e e o e VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

;1101
B 101107 8%
z40191'n

MAQAO VERSAILLES S

UNIVERSITE DE @"é

[\

Performance Analysis and Optimization Tool

(intel)
Cédric VALENSI
Emmanuel OSERET, Jean-Baptiste LE RESTE
cea
cedric.valensi@uvsq.fr,
emmanuel.oseret@uvsq.fr, jean-baptiste.le-reste@uvsq.fr
Performance Evaluation Team, University of Versailles S-Q-Y
http://www.magao.org
VI-HPS 21st Garching - Germany - 18-22 April 2016

UNIVERSITE DE
VERSAILLES
ST-QUENTI

T-QUENTIN-EN-YVELINES

NNESSHE

() Technische
do Supercamptackin for Simulstion Sciences Miinchen

#) JULICH |8 aurence Livermore G0 BRRErs o

9
I

http://www.maqao.org/

< XNARTYALANSTITYUTE -~ HIGH-PRODUCTIVITY SUPERCOMPUTING

MAQAO Framework and Tool suite

R&D Team: develop performance evaluation and optimization tools ——

=

VERSAILLES ==

SAINT-QUENTIN-EN-YVELINES

W

MAQAO main functionalities:
= Profiling and hardware counters collection
= Code quality analysis

LGPL3 Open Source software

= Source release of core components planned for 2016
= Binary release available on demand

= Support Intel x86-64 and Xeon Phi

Partnerships:

= Funded by UVSQ, Intel and CEA (French department of energy)

= Optimize industrial and academic HPC applications (Yales2, AVBP, Polaris...)

= Provide building blocks for other tools (TAU performance tools, ATOS bullxprof, Intel AmplifierXE)

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL 2

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Introduction
Performance analysis (1/2)

Characterize application performance
= Application profiling
» Pinpoint the performance bottlenecks

= Complex multicore and manycore CPUs
= Complex memory hierarchy

= Best use of the machine features

Generally a multifaceted problem

» How to determine the dominant issues?
= Algorithms choice
= Implementation
» Parallelization

= Maximizing the number of views

=> Need for dedicated and complementary tools

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL 3

Introduction
Performance analysis (2/2)

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Motivating example: loop ~10% walltime

Variable number of iterations

/ Non-unit stride accesses

do j = ni+nvaluel,nato
njl = ndim3d*j + nc ; nj2 = nj1 + nvaluel ; nj3 = nj2 + nvaluel
ul = x11 - x(njl1); u2 = x12 - x(nj2) ; u3 = x13 - x(nj3)
rtest2 = ul*ul + u2*u2 + u3*u3 ; cnij = eci*qEold(j)

Eqc = Eqc + Eq ; Ephob = Ephob + Ed
gE = (c6*Ed + Eq)*drtest2 ; virt = virt + gE*rtest2 | l

ulg = ul*gE ; u2g = u2*gE ; u3g = u3*gE Reductions
glc =glc-ulg; g2c =g2c-u2g; g3c =Qg3C-u3g
gr(njl,thread num) = gr(nj1,thread_ num) + ulg}

5 rij = demi*(rvwi+rvwalcl1(j))

L_rB drtest2 = cnij/(rtest2 + rij) ; drtest = sqrt(drtest2) «—DIV/SQRT
n Eq = qql*qq(j)*drtest

o ntj = nti + ntype(j) Indirect
] = i)* * *

= Ed = ceps(ntj)*drtest2*drtest2*drtest? = Gt
S

0

()

>

High number of statements

gr(nj2,thread_num) = gr(nj2,thread_num) + u2g
- gr(nj3,thread_num) = gr(nj3,thread_num) + u3g

end do Non-unit stride accesses

Source code and associated issues:

1) High number of statements
2) Non-unit stride accesses

3) Indirect accesses
4) DIVISQRT

5) Reductions
6) Vector vs Scalar

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Introduction
MAQAO: Analysis at the binary level

Advantages of binary analysis
= Compiler optimizations increase the distance between the executed code and the source
= Source code instrumentation may prevent the compiler from applying some transformations

We want to evaluate the “real” executed code: What You Analyze Is What You Run

We are able to reconstruct the program structure

= Automatically relate the analyses to source code
= A single source loop can be compiled as multiple assembly loops

