A S S S {— {—— .. ./12 T\ A TNSTITUTE — HIGH PRODUCTIVITY SUPERCOMPUTING

MAQAO
Hands-on exercises
LRZ Cluster

LProf: lightweight generic profiler
LProf/MPI: Lightweight MPI oriented profiler
CQA: code quality analyzer

UNIVERSITE DE
VERSAILLES
ST-GUENTIN-EN-YVELINES

(2 Technische
— R e
o Supercamputackin orSimulation Sciences Miinchen

= . TECHNISCHE
4) jiLicH 18 e oo (O e (0)

®
I

S,
i ,‘;‘;’
THE|
UNIVERSITY OF OREGON ’W

Setup

Copy handson material

> cp /home/hpc/a2c06/lu23bud/LRZ-VIHPSTW?21/tools/magao/MAQAO_HANDSON_LRZ.tar.xz $HOME

Untar the archive at the root of your HOME folder

> cd $HOME
> tar xf MAQAO_HANDSON_LRZ.tar.xz

> cd MAQAO_HANDSON
Copy MPI GUI

> scp -r MPI_GUI my_machine:

Add MAQAO path to your local path

> source ./scripts/env.sh

O > VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

MAQAO LProf
Hands-on exercises

Jean-Baptiste LE-RESTE

UNIVERSITE DE
VERSAILLES
ST-GUENTIN-EN-YVELINES

Barceiona (2 Technische
— German Resesrch School IW Universitat
‘Cartro Mackonal do Supercamputacién for Smulaton Sciences Miinchen

. : TECHNISCHE
,J JULICH Eg hg‘ﬁ"o‘ngfel_amw @ UNGERSITAT O

SR
R
THE|
UNIVERSITY OF OREGON

Setup

Go to the Handson folder

> cd $HOME/MAQAO_HANDSON

Locate script and modify it as needed

> vim scripts/lprof_bt-mz_ompi.5P.2T.sh

Launch your job

> sbatch scripts/lprof_bt-mz_ompi.5P.2T.sh

Visualize the results

> ./scripts/display.sh (then follow the instructions displayed in the terminal)

Using MAQAO LProf

A copy of the output is located in output examples/LProf

folder in case you experience a problem

Now follow live demo/comments

O > VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

MAQAO LProfMPI
Hands-on exercises

Jean-Baptiste LE-RESTE

UNIVERSITE DE
VERSAILLES
ST-GUENTIN-EN-YVELINES

Barceiona (2 Technische
— German Resesrch School IW Universitat
‘Cartro Mackonal do Supercamputacién for Smulaton Sciences Miinchen

. : TECHNISCHE
,J JULICH Eg hg‘ﬁ"o‘ngfel_amw @ UNGERSITAT O

SR
R
THE|
UNIVERSITY OF OREGON

Setup

Go to the Handson folder

> cd $HOME/MAQAO_HANDSON

Locate script and modify it as needed

> vim scripts/lprof-mpi_bt-mz_intel.5P.2T.sh

Launch your 7job

> sbatch scripts/bt-mz_ompi.5P.2T_Iprof_mpi.sh

Visualize the results

Copy/Paste the directory ./MPI_GUI and the file ./results/MPI_Profile.js

locally.
Then open the MPI_GUI/res/MPI.html| and load the MPI_Profile.js file.

e > VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

MAQAO / CQA
Hands-on exercises

Emmanuel OSERET

UNIVERSITE DE
VERSAILLES
ST-GUENTIN-EN-YVELINES

Barceiona (2 Technische
— German Resesrch School IW Universitat
‘Cartro Mackonal do Supercamputacién for Smulaton Sciences Miinchen

. : TECHNISCHE
,J JULICH Eg hg‘ﬁ"o‘ngfel_amw @ UNGERSITAT O

o
SR
THE
UNIVERSITY OF ORBGON

Setup for UV2 (Westmere)

