VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

MPI Runtime Error Detection with MUST

At the 21st VI-HPS Tuning Workshop

Joachim Protze
IT Center RWTH Aachen University
April 2016

Technische
Universitat
Miinchen

o UNIVERSITE DE
ige: Universitat Stuttgart VERSAILLES

ST-QUENTIN-EN-YVELINES
THE
UNIVERSITY OF OREGON

@@= (S— RWTHACHEN

#) JULICH el

TECHNISCHE
@ UNIVERSITAT
DRESDEN

O

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

How many issues can you spot in this tiny example?

int main (int argc, char** argv)

{

int rank, size, buf[8];

MPI Comm rank (MPI COMM WORLD, &rank);
MPI Comm size (MPI COMM WORLD, &size);

MPI Datatype type;
MPI Type contiguous (2, MPI INTEGER, &type);

MPI_Recv (buf, 2, MPI INT, size - rank, , MPI_COMM WORLD, MPI_STATUS IGNORE) ;
MPI Send (buf, , type, size - rank, , MPI COMM WORLD) ;
printf ("Hello, I am rank %d of %d. ", rank, size);

return ;

} At least 8 issues in this code example!

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 22/04/2016 2

Content

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

= Motivation
= MPI usage errors

= Examples: Common MPI usage errors
= Including MUST's error descriptions

» Correctness tools
= MUST usage
= Hands-on

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY

22/04/2016

3

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Motivation

» MPI programming is error prone
= Portability errors

(just on some systems, just for some runs)
= Bugs may manifest as:

" Crash | Error more
= Application hanging .
= Finishes obvious

= Questions:

= Why crash/hang?
= Is my result correct?
= Will my code also give correct results on another system?

= Tools help to pin-point these bugs

Common MPI Error Classes

(

\
>

_

\
= Common syntactic errors: Tool t _
» Incorrect arguments 00I 10 Use.
= Resource usage MUST,
= Lost/Dropped Requests _ _
- Buffer usage Static analysis tool,
= Type-matching
= Deadlocks (Debugger)
<
= Semantic errors that are correct in terms of MPI standard, but do not
match the programmers intent:
= Displacement/Size/Count errors Tool t
OO0l 10 use.
Debugger)

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY

22/04/2016

5

Content

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

= Motivation
= MPI usage errors

= Examples: Common MPI usage errors
= Including MUST’s error descriptions

» Correctness tools
= MUST usage
= Hands-on

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY

22/04/2016

6

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Already fixed missing MPI_Init/Finalize:

int main (int argc, char** argv)

{
int rank, size, buf[8];
MPI Init (&argc, &argv);
MPI Comm rank (MPI_COMM WORLD, &rank);
MPI Comm size (MPI_COMM WORLD, &size);
MPI Datatype type;
MPI Type contiguous (2, MPI_ INTEGER, &type);
MPI Recv (buf, 2, MPI INT, size - rank - 1, , MPI_COMM WORLD, MPI_STATUS_IGNORE) ;
MPI Send (buf, 2, type, size - rank - 1, , MPI_COMM WORLD) ;
printf ("Hello, I am rank %d of %d. ", rank, size);
MPI Finalize ()
return 0O;
}

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 22/04/2016 7

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Must detects deadlocks

What? Where? Details

\

v Message rences V0
References of a representative
[process:
The application lssued a set of MPI calls that can cause a deadlock! A graphical representation of this siuation Is available in & detailed deadlock view reference 1 rank 0: MPL_Recv
(MLUST Output-files/MUST Deadlock.himlk References 1-2 list the involved calls (limited to the first 5 calls, further calls may be involved). The |15t eocurrence) called from
[Error application stll runs, if the deadlocRN\ganifestad (e.q. caused a hang on this MP] implementation) you can attach to the involved ranks with a debudgger 20 maln@example.c:15
or abort the application (if necessary)
reference 2 rank 1: MPI_Recy
|15t occurrence) called from:
#0 main@example.c:15

Click for graphical representation of
the detected deadlock situation.

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 22/04/2016 8

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

| £ MUST Outputfie 3| L MUST Outpanile = - 2%
|-: File-\hormepid VE018MUST fexampleMUST_Output-filesSUST_Deadiack Fibm v B | g~ N &g

MUST Deadlock Details, date: Thu MNev 28 13:38:06 2013,

Back b MUST ermor report

& application iss a set of MPI calls that can cause a deadlock! The graphs below show details on this situation. This includes a wait-for graph that shows active wait-for dependencies between the
processes that cause the deadlock. Note that this process set only includes processes that cause the deadlock and no further processes. A legend details the wait-for graph components in addition , while a
parallel call stack view summarizes the locations of the MPI calls that cause the deadlock . Below these graphs, a message quene graph shows active and unmatched point-to-peint communications. This
graph only includes operations that could have been intended to match a pnint—tn-goint operation that is relevant to the deadlock situation. Finally, a parallel call stack shows the locations of any operation
in the parallel call stack. The leafs of this call stack graph show the components of the message queue graph that they span. The application still runs, if the deadlock manifested (e.g. caused a hang on this
MPI implementation) you can attach to the involved ranks with a debugger or abort the application (if necessary).

