Accelerate HPC Development with
Allinea Performance Tools

08 July 2016
VI-HPS, Cambridge

UNIVERSITY OF
Florent Lebeau CAMBRIDGE

flebeau@allinea.com =
allinea

mailto:flebeau@allinea.com

Agenda

« 11:00 - 11:15 Introduction

e 11:15-11:45 Understand application behaviour with
Performance Reports

« 11:45-12:15 Profiling: dive in the code with
Allinea MAP

« 12:15-12:30 Wrap-up and guestions

« Afternoon: Hands-on coaching on your own codes

Introduction

Allinea : an expanding company since 2004

« Based in Warwick (UK), leader in HPC software tools
— Subsidiaries in USA, Japan

« Strong R&D investment to drive Innovation

— Significant part of the revenue is spent on R&D yearly
— Founder and board member of HPC consortiums
— Strong technological collaborations

« Strong references all around the world
— The main supercomputing centres in the world are using Allinea tools
* Over 65% of Top 100 HPC systems
» 7 of the Top 10 HPC systems

They trust Allinea

<& _ CSCS

v \‘ ‘ Centro Svizzero di Calcolo Scientifico
. . Swiss National Supercomputing Centre

IT4Innovations
national
supercomputing
center

[Sleloe

~
: A
rerererreer I"|

BERKELEY LAB

Linsrence Berkeley National Laderatory

H L R | S

High-Performance Computing Center | Stuttgart

A)OLICH

FORSCHUMGSZENTRUM

OAK

FRIDGE

National Laboratory

Leibniz Supercomputing Centre
of the Bavarian Academy of Sciences and Humanities

SIMNIC

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Allinea’s vision

* Helping maximize HPC production
* Reduce HPC systems operating costs
allinea ° Resolve cutting-edge challenges
PERFORMANCE

REPORTS « Promote Efficiency (as opposed to Utilization)
« Transfer knowledge to HPC communities

* Helping the HPC community design the best applications

~~% allinea * Reach highest levels of performance and scalability

T EDOTRMGAE * Improve scientific code quality and accuracy

Improvements create pressure on developers

* New generation application are more complex
— Rely on MPI, OpenMP, TBB, CUDA, OpenACC...
— Several types of hardware: x86 64, ARM, GPUS, co-processors...

Allinea can help save time on multiple tasks

W s

Bottleneq Code
isolatio tification

Understand Application Behaviour with
Performance Reports

Define your scope

« Before starting to optimise an application, it is important to

define the scope
— Objectives, target speedup
— Candidate technologies / hardware
— Development time

« To archive this, developer have to:
— Understand the application behaviour

— Know its limitations
— What if they don’t know the source code?

* Prior to modifying the code, they need to:

— Define the best candidate versions
— Select reference and meaningful test cases
— Know the aspects of the code to refactor and corresponding effort

“Learn” with All

MADbench2

16 processes, 1 node

sandybridge2

Mon Nov 4 12:27:50 2013

a"inea 109 seconds (2 minutes)

Ntmp/MADbench2

PERFORMANCE 12-core server / HDD / 16 readers +writers

REPORTS

Summary: MADbench2 is |/O-bound in this configuration

The total wallclock ime was spent as follows:

CPU 48% I ‘Time spent running application code. High values are usually good.
. This is low; it may be worth improving I/ performance first.

MPI a13% [
CEELY |

Time spent in MPI calls. High values are usually bad.
This is average; check the MPI breakdown for advice on reducing it.

Time spent in filesystem /0. High values are usually bad.
This is high; check the IO breakdown section for optimization advice.

This application run was |/0-bound. A breakdown of this time and advice for investigating further is in the |/0 section below.

CPU

A breakdown of how the 4 5% total CPU time was spent:
Scalar numericops 4.9% |

Veclornumericops 0.1% |

Memory accesses 95.0% [N

Other 00 |

The per-core performance is memory-bound. Use a profiler to
identify time-consuming loops and check their cache performance.

No time was spent in vectorized instructions. Check the compiler's
vectorization advice to see why key loops could not be vedorized.

110

A breakdown of how the 53 9% lotal /O ime was spenl:

Time in reads 37% |

Time in writes 9.3%

Estimated read rate 272 Mb/s [N

Estimated write rale 7.06 Mbis |

Most of the time is spent in write operations, which have a very low
transfer rate. This may be caused by contention for the filesystem or

inefficient access patterns. Use an VO profiler to investigate which
write calls are affected.

