
VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P – A Joint Performance Measurement Run-Time
Infrastructure for Periscope, Scalasca, TAU, and Vampir

VI-HPS Team

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Performance engineering workflow

21ST VI-HPS TUNING WORKSHOP (LRZ, GARCHING, 18-22 APR 2016)

•Calculation of metrics
•Identification of performance
problems

•Presentation of results

•Modifications intended to
eliminate/reduce performance
problem

•Collection of performance data
•Aggregation of performance data

•Prepare application with symbols
•Insert extra code (probes/hooks)

Preparation Measurement

Analysis Optimization

2

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Fragmentation of Tools Landscape

 Several performance tools co-exist
 Separate measurement systems and output formats
 Complementary features and overlapping functionality
 Redundant effort for development and maintenance

 Limited or expensive interoperability

 Complications for user experience, support, training

Vampir

VampirTrace
OTF

Scalasca

EPILOG /
CUBE

TAU

TAU native
formats

Periscope

Online
measurement

21ST VI-HPS TUNING WORKSHOP (LRZ, GARCHING, 18-22 APR 2016) 3

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P Project Idea

 Start a community effort for a common infrastructure
 Score-P instrumentation and measurement system
 Common data formats OTF2 and CUBE4
 Developer perspective:
 Save manpower by sharing development resources
 Invest in new analysis functionality and scalability
 Save efforts for maintenance, testing, porting, support, training
 User perspective:
 Single learning curve
 Single installation, fewer version updates
 Interoperability and data exchange
 Project funded by BMBF
 Close collaboration PRIMA project funded by DOE

21ST VI-HPS TUNING WORKSHOP (LRZ, GARCHING, 18-22 APR 2016) 4

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Partners

 Forschungszentrum Jülich, Germany

 Gesellschaft für numerische Simulation mbH Braunschweig, Germany

 RWTH Aachen, Germany

 Technische Universität Darmstadt, Germany

 Technische Universität Dresden, Germany

 Technische Universität München, Germany

 University of Oregon, Eugene, USA

5 21ST VI-HPS TUNING WORKSHOP (LRZ, GARCHING, 18-22 APR 2016)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P Functionality

 Provide typical functionality for HPC performance tools
 Support all fundamental concepts of partner’s tools

 Instrumentation (various methods)
 Flexible measurement without re-compilation:
 Basic and advanced profile generation
 Event trace recording
 Online access to profiling data

MPI/SHMEM, OpenMP/Pthreads, and hybrid parallelism (and serial)
 Enhanced functionality (CUDA, OpenCL, highly scalable I/O)

6 21ST VI-HPS TUNING WORKSHOP (LRZ, GARCHING, 18-22 APR 2016)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Design Goals

 Functional requirements
 Generation of call-path profiles and event traces
 Using direct instrumentation, later also sampling
 Recording time, visits, communication data, hardware counters
 Access and reconfiguration also at runtime
 Support for MPI, SHMEM, OpenMP, Pthreads, CUDA, OpenCL and their valid combinations
 Non-functional requirements
 Portability: all major HPC platforms
 Scalability: petascale
 Low measurement overhead
 Robustness
 Open Source: New BSD License

7 21ST VI-HPS TUNING WORKSHOP (LRZ, GARCHING, 18-22 APR 2016)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P Overview

Application

Vampir Scalasca Periscope TAU

Accelerator-based parallelism
(CUDA, OpenCL)

Score-P measurement infrastructure

Event traces (OTF2)

Sampling interrupts
(PAPI, PERF, timer)

Call-path profiles
(CUBE4, TAU)

Online interface Hardware counter
(PAPI, rusage, PERF, plugins)

Process-level parallelism
(MPI, SHMEM)

Thread-level parallelism
(OpenMP, Pthreads)

Instrumentation wrapper

Source code instrumentation
(Compiler, PDT, User)

CUBE TAUdb

8 21ST VI-HPS TUNING WORKSHOP (LRZ, GARCHING, 18-22 APR 2016)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Future Features and Management

 Scalability to maximum available CPU core count
 Support for sampling, binary instrumentation
 Support for new programming models, e.g., PGAS
 Support for new architectures

 Ensure a single official release version at all times
which will always work with the tools
 Allow experimental versions for new features or research

