
VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Periscope Tuning Framework

Michael Firbach
Technische Universität München

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

21ST VI-HPS TUNING WORKSHOP (MUNICH, GERMANY, APRIL 18TH-22ND, 2016)

Outline

▪Overview of the Periscope Tuning Framework
▪ Features
▪ Tuning plugins

▪Hands-on: Importance analysis
▪Hands-on: Using the CFS plugin

Estimated time: 45 min

2

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Overview of the Periscope Tuning
Framework

19TH VI-HPS TUNING WORKSHOP (SANTIAGO, CHILE, OCT 27TH-29TH, 2015)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

21ST VI-HPS TUNING WORKSHOP (MUNICH, GERMANY, APRIL 18TH-22ND, 2016)

Overview of the Periscope Tuning Framework

PTF is a framework for automated
online analysis and tuning.

▪Distributed online tool
▪Based on expert knowledge
▪Currently being developed in Score-E
(BMBF) and READEX (EU-FP7)
▪Open source
▪Homepage: http://periscope.in.tum.de/

 4

New in version 2.0
▪Uses Score-P measurement
infrastructure
▪Score-P has been extended with tuning
functionality
▪Used in this course

http://periscope.in.tum.de/

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

21ST VI-HPS TUNING WORKSHOP (MUNICH, GERMANY, APRIL 18TH-22ND, 2016)

Overview of the Periscope Tuning Framework

PTF is a framework designed to be extended:
▪ It provides the infrastructure to instrument the application, run it, take
measurements and apply optimizations
▪ The actual tuning is done by tuning plugins
▪ Plugins address one specific optimization each (e.g. compiler flags, MPI settings, parallelism-

capping, energy-tuning, ...)
▪ The expert knowledge about specific optimizations is in the plugins, not in the framework
▪ Capabilities of PTF is determined by the available plugins

Application requirements:
▪SPMD
▪Repetitive “main” loop (timesteps, refinement iterations, etc.)
▪Many scientific codes qualify

5

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

21ST VI-HPS TUNING WORKSHOP (MUNICH, GERMANY, APRIL 18TH-22ND, 2016)

Tuning plugins

How tuning plugins work

▪All tuning plugins follow the lifecycle to the
right
▪During the lifecycle, scenarios will be created
and executed
▪ For each scenario, plugins can:
▪ request performance properties
▪ apply tuning actions
▪ re-compile or re-run the application

Please note: This is a very simplified picture!

 6

Initialize
Instrumentation

and Analysis

Create scenarios

Test scenarios

Finalize

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

21ST VI-HPS TUNING WORKSHOP (MUNICH, GERMANY, APRIL 18TH-22ND, 2016)

Software stack

▪Score-P gathers measurement data and
applies tuning actions (one for each
process)

▪ PTF spawns agents that connect to online
access interface and evaluate properties
from measurement data

▪Central PTF frontend
▪ Accumulation of properties
▪ Runs the plugin to generate tuning decisions

 7

Score-P measurement infrastructure

Online Access Interface

Plugin Plugin Plugin

Periscope Tuning Framework

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

21ST VI-HPS TUNING WORKSHOP (MUNICH, GERMANY, APRIL 18TH-22ND, 2016)

Properties

▪All analysis and tuning functions are based on properties
▪ During the application run, Periscope tests various hypotheses about the performance
▪ When a hypothesis is fulfilled by measurement data, a property is generated
▪ Properties are generated for each relevant process and code region

▪Hypothesis examples:
▪ “This is an important code region for overall execution time”
▪ “This region is not energy-efficient”
▪ “OpenMP threads are imbalanced”
▪ …

▪ The severity of the property indicates how strong the impact is on the overall
performance

8

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

21ST VI-HPS TUNING WORKSHOP (MUNICH, GERMANY, APRIL 18TH-22ND, 2016)

Examples of tuning plugins

▪Compiler flag selection (CFS)
▪ Determines optimal combination of compiler flags
▪ Supports different compilers
▪ Very portable

▪Dynamic voltage and frequency scaling (DVFS)
▪ Modifies CPU voltage & frequency to consume less energy
▪ Weighted against increase in runtime
▪ Available on selected systems only (root access / energy daemon required)

▪MPI parameters
▪ Optimizes MPI settings for given application
▪ Some MPI implementations ignore settings

See http://periscope.in.tum.de/ for a full list of plugins.