Login uv2

> ssh uv2

Load a recent GCC compiler

> module load gcc/5

Switch to CQA handson folder

> cd SHOME/MAQAO HANDSON/CQA/matmul

Matrix Multiply code

(int n,

float aln][n],
float b[n] [n],
float c[n][n]) {

void kernelO

int i, 3, k;

14
J++) o
c[i][j] = 0.0f;
for (k=0; k<n; k++)
c[i][j] += ali]l[k] * b[k][]j]’

for (i=0; i<n;

for (3=0; 3<n;

“"Naive” dense matrix multiply
implementation in C

Compiling, running and analyzing kernelO in -03

> make OPTFLAGS=-03 KERNEL=0

> ./matmul 100 1000

Cycles per FMA: 3.27

> magao cqa matmul fct-loops=kernel0 [of=html]

NB: the usual way to use CQA consists in finding IDs of hot loops with the MAQAO
profiler and forwarding them to CQA (loop=17,42...).

To simplify this hands-on, we will bypass profiling and directly requesting CQA to
analyze all innermost loops in functions (max 2-3 loops/function for this hands-on).

T

CQA output for kernel0 (from the “gain” confidence level)

Vectorization

————————————— Vectorization (summing elements):
(..) By fully vectorizing your loop,

ou can lower the cost of an iteration|
y ADDSS

from 3.00 to 0.75 cycles (4.00x +
(scalar)

speedup) . (...)

- Remove inter-iterations dependences

from your loop and make it unit-

stride.

* Tf your arrays have 2 or more ADDPS + 4+ 4+ +

dimensions, check whether elements are (paCked)

accessed contiguously d, otherwise,

try to permute loops ;:igzainglzi\\r\\
C storage order is row-major: for (I .,] _
a[3]1[i] = b[3]1[i]; (slow, non stide 1)| = Accesses are not contiguous =>

=> for (i) for(j) a[il[j] = b[il[jl; let’'s permute k and j loops

=t stride 1) 7= No structures here...
* If your loop streams arrays of ///

structures (AoS), try to use (..) SoA

MIRTUAK INSTITYUTE < HIGHPRODUCTIVITY SUPERCOMPUTING

CQA output for kernel0 (from the “gain” confidence level)

Code quality analysis

~ Source loop ending at line 10 in ...NDSON_test/CQA/matmul/kernel.c

It is composed of the loop 2
~ MAQAO binary loop id: 2
The loop is defined in lThomelhpcla2c06/lu23voj/MAQAO_HANDSON_test/CQAI/matmul/kernel.c:8-10
In the binary file, the address of the loop is: 4009f0
8% of peak computational performance is used (0.67 out of 8.00 FLOP per cycle (GFLOPS @ 1GHz))

[Gain Potential gain | Hints | Experts only |

Your loop is not vectorized (all SSE/AVX instructions are used in scalar mode).
Only 25% of vector length is used.

Your loop is processing FP elements but is NOT OR PARTIALLY VECTORIZED and could benefit from full vectorization.
By fully vectorizing your loop, you can lower the cost of an iteration from 3.00 to 0.75 cycles (4.00x speedup).

Since your execution units are vector units, only a fully vectorized loop can use their full power.

Proposed solution(s):

Two propositions:

- Try another compiler or update/tune your current one:

- Remove inter-iterations dependences from your loop and make it unit-stride.

* If your arrays have 2 or more dimensions, check whether elements are accessed contiguously and, otherwise, try to permute loops accordingly:
C storage order is row-major: for(i) for() a[jl[i] = b[j][i]: (slow, non stride 1) == for(i) for(j) a[i]{j] = b{i][j]: (fast. stride 1)

* If your loop streams arrays of structures (A0S). try to use structures of arrays instead (SoA):

for(i) afi].x = b[i].x; (slow, non stride 1) == for(i) a.x[i] = b.x[i]; (fast, stride 1)

Detected a non usual bottleneck.
Proposed solution(s):

- Pass to your compiler a micro-architecture specialization option:
* use march=native.

