenda

* 09:00 -09:15
¢ 09:15-09:30
* 09:30 - 09:45
¢ 09:45-10:15
« 10:15-10:30

o Afternoon:

Introduction to Allinea Tools

Analyse your Applications on ARCHER
Retrieve Hardware Counters’ Data
Write Application-specific Metrics
Wrap-up and questions

Hands-on coaching on your own codes

allinea

Now part of ARM

Example: Weather and Forecasting models

allinea

Now part of ARM
ki ' h I

Building blocks for better science

» Enable multi-physics simulations

SCalab| I |ty * Run larger, more accurate models

* Resolve ground-breaking scientific problems

» Reduce wasted resources (energy...)

EﬁlClency - Maximize science output per $

* Minimize time to result

* Pro-actively and automatically detect faults

S | m pl |C|ty « Provide applications on various hardware

« Facilitate technical dialogue with scientists

allinea

Now part of ARM

About Allinea

 Allinea: leading toolkit for HPC application developers

« As of December 2016 Allinea is now part of ARM

— Objective: continue to be the trusted HPC Tools leader in tools across every platform

 This means:

— The same team will continue to work with you, our customers and partners, and the wider
HPC community

— Being part of ARM gives us strength to deliver on our roadmap faster
— We remain 100% committed to providing cross-platform tools for HPC
— Our engineering roadmap is aligned with upcoming architectures from every vendor

allinea

Now part of ARM

Allinea’s vision

« Helping maximize HPC efficiency

Reduce HPC systems operating costs
ﬁ Resolve cutting-edge challenges
allinea Promote Efficiency (as opposed to Utilization)

PERFORMANCE

“FFORTS T Transfer knowledge to HPC communities

* Helping the HPC community design the best applications
=% Reach highest levels of performance and scalability

allinea Improve scientific code quality and accuracy
FORGE

allinea

Now part of ARM

Where to find Allinea tools

' Over 65% of Top 100 HPC systems

* From small to very large tools provision

‘ 6 of the Top 10 HPC systems

\

* From 1,000 to 700,000 core tools usage

’ Future leadership systems

 Millions of cores usage

allinea

Now part of ARM
i I‘“Iuhn P

“Learn” with Allinea Performance Reports

MADbench2

16 processes, 1 node

sandybridge2

Mon Nov 4 12:27:50 2013
109 seconds (2 minutes)

allinea
PERFORMANCE

REPORTS

tmp/MADbench2

12-core server /| HDD / 16 readers +writers

CPU

Summary: MADbench2 is |/O-bound in this configuration

The total wallclock ime was spent as follows:

CPU 48% |

vel oo I
o s

Time spent running application code. High values are usually good.
This is low; it may be worth improving I/O performance first.

Time spent in MPI calls. High values are usually bad.

This is average; check the MPI breakdown for advice on reducing it.
Time spent in filesystem I/0. High values are usually bad_

This is high; check the O breakdown section for optimization advice.

This application run was I/O-bound. A breakdown of this time and advice for investigating furtheris in the /O section below.

CPU

A breakdown of how the 4.8% total CPU time was spent:
Scalar numericops 49% |

Vector numericops 0.1% |

Memory accesses 95.0% [N

Other 0.0 |

The per-core performance is memory-bound. Use a profiler to
identify ime-consuming loops and check their cache performance.

No time was spent in vectorized instructions. Check the compiler's
vectorization advice lo see why key loops could not be vedorized.

110

A breakdown of how the 53.9% total IO time was spent:
Time in reads 3.7% |

Time in writes 96.3% [|

Estimated read rate 272 Mb/s [

Estimated write rate 7.06 Mbis |

Most of the time is spent in write operations, which have a very low
transfer rate. This may be caused by contention for the filesystem or
inefficient access pattemns. Use an /0 profiler to investigats which
write calls are affected.

|I‘I'I||‘||I'|‘ln.

MPI
Of the 41.3% total time spentin MPI calls:
Time in collective calls 100.0% |

Time in point-to-point calls 0.0% |

Estimated collective rate 4.07 bytes/s [I

Estimated point-to-point rate 0 bytesis I

All of the time is spent in collective calls with a very low transfer rate.
This suggests a significant load imbalance is causing

synchronization overhead. You can investigate this further with an
MPI profiler.

Memory

Per-process memory usage may also affect scaling:
Mean process memory usage 160 Mb [N

Peak process memory usage 173 Mb [N

Peak node memory usage 172% N

The peak node memory usage is low. You may be able to reduce
the total number of CPU hours used by running with fewer MP|
processes and more data on each process.