 Commitment to joint long-term cooperation

21ST VI-HPS TUNING WORKSHOP (LRZ, GARCHING, 18-22 APR 2016) 9

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Hands-on:
NPB-MZ-MPI / BT

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Performance Analysis Steps

 0.0 Reference preparation for validation

 1.0 Program instrumentation
 1.1 Summary measurement collection
 1.2 Summary analysis report examination

 2.0 Summary experiment scoring
 2.1 Summary measurement collection with filtering
 2.2 Filtered summary analysis report examination

 3.0 Event trace collection
 3.1 Event trace examination & analysis

21ST VI-HPS TUNING WORKSHOP (LRZ, GARCHING, 18-22 APR 2016) 11

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

NPB-MZ-MPI / BT Instrumentation

 Setup tools environment
and return to tutorial
exercise source directory

12

% source ~lu23bud/LRZ-VIHPSTW21/tools/source-me.scorep-2.0.1.mpt.sh
% cd $HOME/NPB3.3-MZ-MPI

21ST VI-HPS TUNING WORKSHOP (LRZ, GARCHING, 18-22 APR 2016)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

NPB-MZ-MPI / BT Instrumentation

 Edit config/make.def to
adjust build configuration
 Modify specification of

compiler/linker: MPIF77

13

SITE- AND/OR PLATFORM-SPECIFIC DEFINITIONS
#---
Items in this file may need to be changed for each platform.
#---
OPENMP = -openmp
...
#---
The Fortran compiler used for MPI programs
#---
#MPIF77 = mpif77

Alternative variants to perform instrumentation
...
MPIF77 = scorep --user mpif77

This links MPI Fortran programs; usually the same as ${MPIF77}
FLINK = $(MPIF77)
...

Uncomment the Score-P
instrumenter specification and

remove the –user flag

21ST VI-HPS TUNING WORKSHOP (LRZ, GARCHING, 18-22 APR 2016)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

NPB-MZ-MPI / BT Instrumented Build

 Return to exercise
directory and clean-up
previous build
 Re-build executable using
Score-P compiler wrapper

14

% make clean

% make bt-mz CLASS=B NPROCS=4
cd BT-MZ; make CLASS=B NPROCS=4 VERSION=
make: Entering directory 'BT-MZ'
cd ../sys; cc -o setparams setparams.c -lm
../sys/setparams bt-mz 4 B
Scorep mpif77 -c -O3 -openmp bt.f
 [...]
cd ../common; scorep mpif77 -c -O3 -openmp timers.f
Scorep mpif77 –O3 -openmp -o ../bin.scorep/bt-mz_B.4 \
bt.o initialize.o exact_solution.o exact_rhs.o set_constants.o \
adi.o rhs.o zone_setup.o x_solve.o y_solve.o exch_qbc.o \
solve_subs.o z_solve.o add.o error.o verify.o mpi_setup.o \
../common/print_results.o ../common/timers.o
Built executable ../bin.scorep/bt-mz_B.4
make: Leaving directory 'BT-MZ‘

21ST VI-HPS TUNING WORKSHOP (LRZ, GARCHING, 18-22 APR 2016)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Summary Measurement Collection

 Change to the directory
with the new executable
 Copy the new jobscript
with settings for Score-P
measurement configuration
 Check/adjust settings

 Submit job

15

% cd bin.scorep
% cp ../jobscript/lrz_uv2_mpt/scorep.mpt.sbatch .
% less scorep.mpt.sbatch
% sbatch ./scorep.mpt.sbatch
export NPB_MZ_BLOAD=0
export OMP_NUM_THREADS=4
CLASS=B
NPROCS=8
EXE=./bt-mz_$CLASS.$NPROCS

export SCOREP_TIMER=clock_gettime
export SCOREP_EXPERIMENT_DIRECTORY=scorep_4x4_sum
#export SCOREP_FILTERING_FILE=../config/scorep.filt
#export SCOREP_METRIC_PAPI=PAPI_TOT_INS,PAPI_FP_INS
#export SCOREP_METRIC_PAPI_PER_PROCESS=PAPI_L2_TCM
#export SCOREP_METRIC_RUSAGE=ru_stime
#export SCOREP_METRIC_RUSAGE_PER_PROCESS=ru_maxrss

srun_ps -n $NPROCS -t $OMP_NUM_THREADS $EXE

% sbatch ./scorep.mpt.sbatch

Leave these lines
commented out

for now

21ST VI-HPS TUNING WORKSHOP (LRZ, GARCHING, 18-22 APR 2016)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Measurement Configuration: scorep-info