Impact of loop permutation on data access

Logical mapping
j=0,1...

Efficient vectorization +
prefetching

Physical mapping

(C stor. order: row-major)

j<r1; j-l--l-)
0; i<n; 1i++)
]

for (i=0; i<n; i++)
for (3=0; j<n; j++)
ft(ali]l[J]);

Removing inter-iteration dependences and getting stride 1
by permuting loops on j and k

void kernell (int n,

float aln][n],

float b[n][n],

float c[n][n])
int 1, 3j, k;

for (1=0; i<n; 1i++) {
for (3=0; j<n; Jj++)
c(i][J] = 0.0f;

for (k=0; k<n; k++)
for (j=0; j<n; j++)

c[i][3] += alil[k] * blk][]]:

kernell: loop interchange

> make clean

> make OPTFLAGS=-03 KERNEL=1

> ./matmul 100 1000

Cycles per FMA: 1.03

> magao cqga matmul fct-loops=kernell --confidence-

levels=gain,potential, hint

CQA output for kernell (from “gain” and “hint” conf. levels)

Vectorization status

Your loop is fully vectorized..

Vector unaligned load/store instructions
- Use vector aligned instructions:

1) align your arrays on 32 bytes

boundaries,
2) inform your compiler that your rays

are vector aligned:
* use the _ builtin assume aligned
built-in

P

» Let’s switch to the next
proposal: vector aligned
instructions

Aligning vector accesses in driver + assuming them in kernel

int main (..) {

(...)
#if KERNEL==

puts (« driver.c: Using
posix memalign instead of malloc »);

posix memalign ((void **) &a, 32,
size_in bytes);

posix memalign ((void **) &b, 32,
size in bytes);

posix memalign ((void **) &c, 32,
size in bytes);
#else

a = malloc (size in bytes);

b = malloc (size in bytes);

c = malloc (size in bytes);
#endif

(...)

void kernel?2 (int n,

float al[n] [n],
float b[n] [n],
float c[n][n]) {

int i, §, k;

for (i=0; i<n; i++) |
float *ci =
__builtin assume_aligned
for (3J=0; j<n; J++)
ci[j] = 0.0f;
for (k=0; k<n; k++) {
float *bk =
__builtin assume_aligned
for (3=0; j<n; J++)
ci[j] += al[i][k]

(c[i], 32);

(b[k], 32);

* bk([]j];

kernel2: assuming aligned vector accesses

> make clean

> make OPTFLAGS=-03 KERNEL=2

> ./matmul 100 1000

Cannot call kernel? on matrices with size%8
aligned on 32B boundaries)

Aborted

> ./matmul 104 1000

Cycles per FMA: 0.92

0

(data non

Summary of optimizations and gains

3,55X

kernel0 O3: 3.27 cycles/FMA

Action: loop permutation

.17x speedup Result: vectorization

\ kernell O3: 1.03 cycles/FMA

speedup

Action: vector data access alignment
Result: reduced cost for loads/stores +

more efficient code (less instructions...)

kernel2 O3 march=native: 0.92 cycles/FMA

What if Haswell ?

CQA can cross-analyze to another micro-architecture

VIRTUAK INSTITYUTE ~HIGHPRODUCTIVITY SUPERCOMPUTING

Compiling and analyzing kernelO in -03

CQA output for kernel0 (from the “gain” confidence level)

Vectorization
(..) By fully vectorizing your loop,

you can lower the cost of an iteration

from 3.00 to 0.38 cycles (8.00x
speedup) . (...)

» 8X instead of 4x

kernell: loop interchange

> make clean
> make OPTFLAGS=-03 KERNEL=1
> magao cqga matmul uarch=HASWELL fct-loops=kernell

I

CQA output for kernell

Vectorization status

Your loop is fully vectorized_L__/> » Westmere: 100% Iength...
but on 50% vector length.