MPI COMM WORLD

Active MPI Call
{: MPI_Recv
comm=4A, tag= 23| comm=; . Sub Operation
Rank O waits
forrank 1 .
A A wails for B and C B
and vv.
c
mainiiexample.c:15
Ranks: 0-1 e
' Simple call

MPI_Recw . e

stack for this AT

example.

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Fix1l: use asynchronous receive

int main (int argc, char** argv)

{

int rank, size, buf[8];
Use asynchronous

MPI Init (&argc, &argv); receive: (|\/|P| |FECV)

MPI Comm rank (MPI_COMM WORLD, &rank);
MPI Comm size (MPI_COMM WORLD, &size);

MPI Datatype type;
MPI Type contiguous (2, MPI_ INTEGER,

MPI Request request;

MPI Irecv (buf, 2, MPI_INT, size - rank - 1, , MPI COMM WORLD, &request);
MPI Send (buf, 2, type, size - rank - 1, , MPI_COMM WORLD) ;
printf ("Hello, I am rank %d of %d. ", rank, size);

MPI Finalize ()

return 0O;

}

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 22/04/2016 10

MUST detects errors in handling datatypes

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MUST Cutputfile

MUST Output, starting date: Thu Nov 28 13:50:48 2013

fe:/homepi4 1601 BMUST fexampleMUST_Cutput.html f

Use of uncommited

[Rank(s)[Type]

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY

. References of a representative
datatype: type process:
reference 1 rank 0: MPI_Send
presentative |(1st occurrence) called from:
A recelve operation uses a (datatype,count) pair that can not hol ata transfered by the send it matches! The first element of the location #0 main@example-fixi.c:18
send that did not fit into the receive operation Is at (contiguousffOJ(MPI INTEGER) In the send type (consult the MUST manual for a MPI_Send (1st
0 |Error detailed description of datatype positions), The send operation was started at reference 1, the receive operation was started at occurrence) called freforence 2 rank 1: MPI_Irecy
reference 2. (Information on communicator: MPI COMM_WORLD) (Information on send of count 2 with type:Datatype created at from: (1st occurrence) called from:
reference 3 Is for Fortran, based on the following type(s): { MPI INTEGER}) (Information on receive of count 2 with type:MPL INT) |#0 maln@example-[#0 main@example-fixl.c:16
fixl.c:18
reference 3 rank 0:
MPI_Type_contiguous {1st
pccurrence) called from:
#0 main@example-fix].c:13
Representative [References ol a representative
location: [process:
Argument 3 (datatype) Is not ¢ d f fer, call MPI Typo commit bef the type for transfer! AEE AT 1%
01 |Errod f Argumen d data y[;ml Is not ¢ omn’:;lu ofr trans o.{r. (,? ‘Fo)[x,bsoggtm t; (;r(;]llslng @ type 0;”{;1?;;% 5 occurrence) called [reference 1 rank 1:
@ e § 3 £ y Y .
(Information on datatypeDatatype created at reference 1 is for Fortran, based on ollowing type(s): { GER})) From MPI_Type_contiguous (1st
#0 main@example- pecurrence) called from:
fixl.c:18 #0 main@example-fix1.c:13
The memory regions to be transfered by this send operation overlap with regions spanned by a pending non-blocking receive operation References of a representative
{Information on the request associated with the other communication: Rintosoitative PR,
Request activated at reference 1) lh.,('“ju;, < reforence 1 rank 0: MPI Irecy
(Information on the datatype associated with the other communication N CRBHTHE o b i e
Y MPI INT) MPI_Send (1st |Ist occurrence) cnged from:
> . - ccurrence) called [#0 mainges e-fixl.c
- Brvox T'he other communication overlaps with this communication at position:(MP1 INT) i u”;,l,],',: Gallod L SUISTRAAEIN AR 1
0w DY nle- 0 2 ra e 0)-
(Information on the datatype associated with this communication: - ”g;nll’“("_mm’)[‘ ;Zl;;“{: ° o 7“"1‘- x {1st
Datatype created at reference 2 is for Fortran, based on the following type(s): { MPI INTEGER}) =0 - »p(_(on“!g'l;ous. S
This communication overlaps with the other communication at position:(contiguous){0}{MPI_INTEGER) ogc(fll:freq_tgl ?a th ‘mlm; 13
A l_[mphu,:ul representation of this situation is available In a detailed overlap view (MUST Output-filesMUST Overlap O 0.html) main@example-iixi.c:1.
" , . . = o e N]
[The memory regions to be transfered by this send operation overlap with regions spanned by a pending non-blocking receive operation! References of a representative
rOCess:
{Information on the request assoclated with the other communication: Representative P
Request activated at reference 1) ¥
", \: sferenc ank 1: M /
(Information on the datatype associated with the other communication: \ oK ’“"“; 1 e ".fr = n(e 1 ‘m\nk l 1l ?dp;-,lm‘
MPIINT) MPI_Sen |1,~ll (1st occurrence) called from:
ol W v o™ ze) calle) @e o-fixl.c:16
1 Ervon The other communication overlaps with this communication at position:(MPI_INT) n(r,urr?rr'\;r:? callod |80 SR S Lo 10
Y GO »lreference 2 rank
(Information on the datatype assoclated with this communication: #O "“"l!'l'gc";g”‘pl" ;\'d"",lr',;: y ‘rr:: ";' (st
Datatype created at reference 2 is for Fortran, based on the following type(s): { MP1_ INTEGER}) e pe_ o 9“"’“5. 3