- -

B

Peel/Prolog Loopi Loop2 [MiGop3™
@ vain Loop4
§ Tail/Epilog
Loop 5 J

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL 5

~ ASM

Introduction
MAQAO methodology

Decision tree

CPU oriented
Code Quality Analysis }
Differential analysis

Value Profiling

Profiling

Loops of interest

Analysis
Memory oriented

Memory behaviour
o ~ characterization }

Differential analysis

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL 6

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO LProf: Lightweight Profiler

Time categorization - mz-mpich-3.1.sp-mz.C.8 v Hotspots - Functions
X
[] Application 8
[] MPI
OpenMpP 6
| | Math
[| System 4 -
M %Time
| | Pthread
|| 10 2
M String manipulation
Memaory operations jo -
1 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
|] Others
—_exacl_solufion__- d@exaci_solution T 0.21 0.03

x_unpack_solve_info__ - 114@x_solve.{ 014 0.03

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO LProf: Lightweight Profiler
Introduction

Lightweight localization of application hotspots

Multiple measurement methods available:
= Sampling (default)

= Hardware counters (through perf_event_open system call)
= Non intrusive, low overhead

= Instrumentation
= Through binary rewriting
= Can target specific issues
= Extra overhead

Runtime-agnostic

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO LProf: Lightweight Profiler
Time categorization

Parallelization overhead i bbbl S S
« Shared: Pthreads, OpenMP, etc ... Time categorization - mz-mpich-3.1.sp-mz.C.8

» Distributed: MPI, etc...

[Application

_ MPI
Programming -

. pen
= JO operations -

. . d
= String operations
System

= Memory management

. . . . Pthread
= External libraries such as libm / libmkl

10

User time breakdown String manipulation

= Functions
= Loops

Memory operations

[| Others

MAQAO LProf: Lightweight Profiler
Function and loop hotspots (1/3)

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Focusing on user time

= Function hotspots
= Load balancing across the nodes

com pute_rhs_
y_solve_
z_solve_

¥_solve_

RADIM ~H2 Drnnvace

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL

Mame

Hotspots -

Functions

Median Excl %Time
30.88
15.51
15.34
15.07

C &1

Deviation
0.14
014
014
014

n1aAa

10

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO LProf: Lightweight Profiler
Function and loop hotspots (2/3)

Focusing on user time

= Function hotspots
= Load balancing across the nodes

M %Time

Name

compute_rhs_

y_solve_

z_solve_

¥_solve_ 15.07 014

RADIM ~H2 Drnnvace C &1 n1aAa

MAQAO LProf: Lightweight Profiler
Function and loop hotspots (3/3)

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Analyze the time spent at loop level

» Find the most time consuming

= Direct link to MAQAO CQA analyses

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL

dauvergne

Nam e
binvcrhs - 206@solve_subs f
MPIDI_CH3I_Progress
poll_active_fhoxes
yv_solve_omp_fn.0 - 45&@y_solve f
loops
Loop 121 - y_solve f@45
Loop 122 - y_solve f@45
Loop 124 - v_solve f&@45
_solve f@145
Loop 126 y_solve f&@55
Loop 123 - yv_solve f@45

x*_solve_omp_fn.0 - 48@x_solve.f

loops

- Process #14213 - Thread #14201

Excl %Time
17.27
15.24
13.71
8.47
8.47

0
016
0,14
2.03
1.02

8.23
8.23

Excl Time (s)
2.23
1.96
1.77

1.09

1.06

12

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO LProf/MPI: MPI characterization

MPI Time Pie Chart

@ P waiall @ MEL it ® mEn_Barior MPL_lsend @ MPI_Reduce © MPLirecy @ MPI_Comem_spiit) MPI_Bcast @ MPL_finalize
P1_Gomm_rank

MPI Profile Density Summary Per Function Density Topology Graph Topology Matrix) WP Wime @ MPI_Garmm_sicu MP1_G

MPI Profile

MPI Hits Pie Chart

@ MPI_Waitall N L L
MPI_Wtime @ MPI_Comm_sizefl MPI_Comm_rank MPI1 Size Pie Chart

@MP_isana) MPLRaduss @ MPLiecy () MPLReast

MPI Function Scattering over Time Communication Topology

MPI_irecy || Total Time v || Reset View

O stacked O stream @ Expanded ® MPI_Barrier MPI_Bcast @ MPI_Comm_split Lirecy @ MPI_lisen