 Score-P measurements
are configured via
environmental variables
 Execute scorep-info
for a complete list

16

% scorep-info config-vars --help
% scorep-info config-vars --full
SCOREP_ENABLE_PROFILING
 Description: Enable profiling
 [...]
SCOREP_ENABLE_TRACING
 Description: Enable tracing
 [...]
SCOREP_TOTAL_MEMORY
 Description: Total memory in bytes for the measurement system
 [...]
SCOREP_EXPERIMENT_DIRECTORY
 Description: Name of the experiment directory
 [...]
SCOREP_FILTERING_FILE
 Description: A file name which contain the filter rules
 [...]
SCOREP_METRIC_PAPI
 Description: PAPI metric names to measure
 [...]
 [... More configuration variables ...]

21ST VI-HPS TUNING WORKSHOP (LRZ, GARCHING, 18-22 APR 2016)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Summary Measurement Collection

 Check the output of the
application run

17

% less bt-mz.mpt.<jobid>.uv2.out

 NAS Parallel Benchmarks (NPB3.3-MZ-MPI) - BT-MZ MPI+OpenMP \
>Benchmark

 Number of zones: 8 x 8
 Iterations: 200 dt: 0.000300
 Number of active processes: 4

 Use the default load factors with threads
 Total number of threads: 16 (4.0 threads/process)

Time step 1

 [... More application output ...]

21ST VI-HPS TUNING WORKSHOP (LRZ, GARCHING, 18-22 APR 2016)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

BT-MZ Summary Analysis Report Examination

 Creates experiment
directory
 A record of the measurement

configuration (scorep.cfg)
 The analysis report that was

collated after measurement
(profile.cubex)

 Interactive exploration
with CUBE

18

% ls
bt-mz_B.4 scorep.mpt.sbatch bt-mz.mpt.<jobid>.uv2.out
scorep_4x4_sum
% ls scorep_4x4_sum
profile.cubex scorep.cfg

% cube scorep_4x4_sum/profile.cubex

 [CUBE GUI showing summary analysis report]

21ST VI-HPS TUNING WORKSHOP (LRZ, GARCHING, 18-22 APR 2016)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Congratulations!?

 If you made it this far, you successfully used Score-P to
 instrument the application
 analyze its execution with a summary measurement, and
 examine it with one the interactive analysis report explorer GUIs
 ... revealing the call-path profile annotated with
 the “Time” metric
 Visit counts
 MPI message statistics (bytes sent/received)
 ... but how good was the measurement?
 The measured execution produced the desired valid result
 however, the execution took rather longer than expected!
 even when ignoring measurement start-up/completion, therefore
 it was probably dilated by instrumentation/measurement overhead

19 21ST VI-HPS TUNING WORKSHOP (LRZ, GARCHING, 18-22 APR 2016)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Performance Analysis Steps

 0.0 Reference preparation for validation

 1.0 Program instrumentation
 1.1 Summary measurement collection
 1.2 Summary analysis report examination

 2.0 Summary experiment scoring
 2.1 Summary measurement collection with filtering
 2.2 Filtered summary analysis report examination

 3.0 Event trace collection
 3.1 Event trace examination & analysis

21ST VI-HPS TUNING WORKSHOP (LRZ, GARCHING, 18-22 APR 2016) 20

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

BT-MZ Summary Analysis Result Scoring

 Report scoring as textual
output

 Region/callpath classification
 MPI pure MPI functions
 OMP pure OpenMP regions
 USR user-level computation
 COM “combined” USR+OpenMP/MPI
 ANY/ALL aggregate of all region

types

% scorep-score scorep_4x4_sum/profile.cubex

Estimated aggregate size of event trace: 40 GB
Estimated requirements for largest trace buffer (max_buf): 10 GB
Estimated memory requirements (SCOREP_TOTAL_MEMORY): 10 GB
(warning: The memory requirements can not be satisfied by Score-P to avoid
 intermediate flushes when tracing. Set SCOREP_TOTAL_MEMORY=4G to get the
 maximum supported memory or reduce requirements using USR regions filters.)