22/04/2016

11

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Fix2: use MPI_Type_commit

int main (int argc, char** argv)

{

int rank, size, buf[8];
MPI Init (&argc, &argv);
MPI Comm rank (MPI_COMM WORLD, &rank);
MPI Comm size (MPI_COMM WORLD, &size);

MPI Datatype type;

MPI_Type contiguous (2, MPI_INTEGER, &type); [> Commit the
MPI Type commit (&type); — datatype before
MPI Request request; \ usage

MPI Irecv (buf, 2, MPI_INT, size - rank - 1, , MPI COMM WORLD, &request);
MPI Send (buf, , type, size - rank - 1, , MPI_COMM WORLD) ;

printf ("Hello, I am rank %d of %d. ", rank, size);

MPI Finalize ()

return 0O;

JOACHIM P}ROTZE - RWTH AACHEN UNIVERSITY 22/04/2016 12

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MUST detects errors in transfer buffer sizes / types

MUST Outputrie

filehome/pja 160 18MUST fexampieMUST_Output.eml

MUST Output, starting date: Thu Nov 28 13:51:42 2013

k(s

than receive buffer

Size of sent message larger

A receive operation uses a (datatype,count) pair that can not hold the data transfered by the send it matches! The first element
of the send that did not fit into the receive operation is at (contiguous)[{0](MPI INTEGER) in the send type (consult the MUST
manual for a detalled description of datatype positions). The send operation was started at reference 1, the receive operation

was started at reference 2, (Information on communicator: MPI COMM_WORLD) (Information on send of count 2 with
type:Datatype created at reference 3 is for Fortran, commited at reference 4, based on the following type{s): { MPI INTEGER})
{Information on receive of count 2 with type:MPI_INT)

Representative location:
MPI_Send (1st occurrence)
called from:

#0 main@example-fix2.c:19

References of a representative
process

reference 1 rank 0: MPI_Send
(1st occurrence) called from:
#0 main@example-fix2.c:19

relorence 2 rank 1: MPI_Irecy
(1st occurrence) called from:
#0 main@example-fix2.c:17

reference 3 rank 0:
MPI_Type_contiguous (st
pecourrence) called from

#0 main@example-fix2.c:13

reference 4 rank 0
MPI_Type_commit (1st
occurrence) called from:
#0 main@example-fix2.c:14

1 Error

A receive operation uses a (datatype,count) pair that can not hold the data transfered by the send It matches! The first element
of the send that did not fit into the receive operation is at (contiguous)[0J(MPI_INTEGER) in the send type (consult the MUST
manual for a detailed description of datatype positions). The send operation was started at reference 1, the receive operation

was started at reference 2. (Information on communicator: MPI COMM WORLD) (Information on send of count 2 with
type:Datatype created at reference 3 is for Fortran, commited at reference 4, based on the following typels): { MPI INTEGER})
(Information on receive of count 2 with type:MPI INT)

Representative location:
MPI_Send (1st occurrence)
called from:

#0 main@example-fix2.c:19

References of a representative
process:

reference 1 rank 1: MPI_Send
1st occurrence) called from:
#0 main@example-fix2.c:19

reference 2 rank 0: MPI_Irecv
1st occurrence) called from:
#0 main@example-ix2.c:17

reference 3 rank 1:
MPI_Type_contiguous (1st
joccurrence) called from:

#0 main@example-ix2.c:13

reference 4 rank 1:
MPI_Type_commit (1st
yecurrence) called from

#0 main@example-fix2.c:14

The memory regions to be transfered by this send operation overlap with regions spanned by a pending non-blocking receive
operation!

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY

References of a representative
process:

e —————— A et e e DY -

22/04/2016

13

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Fix3: use same message size for send and receive

int main (int argc, char** argv)

{

int rank, size, buf[8];

MPI Init (&argc, &argv);
MPI Comm rank (MPI_COMM WORLD, é&rank):;
MPI Comm size (MPI_COMM WORLD, é&size);

MPI Datatype type;
MPI Type contiguous (2, MPI INTEGER, &type) ;
MPI Type commit (&type);

MPI Request request;

MPI Irecv (buf, , MPI INT, size - rank - 1, , MPI COMM WORLD, &request);
MPI Send (buf, . ;xges size - rank - 1, , MPI_COMM_WQBT“\'
printf ("Hello, I am rank %d of %d. ", rank, size); RechJce'Hﬂe

L message Size
MPI Finalize ();

return ;