MPL d © MPI_Reduce
| Rank 89
l Delete Node
| | | Node Statistics
| | Neighbour
|
I I out Total
| 4 4 4
| Size
111 in Out Total
207.035 207.935 415.869
|
|
\ i

l HW‘ Wl)

1

@ @ o o 2
&8 8 8§ 8
R R R & R

3 3
® R

@
&
®

g
®

4 4 N N @ ow A A oa O
e 9 5 a 8 8 8 & & 4658 &
X _® ® ¥ & ® R & R ® X &

111111

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO LProf/MPI: MPI characterization
Introduction (1/2)

Objective: profiling MPI runtime use.

= Coarse grain
= Overview
» Global trends/patterns
= Low overhead

» Fine grain
» Filtering precise issues
= Higher overhead

Online profiling:

= No IOs: only one result file with pre-processed data

» Reduced memory footprint thanks to aggregated metrics
= Scalable on 1000+ MPI processes

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL 14

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO LProf/MPI: MPI characterization
Introduction (2/2)

LProf/MPI is an MPI profiling tool targeting lightweight metrics that can be deduced online

= No trace required In-browser Visualizer

pPLProlieDenity sumimaty _bec functonDenity _ lopologyGeaph lopok

= Does not require recompiling MFTFancrion scatarng o

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL 15

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO LProf/MPI: MPI characterization
Global profile (1/3)

Summary view: MPI primitives classified by hits (calls), time and size (if applicable)

MPI Hits Pie Chart

@ MPI_Waitall MPI_Init ® MPI_Barrier MPI_isend @ MPI_Reduce © MPI_lrecv @ MPI_Comm_split &% MPI_Bcast @ MPI_Finalize
MPI_Wiime @ MPI_Comm_size® MPI_Comm_rank

33%

33%

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL 16

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO LProf/MPI: MPI characterization
Global profile (2/3)

MPI Time Pie Chart

® MPI_Waitall MPI_Init @ MPI_Barrier MPI_Isend @ MPI_Reduce | MPI_lrecvy @ MPI_Comm_split © MPI_Bcast @ MPI_Finalize
MPI_Wtime @ MPI_Comm_size MPI_Comm_rank
12% ‘

MPI Size Pie Chart

@ MPI_Isend MPI_Reduce £ MPI_Irecy MPI_Bcast

MAQAO LProf/MPI: MPI characterization

Global profile: flat view (3/3)

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MPI Profile

Function

MPI Waitall

MPI Init

MPI Barrier
MPI Isend

MPI Reduce
MPI Irecv
MPI Comm split
MPI Bcast

MPI Finalize
MPI Wtime
MPI Comm size
MPI Comm rank

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL

Hits
192960
128
256
192960
384
192960
128
1152
128
256
128
256

Time
13m1.51s
1 m46.60 s
10.88 s
1.47 s
5.36e-1 s
4.62e-1 s
4.05e-1s
3.12e-2 s
2.07e-3s
3.53e-4d s
1.30e4 s
4.28e-5s

Size

0B

0B

0B

4.568 GB
11.000 KB
4.568 GB
0B
132.000 KB
0B

0B

0B

0B

Walltime %
52.333%
7.138%
0.729%
0.098%
0.036%
0.031%
0.027%
0.002%
0.000%
0.000%
0.000%
0.000%

18

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO LProf/MPI: MPI characterization
Function scattering over time

MPI Function Scattering over Time

90% ‘ .

85%

|
80% !
|
75% '

.

50%

45%

40% ‘

35%

30% ‘ i i
| ’ il |

20%

15%

10%

QO stacked Q Stream @ Expanded @ MPI_Barrier MPI_Bcast @ MPI_Comm_split MPI_lrecv @ MPI_lsend MPI_Reduce
"
5% ‘ ‘

@ MPI_Waitall @ MPI_Witime
100% l ’ ” I
|
|
|
(i

95% ’ | '
0%
o 2 4 6 8 10 12 14.5981

Time in Seconds

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO LProf/MPI: MPI characterization
Probability densities: when and how long ?