Vectorization
- Pass to your compiler a micro-
architecture specialization optionk\\

* yuse march=native

\ » Let’s add -march=haswell to
OPTFLAGS

- Use vector aligned instructions..

FMA

Presence of both ADD/SUB and MUL
operations.

- Pass to your compiler a micro-

architecture specialization option./

- Try to change order in which..

Impacts of architecture specialization: vectorization and FMA

= VVectorization
= SSE instructions (SIMD 128
bits) used on a processor
supporting AVX ones (SIMD 256
bits)
= => 50% efficiency loss

= FMA
= Fused Multiply-Add (A+BC)
= Intel architectures: supported
on MIC/KNC and Xeon starting
from Haswell

ADDPS .

xMM (SSE) i+ + +
128 bits

——

yMM (AVX) ot + + + + + +

A=A + BC

VMULPS ,<C>, $XMMO
VADDPS <A>, $XMMO,<A>

can be replaced with
something like:
VFMADD312PS ,<C>,<A>

Kernell + -march=native

> make clean
> make OPTFLAGS="-03 -march=haswell" KERNEL=1
> magao cqa matmul uarch=HASWELL fct-loops=kernell --confidence-

levels=gain, hint

CQA output for kernell (using “"gain” and “hint” conf. levels)

Vectorization status

Your loop is fully vectorized (..)

Vector unaligned load/store.. \\. Let’s switch to the next

proposal: vector aligned
instructions

- Use vector aligned instructions:
1) align your arrays on 32 bytes
boundaries,
2) inform your compiler that your
arrays are vector aligned:
* use the

__builtin assume aligned built-in

kernel2: assuming aligned vector accesses

> make clean
> make OPTFLAGS='"-03 -march=haswell" KERNEL=2

Setup for an Haswell node

CQA can be directly executed on a login node because it uses

static analysis

Login lxlogin5/6

> ssh <your login>@lxlogin5.lrz.de

Load MAQAO environment

> module load magao

Load a recent GCC compiler

> module load gcc/5

Switch to CQA handson folder

> cd SHOME/MAQAO HANDSON/CQA/matmul

Matrix Multiply code

(int n,

float aln][n],
float b[n] [n],
float c[n][n]) {

void kernelO

int i, 3, k;

14
J++) o
c[i][j] = 0.0f;
for (k=0; k<n; k++)
c[i][j] += ali]l[k] * b[k][]j]’

for (i=0; i<n;

for (3=0; 3<n;

“"Naive” dense matrix multiply
implementation in C

Compiling, running and analyzing kernelO in -03

> make OPTFLAGS=-03 KERNEL=0

> ./matmul 100 1000

Cycles per FMA: 2.48

> magao cqa matmul fct-loops=kernel0 [of=html]

NB: the usual way to use CQA consists in finding IDs of hot loops with the MAQAO
profiler and forwarding them to CQA (loop=17,42...).

To simplify this hands-on, we will bypass profiling and directly requesting CQA to
analyze all innermost loops in functions (max 2-3 loops/function for this hands-on).

T

CQA output for kernel0 (from the “gain” confidence level)

Vectorization

————————————— Vectorization (summing elements):
(..) By fully vectorizing your loop,

ou can lower the cost of an iteration|
y ADDSS

from 3.00 to 0.38 cycles (8.00x +
(scalar)

speedup) . (...)

- Remove inter-iterations dependences

from your loop and make it unit-

stride.