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 22/04/2016 14

MUST detects use of wrong argument values

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MUST Cutputfile

Neimhome,

MUST Output

Pi41601EMUSTfexampleMUST_Cutput.html

, starting date: Mon Dec 2 13:11:12 2013

Message

[Rank(s)[Type]

Use of Fortran type in C,
datatype mismatch between

sender and receiver

N\

Eferences

ferences of a reprosentative
0Cess:

ference 1 rank 1
PI_Send (15t occurrence)
alled from

A send and a receive operation use datatypes that do not match! Mismatch occurs at (contiguous){0MPI_INTEGER) in the send
type and at (MP1 INT) in the recelve type (consult the MUST manual for a detailed description of datatype positions). A graphical
representation of this situation is available in a detailed type mismatch view (MUST Output-fil MUST Type L Lhtmb)
The send operation was started at reference 1, the receive operation was started at reference 2. (Information on communicator:
MPI COMM WORLD) (Information on send of count 1 with type:Datatype created at reference 3 is for Fortran, commited at
reference 4, based on the following typeds): { MPI_INTEGER}) (Information on receive of count 2 with type:MPI_INT)

Representative location
MPI_Send (1st
occurrence) called from
20 main@example-fix3.c:19

#0 main@example-fix3.c:19

reference 2 rank 0

MPI_Irecv {1st occurrence)
alled from:

#0 main@example-fix3.c:17

reference 3 rank 1

MPI Type _contiguous (st
pccurrence) called from

#0 main@example-fix3.c:13

reference 4 rank 1
MPI_Type_commit (1st
ecurrence) called from

#0 main@example-fix3.c:14

A send and a receive operation use datatypes that do not matchl Mismatch occurs at (contiguous){0MPI_INTEGER) in the send
type and at (MP]_INT) in the receive type (consult the MUST manual for a detatled description of datatype positions). A graphical
representation of this situation Is available in a detalled type mismatch view (MUST_Output-filestMUST_Typemismatch_0.html).
The send operation was started at reference 1, the receive operation was started at reference 2. (Information on communicator
MPI_COMM_WORLD) (Information on send of count 1 with type:Datatype created at reference 3 is for Fortran, commited at
reference 4, based on the following type{s): { MPI INTEGER}) (Information on receive of count 2 with type:MPI INT)

Representative location:
MPI_Send (1st

occurrence) called from:

#0 main@example-fix3.c:19

References of a representative
Process

reference 1 rank 0:
MPI_Send (1st occurrence)
called from:

#0 main@example-fix3.c:19

reference 2 rank 1:
IMP1_Irecv (1st occurrence)
called from:

#0 main@example-fix3.c:17

reference 3 rank 0:
MPI_Type_contiguous (1st
loccurrence) called from:

#0 main@example-fix3.c:13

reference 4 rank 0;
MPI_Type_commit (1st
securrence) called from:
20) i

- J.C

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY

22/04/2016

15

Fix4: use C-datatype constants in C-code

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

int main (int argc, char** argv)

{

int rank, size, buf[8];
MPI Init (&argc, &argv);
MPI Comm rank (MPI_COMM WORLD, é&rank):;
MPI Comm size (MPI_COMM WORLD, é&size);

MPI Datatype type;

—/ Use the integer

MPI Type contiguous (2, MPI_ INT, &type);

MPI Type commit (&type);

MPI Request request;

MPI Irecv (buf, 2, MPI_ INT, size - rank - 1,
MPI Send (buf, 1, type, size - rank - 1,
printf ("Hello, I am rank %d of %d. ", rank, size);

MPI Finalize ();

return ;

datatype intended
for usage in C

, MPI COMM WORLD, &request);

, MPI_COMM WORLD) ;

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY

22/04/2016 16

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MUST detects data races in asynchronous communication

(

MUST Outputrie

- filecjhome,

MUST Output

fP)416018MUST fexampleMUST_Output.Mtml

, starting date: Mon Dec 2 18:36:19 2013

Message ~

The memory regions to be transfered by this send operation overlap with reg

Data race between send and
ascynchronous receive operation

non-blocking recelve operation!

{(Information on the request associated with the other communication:
Request activated at reference 1)
(Information on the datatype associated with the other communication:
MPI INT)
The other communication overlaps with this communication at position:(MPI_INT)

(Information on the datatype assoclated with this communication
Datatype created at reference 2 is for C, commited at reference 3, based on the following type(s): {
MPI INT})
This communication overlaps with the other communication at position:(contiguous)[0]J(MP1_INT)
A graphical representation of this situation is available in a detailed ove rdew (MUST Qutput-
files/MUST _Overlap 1_0.htmi)

Representative location:
MPI_Send (1st occurrence) called
from:

#0 maln@example-fixd.c:19

References of a representative process

reference 1 rank 1: MPI_Irecv (1st
yecurrence) called from
#0 main@example-fix4.c:17

reference 2 rank 1: MPI Type_contiguous
(15t occurrence) called from
#0 main@example-fix4.c:13

reference 3 rank 1: MPI Type_commit (1st
yeeurrence) called from
#0 main@example-fixd.c:14