MPI
Of the 41 3% total time spentin MPI calls:
Time in collective calls 100.0% I

Time in point-to-point calls 0.0% |

Estimated collective rate 407 bytes/s I

Estimated point-to-point rate 0 bytes/s I

All of the time is spent in collective calls with a very low transfer rate.
This suggests a significant load imbalance is causing

synchronization overhead. You can investigate this further with an
MPI profier.

Memory

Per-process memory usage may also affect scaling:
Wean process memory usage 160 Mb [N

Peak process memory usage 173 Mb [

Peak node memory usage 172% W

The peak node memory usage is low. You may be able to reduce
the total number of CPU hours used by running with fewer MPI
processes and more data on each process.

iInea Performance Reports

Very simple start-up

No source code needed

Fully scalable, very low overhead

Rich set of metrics

Maintaining a high efficiency production

Speeds up

benchmarking

MPI

Accelerators

Reduce
analysis costs

A breakdown of how accelerators were used:

A breakdown of the 0.2% MPI time:

Time in collective calls
Time in point-to-point calls
Effective process collective

Effective process point-to-f
Most of the time is spent in
transfer rate. Using larger n

communication and comput
transfer rate.

T

GPU utilization
17.6% 1

Energy

A breakdown of how the 3.6 Wh was used:

CPU 62.9% [l

System 27.0%

Mean node power 92.4 W [

Peak node power 94w N

Significant energy is wasted during MPl communications. It may

be more efficient to use fewer nodes with more data on each
node.

Significant time is spent waiting for memory accesses. Reducing
the CPU clock frequency could reduce overall energy usage.

78.3%
s 70.9%

31.5%

38.7%

Guides code
development

CPU

A breakdown of the 99.8% CPU time:

- Scalar numeric ops 3.0% |

— Vector numeric ops 2.7% |

/0

A breakdown of how the 53.9% total I/O time was spent: a profiler to
Time in reads 3.7% | e

Time in writes 96.3% [B the
Estimated read rate 272 Mb/s [s could not be

Estimated write rate 7.06 Mb/s |

Most of the time is spent in write operations, which have a very low
transfer rate. This may be caused by contention for the filesystem or

inefficient access patterns. Use an I/O profiler to investigate which

write calls are affected.

Getting started on Darwin with NPB

1- Connect to Darwin using X forwarding “ssh -X”

$ ssh -X <username>@login.hpc.cam.ac.uk

2- Retrieve labs
$ cd ${HOME}/scratch

$ cp -r /home/hpcwylil/tutorial/NPB3.3-MZ-MPI.tar.gz .

$ tar xvzf NPB3.3-MZ-MPI.tar.gz

3- Configure your environment

$ module switch default-impi default-impi-LATEST
$ module load allinea/reports/6.0.6

$ perf-report -v

Generate your first report on NPB

1- Compile the application

$ cd NPB-3.3-MZ-MPI/
$ make bt-mz CLASS=B NPROCS=8

2- Edit the job script
$ cd bin/
$ cp ../jobscript/darwin/reference.sbatch perf-report.sbatch
And change the following lines in perf-report.sbatch:
line 17: module load default-impi-LATEST
=» module load default-impi-LATEST allinea/reports/6.0.6
line 27: mpirun -np $PROCS $EXE
= perf-report mpirun -np $PROCS $EXE

3- Submit the job script
$ sbatch perf-report.sbatch

4- Analyse the results
$ cat bt-mz_B_8p_4t_2016-07-05_17-00.txt
$ firefox bt-mz_B 8p 4t 2016-07-05_17-00.html

Profiling: Dive In the code with
Allinea MAP

The gquest for the Holy Performance

TiME CO3T

STRATEGY A
GTRATEGY B

ANALYZING \JHETHER
STRATEGY A OR B
1S MORE EFFICIENT

THE REASON L A 50 INEFFICIENT

Code optimisation
can be time-
consuming.

Efficient tools can
help you focus on
the most important
bottlenecks.

Allinea MAP: Performance made easy

Low overhead measurement

» Accurate, non-intrusive application performance profiling
» Seamless — no instrumentation required

Easy to use

* Source code viewer pinpoints bottleneck locations
- « Zoom in to explore iterations, functions and loops
“'“) H . 13 ” . . 13 ”» M
* Re-compile with “-g” and profile by adding “map” to the mpirun command

Deep

* Measures CPU, communication, I/O and memory to identify problem causes
* Identifies vectorization and cache performance

Allinea MAP and tracing tools: a great synergy

Simple
optimization
with
Allinea MAP

Prepare
optimization

strategy with
Allinea MAP

Fine tune the
code
with tracing tool

Characterize performance at-scale with a lightweight tool
See which lines of code are hotspots
Identify common problems at once

|dentify loop(s) to instrument
ldentify performance counter(s) to record
Document performance issues to communicate to profiling experts