flt type max_buf[B] visits time[s] time[%] time/visit[us] region
 ALL 10,690,196,070 1,634,070,493 4980.51 100.0 3.05 ALL
 USR 10,666,890,182 1,631,138,069 1676.99 33.7 1.03 USR
 OMP 22,025,152 2,743,808 2416.86 48.5 880.84 OMP
 COM 1,178,450 181,300 86.80 1.7 478.78 COM
 MPI 102,286 7,316 799.86 16.1 109330.89 MPI

40 GB total memory
10 GB per rank!

21

USR

USR

COM

COM USR

OMP MPI

21ST VI-HPS TUNING WORKSHOP (LRZ, GARCHING, 18-22 APR 2016)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

BT-MZ Summary Analysis Report Breakdown

 Score report breakdown by region

22

% scorep-score -r scorep_4x4_sum/profile.cubex
 [...]
 [...]
flt type max_buf[B] visits time[s] time[%] time/visit[us] region
 ALL 10,690,196,070 1,634,070,493 4980.51 100.0 3.05 ALL
 USR 10,666,890,182 1,631,138,069 1676.99 33.7 1.03 USR
 OMP 22,025,152 2,743,808 2416.86 48.5 880.84 OMP
 COM 1,178,450 181,300 86.80 1.7 478.78 COM
 MPI 102,286 7,316 799.86 16.1 109330.89 MPI

 USR 3,421,305,420 522,844,416 530.43 10.7 1.01 matmul_sub_
 USR 3,421,305,420 522,844,416 502.05 10.1 0.96 matvec_sub_
 USR 3,421,305,420 522,844,416 582.11 11.7 1.11 binvcrhs_
 USR 150,937,332 22,692,096 21.98 0.4 0.97 binvrhs_
 USR 150,937,332 22,692,096 24.64 0.5 1.09 lhsinit_

USR

USR

COM

COM USR

OMP MPI

More than
9 GB just for these 6

regions

21ST VI-HPS TUNING WORKSHOP (LRZ, GARCHING, 18-22 APR 2016)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

BT-MZ Summary Analysis Score

 Summary measurement analysis score reveals
 Total size of event trace would be ~40 GB

 Maximum trace buffer size would be ~10 GB per rank
 smaller buffer would require flushes to disk during measurement resulting in substantial perturbation

 99.8% of the trace requirements are for USR regions
 purely computational routines never found on COM call-paths common to communication routines or OpenMP parallel

regions

 These USR regions contribute around 32% of total time
 however, much of that is very likely to be measurement overhead for frequently-executed small routines

 Advisable to tune measurement configuration
 Specify an adequate trace buffer size

 Specify a filter file listing (USR) regions not to be measured

23 21ST VI-HPS TUNING WORKSHOP (LRZ, GARCHING, 18-22 APR 2016)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

BT-MZ Summary Analysis Report Filtering

 Report scoring with
prospective filter listing 6
USR regions

24

% cat ../config/scorep.filt
SCOREP_REGION_NAMES_BEGIN EXCLUDE
binvcrhs*
matmul_sub*
matvec_sub*
exact_solution*
binvrhs*
lhs*init*
timer_*

% scorep-score -f ../config/scorep.filt –c 2 \
> scorep_4x4_sum/profile.cubex

Estimated aggregate size of event trace: 229MB
Estimated requirements for largest trace buffer (max_buf): 58MB
Estimated memory requirements (SCOREP_TOTAL_MEMORY): 66MB
(hint: When tracing set SCOREP_TOTAL_MEMORY=66MB to
> avoid intermediate flushes
 or reduce requirements using USR regions filters.)

521 MB of memory in total,
66 MB per rank!

(Including 2 metric values)

21ST VI-HPS TUNING WORKSHOP (LRZ, GARCHING, 18-22 APR 2016)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

BT-MZ Summary Analysis Report Filtering

 Score report breakdown
by region

25

% scorep-score -r –f ../config/scorep.filt –c 2 \
> scorep_4x4_sum/profile.cubex
flt type max_buf[B] visits time[s] time[%] time/visit[us] region
 - ALL 31,240,101,720 1,634,070,493 4980.51 100.0 3.05 ALL
 - USR 31,180,140,532 1,631,138,069 1676.99 33.7 1.03 USR
 - OMP 56,322,752 2,743,808 2416.86 48.5 880.84 OMP
 - COM 3,444,700 181,300 86.80 1.7 478.78 COM
 - MPI 193,736 7,316 799.86 16.1 109330.89 MPI