There are 1 datatypes that are not freed when MPI_Finalize was issued, a quality application should free
all MPI resources before calling MPI Finalize, Listing information for these datatypes:

-Datatype 1: Datatype created at reference 1 is for C, commited at reference 2, based on the following
type(s): { MPI1_INT}

Representative location:
MPI_Type_contiguous (151
occurrence) called from:
#0 main@example-fixd.c:13

Relerences of a representative process:

reference 1 rank 1: MPI_Type_contiguous
(1st occurrence) called from:
#0 main@example-fix4.¢;13

reference 2 rank 1: MPI_Type_commit (1st
pccurrence) called from
20 main@example-fix4.c:14

There are 1 requests that are not freed when MPI_Finalize was issued, a quality application should free
all MPI resources before calling MPI_Finalize. Listing information for these requests:

-Request 1: Request activated at reference 1

Representative location:
MPI_Irecv {1st occurrence) called
from:

#0 maim@example-fixd.c:17

References of a representative process:

reference 1 rank 1: MPI_Irecv (1st
pccurrence) called from:
#0 main@example-fixd.c:17

1 IETTO1]
0-1 |Error
01 [Ervor

0 IError]

The memory regions to be transtered by this send operation overlap with regions spanned by a pending
non-blocking receive operation!

{Information on the request associated with the other communication:
Request activated at reference 1)
(Information on the datatype associated with the other communication
MPI_INT)
The other communication overlaps with this communication at position:(MPI INT)

(Information on the datatype associated with this communication:
Datatype created at reference 2 1s for C, commited at reference 3, based on the following type(s): {
MPI_INTH
This communication overlaps with the other communication at position:(contiquous)[0J(MPI INT)
A graphical representation of this situation Is available in a detailed overlap view (MUST Output-
Fa W . Y

Bl ALITOT Ml 0

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY

Representative location:
MPI1_Send (15t occurrence) called
from:

#0 main@example-fixd.c:19

References of a representative process:

reference 1 rank 0: MPI_Irecy (1st
pccurrence) called from:
#0 main@example-fixd.c:17

reference 2 rank 0: MPI_Type_contiguous
Ist occurrence) called from:
#0 main@example-fix4.c:13

reference 3 rank 0: MPI_Type_commit (15t
poccurrence) called from:
#0 main@example-fix4.c:14

22/04/2016

17

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Graphical representation of the race condition

MUST Owerapfile | = . .
- Fle:{ihormepi4 LE0 1 EMUST exampleMUST_Outpul-filesMUST_Overdap L 0himl G ra p h Ica I re p re s e nta t I O n Of t h e d ata
MUST ﬂ\rl'rinp- Details, date: Mon Dec 2 18:36:19 2013 H
-~ race location

Back to MUST error report

> J

The application issued a sat of MPI calls that overlap in communication bulfers! The gre ows details M —— —— - w—p—
ighlighted.

M P1_Send:sendibul= Ox TIE 39T 3al)

Y

M PI_Type_contiguous(count=2) | MPI_lrecvarecvbuf= +xil)

1ol
.
MPI_INT

la—"

O I —————"
JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 22/04/2016 18

Errors with MPI Datatypes - Overview

= Derived datatypes use constructors, example:

~

SN

T~

vV 2D Field

/I\/IPI_Type_vector (

(of integers)

NumRows /*count*/,

1 /*blocklength*/,

NumColumns /*stride*/,

MPI_INT /*oldtype*/,
k&newType) ;

= Errors that involve datatypes can be complex:
= Need to be detected correctly

= Need to be visualized

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Errors with MPI Datatypes - Example

= C Code:

MPI Isend(buf, 1 &TCount*/, vectortype, target, tag,>
MPI COMM WORLD, .
MPI Recv (buf, 1 /&Count*/,
MPI COMM WORLD,
MPI Wait (&request, &status);

ype, target, tag, >

v

= Memory: a / / \
2 A Tool must:
Error: buffer overlap - Detect the error

MPI_lIsend reads, MPIl_Recv writes at the - Pinpoint the user to the ecact
same time problem

N Voo Field \ /

(of integers)

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 22/04/2016 20

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Errors with MPI Datatypes - Error Positions

= How to point to an error in a derived datatype?
= Derived types can span wide areas of memory
» Understanding errors requires precise knowledge

= E.g., not sufficient: Type X overlaps with type Y [Contiguous datatype to span a row
= Example:
= We use path expressions to /
point to error positions i

e example, overlap at: /_j>
(VECTOR)[2][0](MPI_INT)
USTRSIMPL_INT)

\V

2D Field
(of integers)

[Vector datatype to span a column

Error: buffer overlap \

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 22/04/2016 21

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Fix5: use independent memory regions

int main (int argc, char** argv)

{

int rank, size, buf[8];

MPI Init (&argc, &argv);
MPI Comm rank (MPI_COMM WORLD, é&rank):;
MPI Comm size (MPI_COMM WORLD, é&size);