9

http://periscope.in.tum.de/

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Hands-on: Importance analysis

Finding important code regions

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

21ST VI-HPS TUNING WORKSHOP (MUNICH, GERMANY, APRIL 18TH-22ND, 2016)

Hands-on: Importance analysis

In this exercise, you will:
▪ Perform the most basic automated performance analysis
▪Use a Score-P online access region
▪ Analysis and tuning is done on each entry of this region
▪ Should be repetitive
▪ Additional code in your application (Fortran, C and C++):

#include "SCOREP_User.inc"
SCOREP_USER_REGION_DEFINE(OA_Phase)

SCOREP_USER_OA_PHASE_BEGIN(OA_Phase, "foo", 0)
// important repetitive code here
SCOREP_USER_OA_PHASE_END(OA_Phase)

11

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

21ST VI-HPS TUNING WORKSHOP (MUNICH, GERMANY, APRIL 18TH-22ND, 2016)

Hands-on: Importance analysis

▪BT-MZ has a time step loop which is suitable to be our “main loop”

▪We have little time, so I have prepared an instrumented version of BT-MZ:
$ cp -r /home/hpc/a2c06/lu23veq/NPB3.3-MZ-MPI ~
$ cd ~/NPB3.3-MZ-MPI

▪Open bt.f and identify the online access region (line 217):
$ vim BT-MZ/bt.f

12

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

21ST VI-HPS TUNING WORKSHOP (MUNICH, GERMANY, APRIL 18TH-22ND, 2016)

Hands-on: Importance analysis

▪Also note that I have modified BT-MZ’s config/make.def to instrument with Score-P
and online access:
F77 = scorep --online-access --user [...] mpif77 -fopenmp [...]

▪Add to ~/.bashrc (and log in again):
module load gcc/4.9
module load scorep/2.0_tuning

▪Build the benchmark:
$ make bt-mz CLASS=C NPROCS=1

13

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

21ST VI-HPS TUNING WORKSHOP (MUNICH, GERMANY, APRIL 18TH-22ND, 2016)

Hands-on: Importance analysis

▪Run job with:
$ cd bin
$ sbatch jobscript_importance.slurm

▪Check job status:
$ squeue --clusters=uv2 | grep $USER

▪Check output:
$ cat out.txt

▪Cancel job:
$ scancel --clusters=uv2 <job-id>

14

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

21ST VI-HPS TUNING WORKSHOP (MUNICH, GERMANY, APRIL 18TH-22ND, 2016)

Hands-on: Importance analysis

▪ The result is .psc properties file

▪ Tool for tabular output:
$ module load ptf
$ psc_properties.py properties_Importance_XXXXXX.psc

==
NAME SEVERITY CONFIDENCE REGIONID
==
ExecTimeImportance 100 1 psc_file_name_none*foo*217
ExecTimeImportance 30.31 1 z_solve.f*!$omp parallel @z_solve.f:43*43
ExecTimeImportance 28.3702 1 y_solve.f*!$omp parallel @y_solve.f:43*43
ExecTimeImportance 27.6123 1 x_solve.f*!$omp parallel @x_solve.f:46*46
ExecTimeImportance 11.9437 1 rhs.f*!$omp parallel @rhs.f:28*28
ExecTimeImportance 0.438644 1 add.f*!$omp parallel @add.f:22*22
ExecTimeImportance 0.429296 1 add.f*!$omp do @add.f:22*23
[...]