. ADDPS
If your arrays have 2 or more + + + + + + + +

dimensions, check whether elements are (paCked)

accessed contiguously d, otherwise,

try to permute loops ;:i;;ainglzi\\r\\
C storage order is row-major: for (I .,] _
a[3]1[i] = b[3]1[i]; (slow, non stide 1)| = Accesses are not contiguous =>

=> for (i) for(j) a[il[j] = b[il[jl; let’'s permute k and j loops

=t stride 1) 7= No structures here...
* If your loop streams arrays of ///

structures (AoS), try to use (..) SoA

MIRTUAK INSTITYUTE < HIGHPRODUCTIVITY SUPERCOMPUTING

CQA output for kernel0 (from the “gain” confidence level)

Code quality analysis

~ Source loop ending at line 10 in ...NDSON_test/CQA/matmul/kernel.c

It is composed of the loop 2
~ MAQAO binary loop id: 2
The loop is defined in Thomelhpcla2c06/lu23vojiMAQAO_HANDSON_test/CQA/matmul/kernel.c:9-10
In the binary file, the address of the loop is: 4009f0
89 of peak computational performance is used (0.67 out of 8.00 FLOP per cycle (GFLOPS @ 1GHz))

[Gain Potential gain | Hints | Experts only |

Your loop is not vectorized (all SSE/AVX instructions are used in scalar mode).
Only 25% of vector length is used.

Your loop is processing FP elements but is NOT OR PARTIALLY VECTORIZED and could benefit from full vectorization.
By fully vectorizing your loop. you can lower the cost of an iteration from 3.00 to 0.75 cycles (4.00x speedup).

Since your execution units are vector units, only a fully vectorized loop can use their full power.

Proposed solution(s):

Two propositions:

- Try another compiler or update/tune your current one:

- Remove inter-iterations dependences from your loop and make it unit-stride.

* If your arrays have 2 or more dimensions, check whether elements are accessed contiguously and. otherwise, try to permute loops accordingly:
C storage order is row-major: for(i) for(j) a[j][i] = b[][i]; (slow, non stride 1) == for(i) for(j) a[i][j] = b[][]; (fast, stride 1)

* If your loop streams arrays of structures (AoS), try to use structures of arrays instead (SoA):

for(i) afi].x = b[i]-x: (slow. non stride 1) == for(i) a.x[i] = b.x[i]; (fast, stride 1)

Detected a non usual bottleneck.
Proposed solution(s):

- Pass to your compiler a micro-architecture specialization option:
* use march=native.

Impact of loop permutation on data access

Logical mapping
j=0,1...

Efficient vectorization +
prefetching

Physical mapping

(C stor. order: row-major)

j<r1; j-l--l-)
0; i<n; 1i++)
]

for (i=0; i<n; i++)
for (3=0; j<n; j++)
ft(ali]l[J]);

Removing inter-iteration dependences and getting stride 1
by permuting loops on j and k

void kernell (int n,

float aln][n],

float b[n][n],

float c[n][n])
int 1, 3j, k;

for (1=0; i<n; 1i++) {
for (3=0; j<n; Jj++)
c(i][J] = 0.0f;

for (k=0; k<n; k++)
for (j=0; j<n; j++)

c[i][3] += alil[k] * blk][]]:

Kernell: loop interchange

> make clean

> make OPTFLAGS=-03 KERNEL=1

> ./matmul 100 1000

Cycles per FMA: 0.65

> magao cqga matmul fct-loops=kernell

VI

CQA output for kernell

Vectorization status

Your loop is fully vectorized (..)

but on 50% vector length. \\\\\\\\
» Let’s add -march=native to
\\\s

Vectorization OPTFLAGS

_____________ /’

- Pass to your compiler a micro-
architecture specialization option:
* use march=native

- Use vector aligned instructions..

FMA

Presence of both ADD/SUB and MUL
operations.

- Pass to your compiler a micro-

architecture specialization option..

- Try to change order in which..