Probability Densities

MPI_Reduce ~ || Over Time b
max : 7.59494

min : 0
@ MPI_Reduce Call distribution owver time

7.00
6.50
6.00
5.50
5.00
4. .50
4.00
3.50
3.00
2.50
2.00
1.50
1.00

0.50

0.00
2114010 4. 242300 6.370590 8.498880 10627200 12755500

Time in Seconds

min : 0, max: 14.6124

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL 20

MAQAO LProf/MPI: MPI characterization

2D communication matrix

< XNARTYALANSTITYUTE -~ HIGH-PRODUCTIVITY SUPERCOMPUTING

MPI_lrecw Total Size Reset View

Communication Matrix

o
..: ..-I
o R L B
S T
-I I F I...I L
' - "
- . = 1.
- --I..:- I - - - 1 - l
.I.-I. - L .I. - L :.
I. - - .1.-: :: - - L
et ot R
Er L I
- -.’1- .- .-.I - - -
- o =
et .'-.": -
R - e <
il ™~ o i
e g e
I- - .- r -..‘l - -
- L ‘ I- ’ - - ‘.
= iy = e e
PR T S
“a '.-'L-||: - .E:'-_.- -_-:;: -
- L u - .- L ..
. B L S
- - '.L.-l_l::..-'_.-.
s - I |] h ...-

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL

65 -> 54 :5.183 MB

21

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO LProf/MPI: MPI characterization
Per rank distribution

Per Rank distribution

O Grouped @ Stacked @ Inbound @ Outbound
109.247 MB

Checking load balancing o ane e

100.126 ME

5. 26T MB

00,500 MB

B5.B31 MB

B1.062 MB

T6.204 MB

T1.526 MB

66.757 MB

61.080 MB

57.220 MB

52,452 MB

47 684 MB

42915 MB

36,147 MB

33,370 MB

2B.610 MB

23.842 MB

19.072 MB

14,305 MB

9.537 MB

4.768 MB

14 20 Ea =] T4 Ba 104 119

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO LProf/MPI: MPI characterization
3D Topology

Communication Topology

MPI_Irecy v || Total Time v || Reset View

Delete Node

Rank 89 |

Node Statistics

Neighbour

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO CQA: Code Quality Analyzer

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL

| Gain | Potential gain | Hints | Experts only

quality analysis

Source loop ending at line 682
~ MAQADO binary loop id: 238

The loop is defined in MPI/BT/x_solve.f:519-682
15% of peak computational performance is used (1.23 out of 8.00 FLOP per cycle (GFLOPS @ 1GHz))

Your loop is processing FP elements but is NOT OR PARTIALLY VECTORIZED and could benefit from full vectorization
By fully vectorizing your loop, you can lower the cost of an iteration from 190.00 to 60.75 cycles (3.13x speedup).
Since your execution units are vector units, only a fully vectorized loop can use their full power
Proposed solution(s):
Two propositions:

Try another compiler or update/tune your curent one:
- Remove inter-iterations dependences from your loop and make it unit-stride.

By removing all these bottlenecks, you can lower the cost of an iteration from 190.00 to 143.00 cycles (1.33x speedup)

Source loop ending at line 734

24

MAQAO CQA: Code Quality Analyzer
Introduction

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

Improving performance of the user code

Focusing on loops
= In HPC most of the time is spent in loops

Static analysis of assembly code
= Evaluate the quality of the compiler generated code
= Analysis based on a microarchitecture model

= Returns hints and workarounds to the developer

Targets compute bound codes

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL

25

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO CQA: Code Quality Analyzer
Output

High level reports

» Reference to the source code
» Bottleneck description Source loop ending at line 10
= Hints to improve performance > MAQAO MY op -2]
. . . The loop is defined in /Izhomelacademic/HLRS/xhp/xhpeo/TEST/matmul/kernel.c:9-10
. Reports Categorlzed by Conﬂdence Ievel " 29% of pgak comﬁputational‘performance is usedr(>0.67 out of 32.00 FLOP Qer cy;le (1.67 GFLOPS@z.SOGHz?)
" galn, pOtentIaI galn ! Gain ! Potential gain g Hints | Experts only

LOW Ievel re po rt fo r pe rfo rm a n Ce eXpe rts : Your loop Is processing FP elements b@ |sr NOT OR PARTIALLY VECTORIZED and could benefit from full vectorization