15

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

21ST VI-HPS TUNING WORKSHOP (MUNICH, GERMANY, APRIL 18TH-22ND, 2016)

Hands-on: Importance analysis

Other analysis strategies are available (besides Importance analysis):
▪OpenMP load imbalances
▪MPI load imbalances
▪ Energy inefficiencies
▪…

▪Still incomplete support in Periscope 2.0

16

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Hands-on: Using the CFS-plugin

Finding the optimal combination of compiler flags

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

21ST VI-HPS TUNING WORKSHOP (MUNICH, GERMANY, APRIL 18TH-22ND, 2016)

Hands-on: Using the CFS-plugin

▪ Many compiler flags for code
generation

▪ All possible combinations
form a search space

▪ For every search step, the
application is rebuilt and re-
run

▪ Result of the search is
optimal flag combination

Applicable to:
▪ Compute-bound applications
▪ Single-core optimization

18

CFS Plug-in

scenarios = flags combinations
Compiler flags

Application search
strategy

Re-compilation
Measurements

Flags
advice

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

21ST VI-HPS TUNING WORKSHOP (MUNICH, GERMANY, APRIL 18TH-22ND, 2016)

Hands-on: Using the CFS plugin

Contents of the cfs_config.cfg:

makefile_path = "..";
makefile_flags_var = "FFLAGS";
makefile_args = "bt-mz CLASS=C NPROCS=1";
application_src_path = "../BT-MZ";
make_selective = "false";

search_algorithm = "exhaustive";

tp "OPT" = "-" ["O2", "O3", "O4"];
tp "HOST" = " " [" ", "-xhost"];

19

Build
instructions

Search
strategy
Flags to test
(2×3 scenarios)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

21ST VI-HPS TUNING WORKSHOP (MUNICH, GERMANY, APRIL 18TH-22ND, 2016)

Hands-on: Using the CFS plugin

▪ Tuning process:
▪ Compiler flags to be tested are inserted at ${FFLAGS} in the make.def file
▪ Application is recompiled and tested automatically

▪ Problem: We often cannot build on compute node
▪ Possible on UV2, but very slow

▪Solution: Use ssh to build on login node
▪ Create ssh key-pair:
$ ssh-keygen -N "" -f ~/cfs_temp_key
$ cat ~/cfs_temp_key.pub >> ~/.ssh/authorized_keys

20

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

21ST VI-HPS TUNING WORKSHOP (MUNICH, GERMANY, APRIL 18TH-22ND, 2016)

Hands-on: Using the CFS plugin

▪Run job with:
$ cd bin
$ sbatch jobscript_cfs.slurm

▪Check job status:
$ squeue --clusters=uv2 | grep $USER

▪Check output:
$ cat out.txt

▪Cancel job:
$ scancel --clusters=uv2 <job-id>

21

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

21ST VI-HPS TUNING WORKSHOP (MUNICH, GERMANY, APRIL 18TH-22ND, 2016)

Hands-on: Using the CFS plugin

My results on UV2:

Scenario | Severity
0 | 5.43338
1 | 5.31741
2 | 5.46417
3 | 5.43542
4 | 5.4531
5 | 5.43023

▪ All scenarios are optimized builds, worst to best case: about 3% reduction
▪ Larger differences possible on other machines or with other applications (e.g. 16%
during last workshop in Chile)

22

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

21ST VI-HPS TUNING WORKSHOP (MUNICH, GERMANY, APRIL 18TH-22ND, 2016)

Hands-on: Using the CFS plugin

Advanced features for big searches (see User’s Guide):

▪ Other search strategies, like individual search:
▪ Creates scenarios with only one flag altered at a time
▪ Might miss the optimal combination
▪ Much faster (linear complexity)

▪ Selective make:
▪ Periscope can determine relevant source files automatically and re-build only those
▪ Or, user provides list of files
▪ Selected files are touched, then the application is rebuilt

▪ Periscope can suggest flags to test for a specific compiler

23

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

21ST VI-HPS TUNING WORKSHOP (MUNICH, GERMANY, APRIL 18TH-22ND, 2016)

Hands-on: Using the CFS plugin

What you can expect:

▪ Performance increase will be moderate in most cases (e.g. 5%)

▪ However, you don’t invest a lot of time
▪ Instrument application
▪ Configure plugin
▪ Plugin runs without user interaction

▪ Probably a good ratio of time spent and runtime improvement

24

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Done!

Thank you for your attention.

You can tune your own applications later.