 * ALL 59,974,336 2,933,113 3303.53 66.3 1126.29 ALL-FLT
 + FLT 31,180,127,460 1,631,137,380 1676.99 33.7 1.03 FLT
 - OMP 56,322,752 2,743,808 2416.86 48.5 880.84 OMP-FLT
 * COM 3,444,700 181,300 86.80 1.7 478.78 COM-FLT
 - MPI 193,736 7,316 799.86 16.1 109330.89 MPI-FLT
 * USR 13,148 689 0.00 0.0 1.71 USR-FLT

 + USR 10,000,738,920 522,844,416 530.43 10.7 1.01 matmul_sub_
 + USR 10,000,738,920 522,844,416 502.05 10.1 0.96 matvec_sub_
 + USR 10,000,738,920 522,844,416 582.11 11.7 1.11 binvcrhs_
 + USR 441,201,432 22,692,096 21.98 0.4 0.97 binvrhs_
 + USR 441,201,432 22,692,096 24.64 0.5 1.09 lhsinit_
 + USR 327,952,160 17,219,840 15.77 0.3 0.92 exact_solution_

Filtered
routines

marked with
‘+’

21ST VI-HPS TUNING WORKSHOP (LRZ, GARCHING, 18-22 APR 2016)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

BT-MZ Filtered Summary Measurement

26

 Set new experiment
directory and re-run
measurement with new
filter configuration

 Submit new job

21ST VI-HPS TUNING WORKSHOP (LRZ, GARCHING, 18-22 APR 2016)

% cd bin.scorep
% cp ../jobscript/lrz_uv2_mpt/scorep.mpt.sbatch .
% less scorep.mpt.sbatch
% sbatch ./scorep.mpt.sbatch
export NPB_MZ_BLOAD=0
export OMP_NUM_THREADS=4
CLASS=B
NPROCS=8
EXE=./bt-mz_$CLASS.$NPROCS

export SCOREP_TIMER=clock_gettime
export SCOREP_EXPERIMENT_DIRECTORY=scorep_4x4_sum_filtered
export SCOREP_FILTERING_FILE=../config/scorep.filt
#export SCOREP_METRIC_PAPI=PAPI_TOT_INS,PAPI_FP_INS
#export SCOREP_METRIC_PAPI_PER_PROCESS=PAPI_L2_TCM
#export SCOREP_METRIC_RUSAGE=ru_stime
#export SCOREP_METRIC_RUSAGE_PER_PROCESS=ru_maxrss

srun_ps -n $NPROCS -t $OMP_NUM_THREADS $EXE

% sbatch ./scorep.mpt.sbatch

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

BT-MZ Summary Analysis Report Examination

 Creates experiment
directory
 A record of the measurement

configuration (scorep.cfg)
 The analysis report that was

collated after measurement
(profile.cubex)

 Interactive exploration
with CUBE (including
profile post-procesing)

27

% ls
bt-mz_B.4 scorep.mpt.sbatch bt-mz.mpt.<jobid>.uv2.out
scorep_4x4_sum scorep_4x4_sum_filtered
% ls scorep_4x4_sum_filtered
profile.cubex scorep.cfg

% square scorep_4x4_sum_filtered

 [CUBE GUI showing summary analysis report]

21ST VI-HPS TUNING WORKSHOP (LRZ, GARCHING, 18-22 APR 2016)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P:
Advanced Application Instrumentation

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Advanced Application Instrumentation: Score-P Wrapper Scripts

 Hooking up the Score-P instrumenter scorep into complex build environments like
Autotools or CMake was always challenging
 Score-P provides new convenience wrapper scripts to simplify this (since Score-P 2.0)
 Autotools and CMake need the used compiler already in the configure step, but
instrumentation should not happen in this step, only in the build step

 Allows to pass addition options to the Score-P instrumenter and the compiler via
environment variables without modifying the Makefiles
 Run scorep-wrapper --help for a detailed description and the available wrapper
scripts of the Score-P installation
 29 21ST VI-HPS TUNING WORKSHOP (LRZ, GARCHING, 18-22 APR 2016)

% SCOREP_WRAPPER=off \
> cmake .. \
> -DCMAKE_C_COMPILER=scorep-icc \
> -DCMAKE_CXX_COMPILER=scorep-icpc