Impacts of architecture specialization: vectorization and FMA

= VVectorization
= SSE instructions (SIMD 128
bits) used on a processor
supporting AVX ones (SIMD 256
bits)
= => 50% efficiency loss

= FMA
= Fused Multiply-Add (A+BC)
= Intel architectures: supported
on MIC/KNC and Xeon starting
from Haswell (hornet)

ADDPS .

xMM (SSE) i+ + +
128 bits

——

yMM (AVX) ot + + + + + +

A=A + BC

VMULPS ,<C>, $XMMO
VADDPS <A>, $XMMO,<A>

can be replaced with
something like:
VFMADD312PS ,<C>,<A>

Kernell + -march=native

> make clean

> make OPTFLAGS="-03 -march=native" KERNEL=1

> ./matmul 100 1000

Cycles per FMA: 0.47

> magao cqa matmul fct-loops=kernell --confidence-
levels=gain, hint

CQA output for kernell (using “"gain” and “hint” conf. levels)

Vectorization status

Your loop is fully vectorized (..)

Vector unaligned load/store.. \\. Let’s switch to the next

proposal: vector aligned
instructions

- Use vector aligned instructions:
1) align your arrays on 32 bytes
boundaries,
2) inform your compiler that your
arrays are vector aligned:
* use the

__builtin assume aligned built-in

kernel2: assuming aligned vector accesses

> make clean

> make OPTFLAGS="-03 -march=native" KERNEL=2
> ./matmul 100 1000

Cannot call kernel? on matrices with size%8
aligned on 32B boundaries)

Aborted

> ./matmul 104 1000

Cycles per FMA: 0.35

0

(data non

Summary of optimizations and gains

7.08X

kernel0 O3: 2.48 cycles/FMA

Action: loop permutation

.82x speedup Result: vectorization

\ kernell O3: 0.65 cycles/FMA

Action: architecture specialization
speedup Result: vectorization widened to 256b +
FMA generation

kernell O3 march=native: 0.47 cycles/FMA

Action: vector data access alignment
Result: reduced cost for loads/stores +
more efficient code (less instructions...)

kernel2 O3 march=native: 0.35 cycles/FMA

Hydro example

Switch to the other CQA handson folder

> cd SHOME/MAQAO HANDSON/CQA/hydro

Hydro code

int build index (int i, int j, int grid size)
{
return (i1 + (grid size + 2) * J);
}
void linearSolver(O (...) {
int 1, j, k;
for (k=0; k<20; k++)
for (i=1; i<=grid size; i++)
EOEN(T=1; J<=grid size; J++)
x[build index(i, Jj, grid size)]
(a * (x[build index(i-1, j, grid size
x[build index(i+l, J, grid size
x[build index (i, j-1, grid size
x[build index (i, j+1, grid size
) + x0[build index(i, Jj, grid siz

Ry C;

)]
)]
)]
)]
e)

]

I
I
I

Iterative linear system solver
using the Gauss-Siedel
relaxation technique.

« Stencil » code

i+1,]

v

Compiling, running and analyzing kernelO (icc -O3 -xHost)

> make KERNEL=0

> ./hydro 250 10 # 1lst param: grid size and 2nd param: repet nb

Cycles per element for solvers: 2064.14

> maqao lprof xp=sx -- ./hydro 250 10

> magao lprof xp=sx -dl | head

FHAH R

Loop ID | Function Name | Source Info | Level | Time (%)
RIS SR EE SR AR LSS LSS EEEEEEEE S LEIELEEEEEE SIS LELEEEEEE SIS ELEE L
142 | project | 103,105@kernel.c | Innermost | 28.29

54 | c¢_densitySolver | 103,105@kernel.c | Innermost | 23.03

94 | c_velocitySolver | 103,105@kernel.c | Innermost | 21.71

87 | c_velocitySolver | 103,105@kernel.c | Innermost | 19.08

140 | project | 371,374Q@Rkernel.c | Innermost | 1.32

> magao cqga hydro loop=142

In this application the kernel routine, linearSolver, were inlined in caller functions.
Moreover, there is here direct mapping between source and binary loop.
Consequently the 4 highlighted loops are identical and only one need analysis.

CQA output for kernelO (from the “gain” confidence level)

Bottlenecks

The divide/square root unit is a
bottleneck.

By removing all these bottlenecks, you
can lower the cost of an iteration
from 7.00 to 5.00 cycles (1.40x
speedup) .

