
Score-P Cheat Sheet
General Workflow Loop

• Preparation: instrument target application and set up measurement environment

• Measurement: run application with measurement infrastructure enabled

• Analysis: analyse generated performance data

• Examination: find possible cause of performance anomalies in the code

• Optimization: apply optimizations to eliminate bottleneck

• Repeat: apply analysis workflow loop until acceptable performance achieved

Performance Analysis Procedure
• Create a profile with full instrumentation

• Compare runtime to uninstrumented run to determine overhead

• (Incrementally) create filter file using hints from the scorep-score tool

• Create an optimized profile with filter applied

• Investigate profile with CUBE

• For in-depth analysis, generate a trace with filter applied and examine it using
Scalasca and than Vampir

LLNL Environment Setup
Dotkits for Score-P and Scalasca are available on OCF Linux clusters for both Intel and GCC compilers. Both require
and will automatically load mvapich2-2.2.

• use scorep-mvapich2-gnu-2.2 (for GNU Compilers)

• use scorep-mvapich2-intel-2.2 (for Intel Compilers)

To load the Scalasca automatic trace analyzer, use:

• use scalasca-2.3.1-mvapich2-gnu-2.2 (for GNU Compilers)

• use scalasca-2.3.1-mvapich2-intel-2.2 (for Intel Compilers)

Application Instrumentation
• Prefix all compile/link commands with scorep, e.g.

scorep mpicc $CFLAGS -c foo.c
scorep mpicc -o foo foo.o $LDFLAGS

• Compile as usual

• Advanced instrumentation options available to further adjust the measurement configuration

Application Measurement
Set Score-P environment variables
SCOREP_EXPERIMENT_DIRECTORY=<path> Name of the experiment directory
SCOREP_ENABLE_PROFILING=true/false Enable generation of profiles (default=true)
SCOREP_ENABLE_TRACING=true/false Enable the generation of traces (default=false)
SCOREP_TOTAL_MEMORY=<size> Total memory in bytes used for Score-P per process (default=16M)
SCOREP_FILTERING_FILE=<filter-file> Name of file containing filter rules

... and many more (see manual or run scorep-info config-vars -full)

Summary Collection
Setup measurement configuration and run application as usual:

export SCOREP_EXPERIMENT_DIRECTORY=scorep_bt-mz_W_4x4_sum
export OMP_NUM_THREADS=4
srun -n 4 ./bt-mz_W.4

Profile Examination with CUBE and Filter File Creation
Launch CUBE report explorer (GUI):

cube scorep_bt-mz_W_4x4_sum/profile.cubex

Cube region/callpath classification:
MPI pure MPI library functions
OMP pure OpenMP functions/regions
USR user-level source local computation
COM USR on callpath to OpenMP/MPI
ANY/ALL aggregate of all region types

Create filter file with hints from scorep-score
% scorep-score -r scorep_bt-mz_W_4x4_sum/profile.cubex
% scorep-score -r -f ../config/scorep.filt scorep_bt-mz_W_4x4_sum/profile.cubex

Create profile with filter applied
% export SCOREP_EXPERIMENT_DIRECTORY=scorep_bt-mz_W_4x4_sum_filter
% export SCOREP_FILTERING_FILE=../config/scorep.filt
% srun -n 4 ./bt-mz_W.4

Trace Analysis with Scalasca
% use scalasca-2.3.1-mvapich2-gnu-2.2
% export SCOREP_EXPERIMENT_DIRECTORY=scorep_bt-mz_W_4x4_trace
% export SCOREP_TOTAL_MEMORY=16M
% scan srun -n 4 ./bt-mz_W.4

Trace Analysis Report Exploration
% square scorep_bt-mz_W_4x4_trace

Interactive Performance Analysis with Vampir
Open trace directly in Vampir
% use vampir
% vampir scorep_bt-mz_W_4x4_trace/traces.otf2

PAPI Hardware Performance Counters
% export SCOREP_METRIC_PAPI=PAPI_L2_DCM:!CPU_TEMP1
CPU_TEMP1 is provided by the lm-sensors component.
See papi_avail and papi_native_avail for available counter.