Disable instrumentation in the
configure step

Specify the wrapper scripts as
the compiler to use

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P:
Advanced Measurement Configuration

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Advanced Measurement Configuration: Sampling

 Sampling as an additional source of events while measurement
 Novel combination of sampling events and instrumentation of MPI, OpenMP, …
 Sampling replaces compiler instrumentation (instrument with --nocompiler to further reduce

overhead)
 Instrumentation is used to get accurate times for parallel activities to still be able to identifies

patterns of inefficiencies
 Supports profile and trace generation

 Available since Score-P 2.0, only x86-64 supported currently

31 21ST VI-HPS TUNING WORKSHOP (LRZ, GARCHING, 18-22 APR 2016)

export SCOREP_ENABLE_UNWINDING=true
use the default sampling frequency
#export SCOREP_SMPLING_EVENTS=perf_cycles@2000000

srun_ps -n $NPROCS -t $OMP_NUM_THREADS $EXE

% sbatch ./scorep.mpt.sbatch

 Set new configuration
variable to enable
sampling

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Advanced Measurement Configuration: Metrics

 Available PAPI metrics
 Preset events: common set of events deemed relevant and useful for application performance

tuning
 Abstraction from specific hardware performance counters,

mapping onto available events done by PAPI internally

 Native events: set of all events that are available on the CPU
(platform dependent)

32

% papi_avail

% papi_native_avail

Note:
Due to hardware restrictions
- number of concurrently recorded events is limited
- there may be invalid combinations of concurrently recorded events

21ST VI-HPS TUNING WORKSHOP (LRZ, GARCHING, 18-22 APR 2016)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Advanced Measurement Configuration: Metrics

 Available resource usage
metrics
 Note:
(1) Not all fields are maintained on

each platform.
(2) Check scope of metrics (per

process vs. per thread)

33

% man getrusage
struct rusage {

struct timeval ru_utime; /* user CPU time used */
struct timeval ru_stime; /* system CPU time used */
long ru_maxrss; /* maximum resident set size */
long ru_ixrss; /* integral shared memory size */
long ru_idrss; /* integral unshared data size */
long ru_isrss; /* integral unshared stack size */
long ru_minflt; /* page reclaims (soft page faults) */
long ru_majflt; /* page faults (hard page faults) */
long ru_nswap; /* swaps */
long ru_inblock; /* block input operations */
long ru_oublock; /* block output operations */
long ru_msgsnd; /* IPC messages sent */
long ru_msgrcv; /* IPC messages received */
long ru_nsignals; /* signals received */
long ru_nvcsw; /* voluntary context switches */
long ru_nivcsw; /* involuntary context switches */

};

21ST VI-HPS TUNING WORKSHOP (LRZ, GARCHING, 18-22 APR 2016)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Advanced Measurement Configuration: CUDA

 Record CUDA events with the CUPTI interface

 All possible recording types
 runtime CUDA runtime API

 driver CUDA driver API

 gpu GPU activities

 kernel CUDA kernels

 idle GPU compute idle time

 memcpy CUDA memory copies

34

% export SCOREP_CUDA_ENABLE=gpu,kernel,idle

21ST VI-HPS TUNING WORKSHOP (LRZ, GARCHING, 18-22 APR 2016)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P User Instrumentation API

 Can be used to mark initialization, solver & other phases
 Annotation macros ignored by default

 Enabled with [--user] flag of instrumenter

 Defines SCOREP_USER_ENABLE

 Appear as additional regions in analyses
 Distinguishes performance of important phase from rest

 Can be of various type
 E.g., function, loop, phase

 See user manual for details

 Available for Fortran / C / C++

35 21ST VI-HPS TUNING WORKSHOP (LRZ, GARCHING, 18-22 APR 2016)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P User Instrumentation API (Fortran)

 Requires processing by
the C preprocessor

36

#include "scorep/SCOREP_User.inc"

subroutine foo(…)
 ! Declarations
 SCOREP_USER_REGION_DEFINE(solve)

 ! Some code…
 SCOREP_USER_REGION_BEGIN(solve, “<solver>", \
 SCOREP_USER_REGION_TYPE_LOOP)
 do i=1,100
 [...]
 end do
 SCOREP_USER_REGION_END(solve)
 ! Some more code…
end subroutine