By fully vectorizing your loop, you can lower the cost of an iteration from 3.00 to 0.38 cycles (8.00x speedup)
Since your execution units are vector units, only a fully vectorized loop can use their full power.
Proposed solution(s):

No runtime cost/overhead

Two propositions:

- Try another compiler or update/tune your current one:

- Remove inter-iterations dependences from your loop and make it unit-stride

* I your arrays have 2 or more dimensions, check whether elements are accessed contiguously and, otherwise, try to permute loops accordingly

C storage order is row-major: for(i) for(j) afjj{i] = b)][i]: (slow, non stride 1) => for(i) for(j) a[i)(j] = bi][]]: (fast, stride 1)
* If your loop streams arrays of structures (A0S), try to use structures of arrays instead (SoA)
for(i) afi].x = b[i].x: (slow, non stride 1) => for(l) a.x[i] = b.x[i]. (fast, stride 1)

P —

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL 26

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO CQA: Code Quality Analyzer
Processor Architecture: Core level

Most of the time applications only exploit at best 5% to 10% of the peak performance

Concepts:

= Peak performance

= Execution pipeline

» Resources/Functional units

Key performance levers for core level efficiency:
» VVectorization
= Get rid of high latency instructions if possible ~Same instruction — Same cost

» Have the compiler generate an efficient code
.... Process up to
8X (SP) data

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL

27

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO CQA: Code Quality Analyzer
Compiler and programmer hints

Compiler can be driven using flags and pragmas

= Architecture specific flags (e.g. -xHost on AVX capable machines)
= Force optimization (unrolling, vectorization, alignment, ...)

= Bypass conservative behavior when possible (e.g. 1/X precision)

Implementation changes

» Data access
» Loop interchange
= Changing loop strides

= Avoid instructions with high latency

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL 28

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO CQA: Code Quality Analyzer
GUI sample (1/2)

MA@AO

Code quality analysis

~ Source loop ending at line 682
~ MAQAO binary loop id: 238

The loop is defined in MPI/IBT/x_solve.f:519-682

15% of peak computational performance is used (1.23 out of 8.00 FLOP per cycle (GFLOPS @ 1GHz))

P g : .
|| Gain i Potential gain | Hints | Experts only

|

Your loop is processing FP elements but is NOT OR PARTIALLY VECTORIZED and could benefit from full vectorization
By fully vectorizing your loop, you can lower the cost of an iteration from 190.00 to 60.75 cycles (3.13x speedup)

Since your execution units are vector units, only a fully vectorized loop can use their full power

Proposed solution(s):

Two propositions

- Try another compiler or update/tune your current one

- Remove inter-iterations dependences from your loop and make it unit-stride

By removing all these bottlenecks, you can lower the cost of an iteration from 190.00 to 143.00 cycles (1.33x speedup)

Source loop ending at line 734

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL 29

VIRTYUALANSTITYTE - HIGHPRODUCTIVITY SUPERCOMPUTING

MAQAO CQA: Code Quality Analyzer
GUI sample (2/2)

Code quality analysis

~ Source loop ending at line 682
~ MAQAO binary loop id: 238

The loop is defined in MPI/BT/x_solve.f:519-682
15% of peak computational performance is used (1.23 out of 8.00 FLOP per cycle (GFLOPS @ 1GHz))

l‘ Gain | Potential gain | Hints | Experts only

234 SSE or AVX instructions are processing arithmetic or math operations on double precision FP elements in scalar mode (one at a time)

Your loop is probably not vectorized (store and arithmetical SSE/AVX instructions are used in scalar mode and, for others, at least one is in
vector mode)

Only 289% of vector length is used

The binary loop is composed of 234 FP arithmetical operations

- 95 addition or subtraction

- 139: multiply

The binary loop is loading 1600 bytes (200 double precision FP elements)
The binary loop is storing 616 bytes (77 double precision FP elements)

Arithmetic intensity is 0.11 FP operations per loaded or stored byte

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL 30

VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Thank you for your attention!

Questions ?

UNIVERSITE DE
Universitat Stuttgart VERSAILLES

ST-QUENTIN-EN-YVELINES
THE
UNIVERSITY OF OREGON

i
§
|
®
|

Technische
RWRHER e
Miinchen

o . TECHNISCHE
#) JULICH |88 kzurence Liverrmore) SRSt O

FORSCHUNGSZENTRUM