MPI Datatype type;
MPI Type contiguous (2, MPI INTEGER, &type) ;
MPI Type commit (&type);

MPI Request request;

MPI Irecv (buf, , MPI INT, size - rank - 1, , MPI COMM WORLD, &request);
MPI Send (buf + 4, . txgeE size - rank - 1, , MPI_COMM#EQRTn\' -
Offset points to
printf ("Hello, I am rank %d of %d. ", rank, size); L independent
MPI Finalize (); memory

return ;

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 22/04/2016 22

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MUST detects leaks of user defined objects

MUST Cutputfile o - &8 =
Me:ifhorne/pi4 LEO 188 USTexampleMUST_Output html v | |2 o &
MUST ﬂlltpul_ starting datie: Thu Now 28 13:55:26 2013

[Rankis)[Type] Message From " TReferences

Fieferences of & representative process

There are 1 datatypes that are not freed when MPI_Finalize was issued, a quality application should
free all MPI resources before calling MPI_Finalize. Listing information for these datatypes:

relorence 1 rank 0: MPI_Type_contiguous (15t
joccurrence) called from:
#0 main@example-fix5.c:13

Representative location:
MPI_Type_contiguous {15t

Datatype 1: Datatype created at reference 1 is for C, commited at reference 2, based on the following Fi_;l:I:Iil;.ll_;l_-lI;:Llil;l:;:':lll_lﬁ:!:-'Il::l:i.]
I aingEes e-fix5.c:13

typeis): { MPL_INT} reference 2 rank 0: MPI_ Type commit (15t
courrence) called [rom:
#{ maing@example-fix5.c:14

0-1 [Error

Heferences of & representative process:

There are 1 requests that are not freed when MPI_Finalize was issued, a quality applica
free all MPI resources before calling MPI Finalize. Listing information for these requests?

Representative location:

01 |[Error Irecy (1st occurrence) called oeoeonsn 1 rank o: MPI_Irecy (15t ocourrence)
salled from:

#0 maing@example-fixS.c:17

-Request 1: Request activated at reference 1

MUST has completed successfully, end date: Thu Mov 28 13:55:26 20013,

Leak of user defined

= User defined objects include datatype object
= MPI_Comms (even by MPI_Comm_dup)
= MPI_Datatypes
= MPI_Groups

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 22/04/2016 23

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Fix6: Deallocate datatype object

int main (int argc, char** argv)

{

int rank, size, buf[8];

MPI Init (&argc, &argv);
MPI Comm rank (MPI_COMM WORLD, é&rank):;
MPI Comm size (MPI_COMM WORLD, é&size);

MPI Datatype type;
MPI Type contiguous (2, MPI_ INT, &type);
MPI Type commit (&type);

MPI Request request;

MPI Irecv (buf, , MPI INT, size - rank - 1, , MPI COMM WORLD, &request);
MPI Send (buf + 4, 1, type, size - rank - 1, , MPI _COMM WORLD) ;

printf ("Hello, I am rank %d of %d. ", rank, size);

MPI Type free (&type); p

MPI_Finalize (); Deallocate the

created datatype

return ;

}

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 22/04/2016 24

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MUST detects unfinished asynchronous communication

MUST Cutputfile b - 8 =
e fifhorme/pj4 1601 BMUST/exampleMUST_Outpul himl -k i [

MUST ﬂutpul_ startimg date: Thu Now 28 13:55:49 2013

Message

There are 1 requests that are not freed when MPI_Finalize was issued, a quality application should free all MPI
resources hefore calling MP] Finalize. Listing information for these requests:

R.Pp!"'—'*’:_l-"l'ltull.".‘f-' e References of a |'|:Fr|'|--:|:||'..:|r.'.-'|' |JI'II': {5

MPI_Irecy (15t ocourrence)
called from:
#0 malni@exarmple-fivG.c: 17

reference 1 rank 0: MPI_Irecy (1st
courrence) called from:

-Request 1: Request activated at reference 1 .
1 ! . #i mainiexample-fixG.c:17

MUST has completed successfully, end date: Thu Nov 28 13:55:49 2013,

Remaining unfinished
asynchronous receive

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 22/04/2016 25

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Fix7: use MPI_Wait to finish asynchronous communication

int main (int argc, char** argv)

{

int rank, size, buf[8];

MPI Init (&argc, &argv);
MPI Comm rank (MPI_COMM WORLD, &rank);
MPI Comm size (MPI_COMM WORLD, &size);

MPI Datatype type;
MPI Type contiguous (2, MPI_INT, &type);
MPI Type commit (&type);

MPI Request request;

MPI Irecv (buf, 2, MPI_INT, size - rank - 1, , MPI COMM WORLD, &request);

MPI Send (buf + 4, 1, type, size - rank - 1, , MPI COMM WORLD) ;

MPI Wait (&request, MPI STATUS IGNORE) ; — r Finish the
printf ("Hello, I am rank %d of %d. n", rank, size); \L asynChronOUS
MPI_Type_free (&type); communication

MPI Finalize ();

return O;

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 22/04/2016 26

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Finally

MUST Cutputfile o - 8 x
e fifhorne/pj4 LE01 BMUST/exampleMUST_Outpul himl w | o &
MUST ﬂutpul_ starting date: Thu Mov 28 13:56:03 2013

Ranki: Message ces
Information MUST detected no MPI usage errors nor any suspicious behavior during this application rmn.