Try to reduce the number of division
or square root instructions.

If denominator is constant over
iterations, use reciprocal (replace
x/y with x*(1/y)). Check precision
impact. This will be done by your
compiler with no-prec-div or Ofast.

Cost of a division (about 10-50
cycles) is much higher than for a
addition or a multiplication (typically 1
cycle per instruction), especially on
double precision elements and on
older processors

Removing (hoisting) division

int build index

{

return

}

(int 1, int J, int grid size)

(1 + (grid size + 2) * J);

void linearSolver(
int i, j, k;
const float inv c = 1.0f / c;

for (k=0; k<20; k++)
for (i=1; i<=grid size;
for (j=1; J<=grid sizé; J++)
build index(i,7J, grid size)]
- (i-1, Jj, grid size
japdex (1+1, j, grid size

% —
)]
)]
index (i, J-1, grid size)]
)]
e)

(a * (+
+
+

XX X X —

fld index (i, j+1, grid size

) + x0[build index (i, j, grid size)]

7
(«ou) | /

Dividing by c is equivalent to
multiplying by (1/c). Since c is
constant in the loop, the divide-
by-c operation was hoisted out
of the loop and replaced by a
multiply inside it

Remark : in some cases
applying this optimization can
change numerical results (due
to rounding). That is why it is
not applied by default by
compilers.

On this example, no difference
when comparing 6 first digits of
the decimal part

kernell: division removal

> make clean

> make KERNEL=1

> ./hydro 250 10

Cycles per element for solvers: 1824.16

> maqao lprof xp=sx2 -- ./hydro 250 50

> maqao lprof xp=sx2 -dl | head

(output similar to KERNEL=0, with same loop Ids)
> magao cga loop=142

CQA output for kernell

Composition and unrolling

It is composed of the loop 142

and is not unrolled or unrolled with/
no peel/tail loop.

The analysis will be displayed for
the requested loops: 142

Unroll opportunity

Loop 1s potentially data access
bound.

Unroll your loop if trip count is
significantly higher than target
unroll factor and if some data
references are common to consecutive

iterations..

Unrolling is generally a good deal:
fast to apply and often provides
gain. Let's try to reuse data
references through unrolling

Memory references reuse : 4x4 unroll footprint on loads

LINEAR_SOLVER(i+0,j+0)

Memory references reuse : 4x4 unroll footprint on loads

LINEAR_SOLVER(i+0,j+0)
LINEAR_SOLVER(i+1,j+0)

Memory references reuse : 4x4 unroll footprint on loads

LINEAR_SOLVER(i+0,j+0)
LINEAR_SOLVER(i+1,j+0)
LINEAR_SOLVER(i+2,j+0)

1 reuse

Memory references reuse : 4x4 unroll footprint on loads

LINEAR_SOLVER(i+0,j+0)
LINEAR_SOLVER(i+1,j+0)
LINEAR_SOLVER(i+2,j+0)
LINEAR_SOLVER(i+3,j+0)

—

2 reuses

Memory references reuse : 4x4 unroll footprint on loads

LINEAR_SOLVER(i+0,j+0)
LINEAR_SOLVER(i+1,j+0)
LINEAR_SOLVER(i+2,j+0)
LINEAR_SOLVER(i+3,j+0)

LINEAR_SOLVER(i+0,j+1)

4 reuses

Memory references reuse : 4x4 unroll footprint on loads

LINEAR_SOLVER(i+0,j+0)
LINEAR_SOLVER(i+1,j+0)
LINEAR_SOLVER(i+2,j+0)
LINEAR_SOLVER(i+3,j+0)

LINEAR_SOLVER(i+0,j+1)
LINEAR_SOLVER(i+1,j+1)

[reuses

Memory references reuse : 4x4 unroll footprint on loads

LINEAR_SOLVER(i+0,j+0)
LINEAR_SOLVER(i+1,j+0)
LINEAR_SOLVER(i+2,j+0)
LINEAR_SOLVER(i+3,j+0)