Very simple start-up

No source code needed

Fully scalable, very low overhead

Rich set of metrics

allinea

Now part of ARM

Maintaining a high efficiency production

MPI

A breakdown of the 0.2% MPI time:

Time in collective calls
Time in point-to-point calls
Effective process collective |

Effective process peoint-to-f

Most of the time is spent in
transfer rate. Using larger n
communication and comput
transfer rate.

—

1

17.6% B
Energy
A breakdown of how the
CPU 62.9%
System 37.1%
Mean node power 92.4W
Peak node power 94 W

Significant energy is wasted during MPlI communications. It may
be more efficient to use fewer nodes with more data on each

node.

Significant time is spent waiting for memory accesses. Reducing
the CPU clock frequency could reduce overall energy usage.

Accelerators

A breakdown of how accelerators were used:

GPU utilization

3.6 Wh was used:
.

|

.

|

78.3%
s 70.9%

31.5%

38.7%
in global

shared n

le. Use
nce.

CPU

A breakdown of the 99.8% CPU time:
3.1% |
2.7% |

- Scalar numeric ops
Vector numeric ops

110

A breakdown of how the 53.9% total I/O time was spent:

a profiler to

Time in reads 3.7% | e

Time in writes 96.3% [] B the
Estimated read rate 272 Mb/s [s could not be
Estimated write rate 7.06 Mb/s |

Most of the time is spent in write operations, which have a very low
transfer rate. This may be caused by contention for the filesystem or
inefficient access patterns. Use an I/O profiler to investigate which
write calls are affected.

allinea

Now part of ARM

Allinea MAP: Performance made easy

Low overhead measurement

» Accurate, non-intrusive application performance profiling
» Seamless — no instrumentation required

Easy to use

» Source code viewer pinpoints bottleneck locations
« Zoom in to explore iterations, functions and loops
* Re-compile with “-g” and profile by adding “map” to the mpirun command

AlLR

id

Deep

» Measures CPU, communication, I/O and memory to identify problem causes
* ldentifies vectorization and cache performance

=
=
|

allinea

Now part of ARM

Allinea MAP and tracing tools: a great synergy

il « See which lines of code are hotspots

LEESEI - [dentify common problems at once
Allinea MAP

Identify loop(s) to instrument
ST Identify performance counter(s) to record

optimization

» Characterize performance at-scale with a lightweight tool]

Document performance issues to communicate to profiling experts

strategy with
Allinea MAP

Retrieve low-level details using traces
Fix up CPU usage to make the code fly

Fine tune the
(ofoo[]
with tracing tool

allinea

N fARM
i Shidi it

Getting started on ARCHER: Set the environment

» Load the Allinea tools modules
$ module load allinea/7.0 allinea-reports/7.0

« Use the temporary licence for the workshop:
$ export ALLINEA LICENCE_DIR=/fs4/yl4/shared/allinea_licence

« Copy the NPB archive
$ cp /fs4/yld/shared/tutorial/NPB3.3-MZ-MPI.tar.gz .
$ tar xzvf NPB3.3-MZ-MPI.tar.gz
$ cd NPB3.3-MZ-MPI

allinea

Now part of ARM

Getting started: Prepare the code for profiling on Cray

« Compile the MAP wrapper libraries
$ mkdir allinea 1libs
$ cd allinea_libs
$ make-profiler-libraries
$ cd ..
The “make-profiler-libraries” command will display instructions to compile the application.

« Edit the config/make.def file and edit the following lines to add the extra

parameters in bold
Line 11: COMPILER = -Gfast -homp -N 255
Line 62: F_LIB = -dynamic -L/path/to/allinea_libs
\ -lmap-sampler-pmpi -lmap-sampler
\ -W1,--eh-frame-hdr
\ -Wl,-rpath=/path/to/allinea_libs

« Compile bt-mz
$ make bt-mz CLASS=C NPROCS=24

allinea

Now part of ARM

Getting started: Submit the job to profile the application

« Copy a job script
$ cp /fs4/yla/shared/job.archer bin/
$ cd bin/

 Edit “job.archer” to have the following lines instead of the execution

command line 29

— To run Allinea Performance Reports:
module load allinea-reports/7.0
export ALLINEA LICENCE_DIR=/fs4/yl4/shared/allinea_licence
perf-report aprun -n 24 ./bt-mz_C.24

— Or to run Allinea MAP:
module load allinea/7.0
export ALLINEA LICENCE_DIR=/fs4/yl4/shared/allinea_licence
map --profile aprun -n 24 ./bt-mz_C.24

allinea

Now part of ARM

Default Metrics — Background

« Already covered the introduction to profiling
« Basic metrics for understanding performance

Activity Timeline

* What happens over time
 Breakdown of % by CPU / MPI / 1/O / Overheads

CPU Instructions

* What type of instructions are being executed
* FP / Integer / Memory / Vector / Branch