21ST VI-HPS TUNING WORKSHOP (LRZ, GARCHING, 18-22 APR 2016)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P User Instrumentation API (C/C++)

37

#include "scorep/SCOREP_User.h"

void foo()
{
 /* Declarations */
 SCOREP_USER_REGION_DEFINE(solve)

 /* Some code… */
 SCOREP_USER_REGION_BEGIN(solve, “<solver>",
 SCOREP_USER_REGION_TYPE_LOOP)
 for (i = 0; i < 100; i++)
 {
 [...]
 }
 SCOREP_USER_REGION_END(solve)
 /* Some more code… */
}

21ST VI-HPS TUNING WORKSHOP (LRZ, GARCHING, 18-22 APR 2016)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P User Instrumentation API (C++)

38

#include "scorep/SCOREP_User.h"

void foo()
{
 // Declarations

 // Some code…
 {
 SCOREP_USER_REGION(“<solver>",
 SCOREP_USER_REGION_TYPE_LOOP)
 for (i = 0; i < 100; i++)
 {
 [...]
 }
 }
 // Some more code…
}

21ST VI-HPS TUNING WORKSHOP (LRZ, GARCHING, 18-22 APR 2016)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P Measurement Control API

 Can be used to temporarily disable measurement for certain intervals
 Annotation macros ignored by default
 Enabled with [--user] flag

39

#include “scorep/SCOREP_User.inc”

subroutine foo(…)
 ! Some code…
 SCOREP_RECORDING_OFF()
 ! Loop will not be measured
 do i=1,100
 [...]
 end do
 SCOREP_RECORDING_ON()
 ! Some more code…
end subroutine

#include “scorep/SCOREP_User.h”

void foo(…) {
 /* Some code… */
 SCOREP_RECORDING_OFF()
 /* Loop will not be measured */
 for (i = 0; i < 100; i++) {
 [...]
 }
 SCOREP_RECORDING_ON()
 /* Some more code… */
}

Fortran (requires Cpreprocessor) C / C++

21ST VI-HPS TUNING WORKSHOP (LRZ, GARCHING, 18-22 APR 2016)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Further Information

 Community instrumentation & measurement infrastructure
 Instrumentation (various methods)

 Basic and advanced profile generation

 Event trace recording

 Online access to profiling data

 Available under New BSD open-source license

 Documentation & Sources:

http://www.score-p.org
 User guide also part of installation:

<prefix>/share/doc/scorep/{pdf,html}/

 Support and feedback: support@score-p.org

 Subscribe to news@score-p.org, to be up to date

 40 21ST VI-HPS TUNING WORKSHOP (LRZ, GARCHING, 18-22 APR 2016)

	Score-P – A Joint Performance Measurement Run-Time Infrastructure for Periscope, Scalasca, TAU, and Vampir
	Performance engineering workflow
	Fragmentation of Tools Landscape
	Score-P Project Idea
	Partners
	Score-P Functionality
	Design Goals
	Score-P Overview
	Future Features and Management
	Hands-on:�NPB-MZ-MPI / BT
	Performance Analysis Steps
	NPB-MZ-MPI / BT Instrumentation
	NPB-MZ-MPI / BT Instrumentation
	NPB-MZ-MPI / BT Instrumented Build
	Summary Measurement Collection
	Measurement Configuration: scorep-info
	Summary Measurement Collection
	BT-MZ Summary Analysis Report Examination
	Congratulations!?
	Performance Analysis Steps
	BT-MZ Summary Analysis Result Scoring
	BT-MZ Summary Analysis Report Breakdown
	BT-MZ Summary Analysis Score
	BT-MZ Summary Analysis Report Filtering
	BT-MZ Summary Analysis Report Filtering
	BT-MZ Filtered Summary Measurement
	BT-MZ Summary Analysis Report Examination
	Score-P:�Advanced Application Instrumentation
	Advanced Application Instrumentation: Score-P Wrapper Scripts
	Score-P:�Advanced Measurement Configuration
	Advanced Measurement Configuration: Sampling
	Advanced Measurement Configuration: Metrics
	Advanced Measurement Configuration: Metrics
	Advanced Measurement Configuration: CUDA
	Score-P User Instrumentation API
	Score-P User Instrumentation API (Fortran)
	Score-P User Instrumentation API (C/C++)
	Score-P User Instrumentation API (C++)
	Score-P Measurement Control API
	Further Information