MUST has completed successfully, end date: Thu Mov 28 13:56:08

No further error
detected

Hopefully this message
applies to many
applications

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 22/04/2016 27

Content

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

= Motivation
= MPI usage errors

= Examples: Common MPI usage errors
= Including MUST's error descriptions

= Correctness tools
= MUST usage

= Hands-on

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY

22/04/2016

28

Tool Overview - Approaches Techniques

= Debuggers:
= Helpful to pinpoint any error
» Finding the root cause may be hard
= Won't detect sleeping errors
= E.g.: gdb, TotalView, Allinea DDT
= Static Analysis:
= Compilers and Source analyzers

= Typically: type and expression errors
= E.g.: MPI-Check

= Model checking:

= Requires a model of your applications
= State explosion possible
= E.g.: MPI-Spin

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY

MPI_Recv (buf, 5, MPL_INT,
l,

23, MPI_COMM_WORLD, &status);

“-1” instead of “MPI_ANY_SOURCE”

)

if (rank ==1023)
crash ();

Only works with less than 1024 tasks

22/04/2016

29

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Tool Overview - Approaches Techniques (2)

= Runtime error detection:
= Inspect MPI calls at runtime
» Limited to the timely interleaving that is observed
= Causes overhead during application run
= E.g.: Intel Trace Analyzer, Umpire, Marmot, MUST

MPI_Send(to:1, type=MPI_INT) MPI_Recv(from:0, type=MPI_FLOAT)

AN

Type mismatch

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 22/04/2016 30

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Tool Overview - Approaches Techniques (3)

= Formal verification:
= Extension of runtime error detection
= Explores all relevant interleavings (explore around nondet.)
» Detects errors that only manifest in some runs
= Possibly many interleavings to explore
= E.g.: ISP

MPI_Recv (from:ANY)
MPI_Recv (from:0)
MPI_Barrier ()

spend_some_time()
MPI_Send (to:1)
MPI_Barrier ()

MPI_Send (to:1)
MPI_Barrier ()

[Deadlock if MPI_Send(to:1)@0 matches MPI_Recv(from:ANY)@1]

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 22/04/2016 31

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Approaches to Remove Bugs (Selection)

Repartitioning?
Representative input?

Our contribution: Grid> Reproducibility?
MUST I'mr
Runtime Checking

Node Memory?

Debuggers

o

Y i
E\/i Umpire ISP/ allinee
é:)i_gglARMOT DAMPI LDDT
Static Code Analysis Model Checking
TASS , : :
pCFG’s Barrier Analysis spiny

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 22/04/2016 32

Content

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

= Motivation
= MPI usage errors

= Examples: Common MPI usage errors
= Including MUST's error descriptions

» Correctness tools
= MUST usage
= Hands-on

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY

22/04/2016

33

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

o JAMUST

= MPI runtime error detection tool
= Open source (BSD license)
http://www.itc.rwth-aachen.de/MUST/

= Wide range of checks, strength areas:
= Overlaps in communication buffers
= Errors with derived datatypes
» Deadlocks

= | argely distributed, able to scale with the application

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 22/04/2016 34

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MUST - Basic Usage

= Apply MUST as an mpiexec wrapper, that’s it:

mplCcC source.c —O exe
srun ps —-n 4 ./exe

mplcc —g source.Cc —-O exe
mustrun --must:mpiexec srun ps -n 4 ./exe

0 0
° ©°
0 0
° ©°

= After run: inspect "MUST_Output.html”

= “mustrun” (default config.) uses an extra process:

= [.e.: "mustrun —-np 4 ..." will use 5 processes
= Allocate the extra resource in batch jobs!
» Default configuration tolerates application crash; BUT is slower (details later)

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 22/04/2016 35

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MUST - Usage on frontend - backend machines

= Compile and run using a batch script

mpicc —g source.c -0 exe

% mplcc source.Cc —0O exe
% mustrun --must:mpiexec mpiexec -np 4 ./exe

mpiexec -np 4 ./exe

3
%

= If you see messages about missing dot on the backend, run on frontend:

$ mustrun --must:dot

= Open MUST_Output.html with a browser

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 22/04/2016 36

MUST - At Scale (highly recommended for >10 processes)

» Provide a branching factor (fan-in) for the tree infrastructure:

[©)

$ mustrun --must:mpiexec mpiexec -np 4 ./exe --must:fanin 8

= Get info about the number of processes:

[©)

$ mustrun --must:mpiexec mpiexec -np 4 ./exe --must:fanin 8 \
--must:info

- This will give you the number of processes needed with tool attached

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 22/04/2016 37

Content

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

= Motivation
= MPI usage errors

= Examples: Common MPI usage errors
= Including MUST's error descriptions

» Correctness tools
= MUST usage
= Hands-on

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY

22/04/2016

38

Hands On - Build for MUST

= Go into the NPB directory

= Edit config/make.def

= Disable any other tool (i.e.
use mpiifort, unset PREP)