Retrieve low-level details using traces
Fix up CPU usage to make the code fly

Check your code with Allinea DDT

« Who had a rogue behaviour ? Run
with Allinea tools
— Merges stacks from processes and threads
Identify
o a problem
 Where did it happen?
Gather info
— Allinea DDT leaps to source automatically Who, Where,
How, Why
« How did it happen? Fix
— Detailed error message given to the user
— Some faults evident instantly from source
Locals Current Line(s) l Current Sbckl |
. . & | |Current Line(s) g x| |
° Why dld It happen’) J Variable Name Value »
— Unique “Smart Highlighting” W -
nique “Smart Highlighting o T 272 |
— Sparklines comparing data across processes ™\
150119 [- §~cr_eate_ocn_oommunicator (communicate f90:300)

Getting started with profiling on Darwin
with NPB (1)

1- Configure your environment
$ module load allinea/forge/6.0.6

$ map -v

2- Prepare the application
$ cd ${HOME}/scratch/NPB-3.3-MZ-MPI/
And change the following line in config/make.def:
line 53: FFLAGS = -03 $(COMPFLAGS)
= FFLAGS = -03 -g $(COMPFLAGS)
$ make bt-mz CLASS=B NPROCS=8

Getting started with profiling on Darwin
with NPB (2)

3- Edit the job script
$ cd bin/
$ cp ../jobscript/darwin/reference.sbatch map.sbatch
And change the following lines in map.sbatch:
line 17 module load default-impi-LATEST
= module load default-impi-LATEST allinea/forge/6.0.6
line 27 mpirun -np $PROCS $EXE
= map --profile mpirun -np $PROCS $EXE

4- Submit the job script
$ sbatch map.sbatch

5- Analyse the results
$ map bt-mz_B 8p_4t 2016-07-05_17-00.map

Analyse the results: using the remote client

* Install the Allinea Remote Client

Go to : http://www.allinea.com/products/downloads

« Copy the *.map file on your laptop

* View the results locally

http://www.allinea.com/products/downloads

Modify sampling

By default: 1 sample every 20 ms at start up

The sampling rate automatically adapts to the length of
the run:

— This ensures only a few megabytes of data are collected

By default: 1000 samples are collected per process

Use the following env variables to change these settings:
— ALLINEA_SAMPLER_INTERVAL (specify a value in ms)

— ALLINEA_SAMPLER_NUM_SAMPLES (specify a number of samples to
collect per process)

Profiling sections of an application with MAP

« Command-line options:

map --start-after=TIME
map --stop-after=TIME

And the profiler will start/stop sampling TIME seconds after the program
starts

the source code:

Include headers “mpi_sampler_mpi.h” in /path/to/allinea/map/wrapper
Link with libmap-sampler in /path/to/allinea/lib/64
Use the following API functions
= allinea_start_sampling
= allinea_stop _sampling
Export ALLINEA SAMPLER_DELAY_ START=1 before starting MAP

Tutorial: Matrix Multiplication C=AxB + C

k j i,], k: loop indexes

e
Algorithm

1- Master initialises matrices A, B & C

2- Master slices the matrices A & C, sends them to slaves
3- Master and Slaves perform the multiplication

4- Slaves send their results back to Master

5- Master writes the result Matrix C in an output file

A 4
v

nslices =4

Tutorial: Matrix Multiplication C=Ax B + C

Retrieve source codes:

$ cp -r /home/hpclebel/allinea_workshop.tar.gz .
$ tar xzvf allinea_workshop.tar.gz

Version 1:
— Identify hotspot and CPU performance issue with Allinea MAP

Version 2:
— Check for memory leaks in the optimised version

Version 3:
— Resolve load imbalance and fix 10 bottleneck

Version 4.
— Increase vectorisation and parallelisation

Compile
$ make

Submit
$ sbatch job.scratch

allinea

Wrap-up and guestions

Summary

* Increase job efficiency with Allinea Performance
Reports
— Squeeze more jobs within a given time frame

— Increase research by freeing machine time without hardware
Investment

— Helps focus on the right issues: configuration or source-code related

« Reach your performance goals with Allinea MAP
— Easily profile your applications at scale
— Quickly find bottlenecks
— Investigate performance issues and save development time

Thank you

Your contacts :
— Questions? flebeau@allinea.com
— Sales team: sales@allinea.com

allinea

mailto:flebeau@allinea.com
mailto:sales@allinea.com

