Building and running NPB-BT-MZ-MPI on Darwin

Brian Wylie

Jülich Supercomputing Centre

What is the NPB-BT-MZ-MPI?

- A benchmark from the NAS parallel benchmarks suite
- MPI version
- Implementation in Fortran
- Solves multiple, independent systems of block tridiagonal (BT) equations
- Represents workloads similar to many flow solver codes (3D Navier-Stokes equations)
- Probably not much unused optimization potential
- We will use this application in most exercises during this workshop.

Properties of NPB-BT-MZ-MPI

- The solution is done for multiple zones (MZ), in a repeated time-step loop
 - After each time-step, the zones have to exchange boundary values
 - Fine-grained parallelism within a zone
 - Coarse-grained parallelism between zones
 - Zones are not all equally sized and need to be distributed in a balanced way
- A larger problem size adds more zones
- Exploits multi-level parallelism
 - Hybrid (OpenMP + MPI) implementation
- Suitable testing application for a wide range of tools and analysis types!

First step: Switch to latest Intel environment

Load Intel environment with latest MPI and compilers

Second step: Building the benchmark

Copy tutorial sources to your work directory:

```
% cd $HOME/scratch
% cp -r /home/hpcwyli1/tutorial/NPB3.3-MZ-MPI.tar.gz .
% tar xvzf NPB3.3-MZ-MPI.tar.gz
```

Create default config/make.def:

```
% cd NPB-3.3-MZ-MPI
% ls -F
BT-MZ/ Makefile README.install SP-MZ/ config/ sys/
LU-MZ/ README README.tutorial common/ jobscript/
```

• Issue make command (typing only make will give you a help text):

```
% make bt-mz CLASS=B NPROCS=8
```

Third step: Run the application

■ Change to bin/ directory and copy job script from ../jobscript/darwin

```
% cd bin
% cp ../jobscript/darwin/reference.slurm .
```

Submit the job

```
% sbatch reference.slurm
```

Useful commands

Check your personal job queue:

```
% squeue -u $USER
```

Cancel a job:

```
% scancel <job id>
```

Print contents of output file:

```
% cat out.txt
```

Follow the output, while job is running:

```
% tail -F out.txt
```

Done!

You have successfully built and run the benchmark.