= Use intel or gnu tool chain

= Build:

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY

COMPFLAGS = -openmp -g —mt_mpi -extend-source # intel

MPIF77 = mpiifort

% module unload mpi.mpt

% module load mpi.intel

% make clean

% make bt-mz NPROCS=6 CLASS=C

= NAS PARALLEL BENCHMARKS 3.3 =
= MPI+OpenMP Multi-Zone Versions =
= F77 =

cd BT-MZ; make CLASS=C NPROCS=6
make[1]: Entering directory

ftn -O3 -g -openmp -extend-source -o ../bin/bt-mz_C.6
bt_scorep_user.o ...

22/04/2016

39

Hands On - Prepare Job

= Create and edit the jobscript

cp $MUST_EXAMPLES/must.sbatch ./must.sbatch
vim must.sbatch

= Jobscript:

#SBATCH --reservation=VI-HPS_Workshop
source /home/hpc/a2c06/lu23bud/LRZ-VIHPSTW21 /tools/
export OMP_NUM_THREADS =4

CLASS=C
NPROCS=6

process

Y
MUST needs one extra process!
We use 6 processes * 4 threads + 1 tool

)

mustrun --must:mpiexec srun -n $NPROCS -t $OMP_NUM_THREADS $EXE

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY

22/04/2016

41

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Hands On - Executing with MUST

= Submit the jobscript:

sbatch must.sbatch

= Job output should read:

NAS Parallel Benchmarks (NPB3.3-MZ-MPI) - BT-MZ MPI+0OpenMP Benchmark

:I"i)tal number of threads: 16 (3.0 threads/process)
Calculated speedup = 11.97

Timestep 1
.\./.erification Successful

.[.I.VIUST] Execution finished, inspect “(...)/MUST_Output.htmI"!

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 22/04/2016 42

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

BT — MUST Results

= Open the MUST output: <Browser> MUST_Output.html

\

(BT-MZ should evaluate the “provided”
Rank(s)] Type | Message ' thread level and don't use threads.

You requested 3 threads by OM — J
requested thread level MPI AD FUNNELED from [MPI_Init thread (Ist
0-3 'Warning| the mpi library but thr library provides no thread occurrence) called
support.This is ok as long as your application doesn't make from:

use of OpenMP #0 MAIN @bt.f:90
#1 main@bt.f:319

References of a

There are 1 communicators that are not freed when Representative :)
MPI Finalize was issued, a quality application should free location: representative process:
all MPI resources before calling MPI Finalize. Listing MPI_Comm_split (1st} rocnce 1 rank 2-
0-3 Error information for these communicators: occurrence) called '

MPI Comm_split (1st
from: loccurrence) called from:
-Communicator 1: Cnmmunicatw#ﬂ MAIN__ @Dbt.f:90 |, "\ra 1N @bt.f:90 -
size=4 ain@bt.f:319 |41 1ain@bt.f:319

Resource leak:
A communicator created with
MPI_Comm_split is not freed

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY

< XNARTYALANSTITYUTE - HIGH-PRODUCTIVITY SUPERCOMPUTING

Stacktraces in MUST

= We use an external lib for stacktraces

= This lib has no support for Intel compiler

= But: in most cases it's compatible to icc compiled C applications
= Nevertheless, the must-intel module is built without stacktrace
support

= I[fort compiled FORTRAN applications lead to segfault:
» Use MUST w/o stacktraces for fortran applications

= Use GNU compiler to build your application and use MUST w/
stacktraces

= Supposed your application has no faults you won’t need

Representative
location:
MPI_Init_thread (1st
occurrence) called
from:

#0 MAIN @bt.f:90
#1 main@bt.f:319

Representative
location:

MPI Comm_split (1st
occurrence) called
from:

#0 MAIN @bt.f:90
#1 main@bt.f:319

stacktraces © Rank(v

MUST detected no MPI usage errors
ormatio

nor any
suspicious behavior during this application run.

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY

22/04/2016 44

Conclusions

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

= Many types of MPI usage errors
= Some errors may only manifest sometimes
= Consequences of some errors may be “invisible”
= Some errors can only manifest on some systems/MPIs

= Use MPI correctness tools

= Runtime error detection with MUST
= Provides various correctness checks
= Verifies type matching
= Detects deadlocks
= Verifies collectives

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY

22/04/2016

45

R Gy d S Sy e " VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING
I .

Thank You

Birerosen (=) Technische e UNIVERSITE DE
e Tahan Redodteh Whel Imm Universitat : Universitat Stuttgart VERSAILLES
Cantro Mackna! do Supercamputacién for Simulation Sciences Miinchen ST-QUENTIN-EN-YVELINES

%

THE
UNIVERSITY OF OREGON

. P TECHNISCHE
) 1iticy S Py Dl O

FORSCHUNGSZENTRUM