PAPI_L[1|2|3]_[D|I|T]C[M|H|A|R|W]
Level 1/2/3 data/instruction/total cache
misses/hits/accesses/reads/writes

PAPI_L[1|2|3]_[LD|ST]M
Level 1/2/3 load/store misses

PAPI_CA_SNP Requests for a snoop
PAPI_CA_SHR Req. for excl. access to shared cache line
PAPI_CA_CLN Req. for excl. access to clean cache line
PAPI_CA_INV Requests for cache line invalidation
PAPI_CA_ITV Requests for cache line intervention
PAPI_BRU_IDL Cycles branch units are idle
PAPI_FXU_IDL Cycles integer units are idle
PAPI_FPU_IDL Cycles floating point units are idle
PAPI_LSU_IDL Cycles load/store units are idle
PAPI_TLB_DM Data translation lookaside buffer misses
PAPI_TLB_IM Instruction transl. lookaside buffer misses
PAPI_TLB_TL Total translation lookaside buffer misses
PAPI_BTAC_M Branch target address cache misses
PAPI_PRF_DM Data prefetch cache misses
PAPI_TLB_SD Translation lookaside buffer shootdowns
PAPI_CSR_FAL Failed store conditional instructions
PAPI_CSR_SUC Successful store conditional instructions
PAPI_CSR_TOT Total store conditional instructions
PAPI_MEM_SCY Cycles Stalled Waiting for memory accesses
PAPI_MEM_RCY Cycles Stalled Waiting for memory Reads
PAPI_MEM_WCY Cycles Stalled Waiting for memory writes
PAPI_STL_ICY Cycles with no instruction issue
PAPI_FUL_ICY Cycles with maximum instruction issue
PAPI_STL_CCY Cycles with no instructions completed
PAPI_FUL_CCY Cycles with maximum instructions completed
PAPI_BR_UCN Unconditional branch instructions
PAPI_BR_CN Conditional branch instructions
PAPI_BR_TKN Conditional branch instructions taken
PAPI_BR_NTK Conditional branch instructions not taken
PAPI_BR_MSP Conditional branch inst. mispredicted
PAPI_BR_PRC Cond. branch inst. correctly predicted
PAPI_FMA_INS FMA instructions completed
PAPI_TOT_IIS Instructions issued
PAPI_TOT_INS Instructions completed
PAPI_INT_INS Integer instructions
PAPI_FP_INS Floating point instructions
PAPI_LD_INS Load instructions
PAPI_SR_INS Store instructions
PAPI_BR_INS Branch instructions
PAPI_VEC_INS Vector/SIMD instructions
PAPI_LST_INS Load/store instructions completed
PAPI_SYC_INS Synchronization instructions completed
PAPI_FML_INS Floating point multiply instructions
PAPI_FAD_INS Floating point add instructions
PAPI_FDV_INS Floating point divide instructions
PAPI_FSQ_INS Floating point square root instructions
PAPI_FNV_INS Floating point inverse instructions
PAPI_RES_STL Cycles stalled on any resource
PAPI_FP_STAL Cycles the FP unit(s) are stalled
PAPI_FP_OPS Floating point operations
PAPI_TOT_CYC Total cycles
PAPI_HW_INT Hardware interrupts

Resource Usage Counters
The Unix system call getrusage provides information about consumed resources and operating system events.
% export SCOREP_METRIC_RUSAGE=ru_stime:ru_majflt
Name Unit Linux Description
ru_utime ms x Total amount of user time used.
ru_stime ms x Total amount of system time used.
ru_maxrss kB Maximum resident set size.
ru_ixrss kB/s Integral shared memory size (text segment).
ru_idrss kB/s Integral data segment memory used over runtime.
ru_isrss kB/s Integral stack memory used over the runtime.
ru_minflt # x Number of soft page faults.
ru_majflt # x Number of hard page faults.
ru_nswap # # times process was swapped out of phys. mem.
ru_inblock # Number of input operations via the file system.
ru_oublock # Number of output operations via the file system.
ru_msgsnd # Number of IPC messages sent.
ru_msgrcv # Number of IPC messages received.
ru_nsignals# Number of signals delivered.
ru_nvcsw # x Number of voluntary context switches.
ru_nivcsw # x Number of involuntary context switches.