I/O Breakdown

» Time spent in reads / writes
+ Data for Posix I/O

MPI Time Breakdown

 Rate of calls (send / recv / collectives)
« Data communicated and time taken

allinea

Now part of ARM

Advanced Metrics

T

* Energy (RAPL + IPMI)
e Lustre I/O metrics
 PAPI hardware counters

mm New Capabillities:

 Custom metrics interface
* JSON export

allinea

Now part of ARM
bu BB

Energy Profiling

« Want to link energy consumption to application activity

« Two ways of collecting energy information
— RAPL - CPU centric energy data on Intel CPUs (after Sandy Bridge)
— IPMI — Node level energy collection on compatible hardware

« If available MAP will report this energy data

CPU power usage lL_iv:.i! M I.__ #

53.0 W/node

System powerusage °° == o — & =

93.1 W/node

0

allinea

N art of ARM
ul‘l‘h“ e

Lustre I/O Metrics

* Query the kernel for Lustre data activity

« Stores read / write rates, volume, file opens and metadata activity

Profiled: iPIC3D on 4096 processes, 128 nodes Sampled from: Fri Jan 6 2017 02:02:41 (UTC+01) for 135.5s

e _

Lustre read rate 837
0.05 MB/s
D . [
Lustre write rate 238
0.01 GB/s |
0|__th=— s = _— . -
Lustre metadata operations 387
0.26 k /s B) :
Ugn__!"_“-_u— —_— - = = oaki P— [T e L= = "= = =_15 |"_:
352] 3 - 1

Lustre file opens
0.05k/s

0 |Gk

01:02:41-01:03:54 (73.711s, 54.4% of total): Main thread compute 8.3 %, OpenMP 4.1 %, MPI 32.1 %, File I/0 55.1 %, OpenMP overhead 0.0 %, Sleeping 0.4 %

allinea

N t of ARM
i OWpML

PAPI Hardware Counters

« Metric to interface with the PAPI library

 Limited to a subset of hardware counters

— Select a PAPI ‘profile’ for the run
— Configure in .allinea/map/metrics/PAPI.config

Custom metric set

Possible values are

#

#
#
#
#

Overview
CacheMisses

BranchPrediction
FloatingPoint

: FLOPS and cycles per instruction

: L1, L2, L3 total cache misses. Fallback of data

cache misses if total cache misses unavailable.
: Total and mispredicted branch instructions

: Scalar and vector floating point instructions.

Recommendation is Overview
set = Overview

allinea

Now part of ARM

PAPI Metrics: Overview & Cache Misses

Profiled: clover leaf on 12 processes, 2 nodes, 48 cores (4 per process) Sampled from: Thu Feb 9 2017 15:33:19 (UTC) for 13.3s Hide Metrics...

Application activity

DP FLOPS

0.74G /s

Cycles per instruction 78

1.84

0

15:33:19-15:33:32 (13.340s): Main thread compute 0.1 %, OpenMP £3.3 %, MPI 2.4 %, File /O 0.2 %, OpenMP overhead 5.0 %, Uncategor Zoom @é = Q)

Profiled: clover leaf on 12 processes, 2 nodes, 48 cores (4 per process) Sampled from: Thu Feb 9 2017 15:08:52 (UTC) for 13.0s Hide Metrics...

Application activity

Level 1 total cache misses 1!’

59.3 M/s |
0 Lot
Level 2 total cache misses °°

226 M/s

o L
Level 3 total cache misses ***®
4.68 M /s

o L
15:08:52-15:09:05 (13.049s): Main thread compute 0.1 %, OpenMP £4.8 %, MPI 7.5 %, File I/0 0.2 %, OpenMP overhead 5.3 %, Uncategor Zoom @51 EE &)

| allinea
l““l""“l“n Now part of ARM

How to use PAPI metrics on ARCHER

« Load the PAPI module
$ module load papi

+ Install the Allinea PAPI library
$ cd /home/y07/y07/cse/allinea/forge/7.0
$./papi_install.sh
Should pick up the PAPI lib
Select ‘P’ for Personal install

By default, this will be installed in $HOME/.allinea/map/metrics/ but $HOME is not
accessible on the compute nodes ... let’s copy it in /work

$ cp $HOME/.allinea/ /work/yl4/y14/$USER/

Export the following environment variables in the job script

$ export ALLINEA CONFIG DIR=/work/yl14/y14/$USER/.allinea/
$ export ALLINEA PAPI_CONFIG=

\ /work/y14/y14/$USER/.allinea/map/metrics/PAPI.config

allinea

Now part of ARM

New Capabilities: Custom Metrics in MAP

Addition of a custom metrics interface

« Write your own metrics
* Must be async signal safe — quite limiting

Types of metric:

« System introspection — Specific counters / files

 Application introspection — Tracking application
characteristics

allinea

Now part of ARM

Application Specific Custom Metric

 NPB-LU

— Track the iteration number
— Track the error term over time (for all 5 arrays)

i _

LU Step Count
124

Array 1 Error -,
0.65 k _‘K

Array 2 Error -
454 T —

Array 3 Error -

Array 4 Error -_

Array 5 Error —

132k &

allinea

N fARM
1 Shidi it

Writing a Custom Metric

« Define multiple variables A
 Function to call to get variables
XML . Lib here f : .
D qey © Library where functions exist y
« Async signal safe functions A
Funct « Limit flexibility
E?bcr;?{,ls * Return data to MAP)
 To build against MAP A
* Install to metrics directory
 SALLINEA CONFIG_DIR/map/metrics)

allinea

Now part of ARM

Writing a Custom Application Metric

 Library with application variables
« Called from profiling library
Kicu © Should maintain own data — with application getters / setters

Application

Application Profiler

Application

allinea

ulll.liﬂ Now part of ARM

Guide: LU Custom Metrics

* Install the LU Custom Metrics library

$ cp -r /fs4/yld/shared/allinea/custom metric_lu .
$ cd custom _metric_lu
$ make install
Will install the metric in /work/y14/y14/$USER/.allinea/map/metrics/

* Go to the NPB root directory and compile lu-mz

$ cd NPB3.3-MZ-MPI
$ make lu-mz CLASS=C NPROCS=24

» Submit the job to profile in bin/
map --profile aprun -n 24 ./lu-mz_C.24

allinea

Now part of ARM

System Specific Custom Metric

« MUSCLE-2 Communication

— Inter-MPI program communication library
— Record communication performance data — Like MPI

Main thread activity

MUSCLEZ sent bytes EEL
0.44 Bjs
o
MUSCLE2 send calls =
0.22 calls/s

i
MUSCLE2 send duration °7'=°

0.00 s
0

MUSCLE2 receive rate B
0.52 B/s

MUSCLE2 receive calls EHli

0.26 calls/s

MUSCLE2 receive duration '*°
0.10s

MUSCLE2 barrier call rate '*f
0.59 callsfs

MUSCLE2 barrier duration '°°
0.10 s

1

Now part of ARM

JSON Export

« Export map profile data to JSON file

— Command line or GUI
— Provides meta data + samples

operkS@esloainﬂai:?wokay14}y14f5perksfcloverLeaf_ref} map --export=clover.json

Loading MAP file clover_ leaf 6p_1n_4t 2017-02-09_12-18.map...

...done

Collecting samples...

...done
Calculating.
...done
Collecting §
...done
Calculating.
...done
MAP generat

{

"info": {
"command_line": "aprun -n 6 -N 6 -5
"create_version": "7.08",
"machine": "mom5",

"metrics": {
"memory_per_node": {
"max": 67658141696,
"mean”: 67658141696,
"min": 67658141696,
"sum": 67658141696,

"var": 0
1,
"num_cores_per_node": {

"max": 48,

"mean”: 48,

"min": 48,

"sum": 288,

"var": 0
1,
"num_omp_threads_per_process": {

"max": 3,

"mean": 3,

"min": 3,

"sum": 18,

"var": 0

1,

3 -d 4 ./clover_leaf",

Edit View Metrics Window Help

clover_leaf 6p_1n_4t 2017-02-089 12-18.map

Load Profile Data...
Save Profile Data As...

Export Profile Data As |[SON

Close Profile
Restart Profiling...

Open Source File...

B4 Save Source File As....

Close Source File
Close All Source Files

£+ Build
Configure Build...

Commit...
Options...

Quit

Ctrl+0

Ctrl+5hift+5

Ctri+wW

Ctri+B

00 cores (1 per proce

mpute 84.7 %, MPI 1!

1 x_solve
1 y_solve

1 z_solve

allinea

Now part of ARM

JSON Ideas

JSON exposes the ~1000 sample data arrays

— Min, Max, Mean, STD and sum

Plot these with Python scripts

Integrate with regression testing suite
— Jenkins plugin developed

Compatibility with Performance Reports JSON export

— Multisource data visualisation / analytics

allinea

Now part of ARM

allinea

Now part of ARM
High performance tools to debug, profile, and analyze your applications

Thank you!

Questions? Olly.Perks@arm.com
Florent.Lebeau@arm.com
Support: support@allinea.com

allinea allinea allinea 2llinea

PERFORMANCE

FORGE DDT MAP REPORTS

mailto:Olly.Perks@arm.com
mailto:Florent.Lebeau@arm.com
mailto:support@allinea.com