LINEAR_SOLVER(i+0,j+1)
LINEAR_SOLVER(i+1,j+1)
LINEAR_SOLVER(i+2,j+1)

10 reuses

Memory references reuse : 4x4 unroll footprint on loads

LINEAR_SOLVER(i+0,j+0)
LINEAR_SOLVER(i+1,j+0)
LINEAR_SOLVER(i+2,j+0)
LINEAR_SOLVER(i+3,j+0)

LINEAR_SOLVER(i+0,j+1)
LINEAR_SOLVER(i+1,j+1)
LINEAR_SOLVER(i+2,j+1)
LINEAR_SOLVER(i+3,j+1)

12 reuses

Memory references reuse : 4x4 unroll footprint on loads

LINEAR_SOLVER(i+0-3,j+0)

LINEAR_SOLVER(i+0-3,j+1)

112 2 1 LINEAR_SOLVER(i+0-3,j+2)

LINEAR_SOLVER(i+0-3,j+3)

32 reuses

Impacts of memory reuse

« For the x array, instead of 4x4x4 = 64 loads,
now only 32 (32 loads avoided by reuse)

« For the x0 array no reuse possible : 16 loads

 Total loads : 48 instead of 80

4x4 unroll

#define LINEARSOLVER(...) x[build index (i, j, grid size)]

void linearSolver2 (...) {

()

for (k=0; k<20; k++)
for (i=1l; i<=grid size-3; i+=4)
for (j=1; j<=grid_size-3; j+=4) {

LINEARSOLVER (.., 1+0, 3+0);
LINEARSOLVER (.., i+0, j+1);
LINEARSOLVER (.., i+0, j+2);
LINEARSOLVER (.., i+0, j+3);
LINEARSOLVER (.., i+l, j+0);
LINEARSOLVER (.., i+l, j+1);
LINEARSOLVER (.., i+l, j+2);
LINEARSOLVER (.., i+l, j+3);
LINEARSOLVER (.., i+2, j+0);
LINEARSOLVER (.., i+2, j+1);
LINEARSOLVER (.., i+2, j+2);
LINEARSOLVER (.., i+2, j+3);
LINEARSOLVER (.., i+3, j+0);
LINEARSOLVER (.., i+3, j+1);
LINEARSOLVER (.., i+3, j+2);
LINEARSOLVER (.., i+3, j+3);

grid_size must now be multiple
of 4. Or loop control must be
adapted (much less readable)
to handle leftover iterations

Kernel2

> make clean

> make KERNEL=2

> ./hydro 250 10

Cycles per element for solvers: 735.97

> maqgao lprof xp=sx3 -- ./hydro 250 50

> maqao lprof xp=sx3 -dl | head

EEEIEE S A AR ARSI ISR ISR L L

Loop ID | Function Name | Source Info | Level | Time (%)
EEEEEL AL A S SIS EE SRS LSS EEEEELELE LSS SIS EE SIS EEEISLE LSS LIS S L L
143 | linearSolver2 | 14,167@kernel.c | Innermost | 57.14

55 | c_densitySolver | 14,167@kernel.c | Innermost | 19.64

76 | c _velocitySolver | 14,283@kernel.c | Innermost | 3.57

> magao cga hydro loop=143

Remark: less calls were unrolled since linearSolver is now much more bigger

CQA output for kernel2

Matching between your loop

The binary loop is composed of 96 FP
arithmetical operations:

- 64: addition or subtraction

- 32: multiply
The binary loop is loading 272 bytes
(68 single precision FP elements) . —

The binary loop 1s storing 64 bytes
(16 single precision FP elements).

4x4 Unrolling were applied

P

——> Expected 48... But still better
than 80

Summary of optimizations and gains

kernelO: 2064 cycles/grid_elem

1.13x speedup Qgg&r;

A 4

div hoisting
mul instead of div in loop body

Kernell: 1824 cycles/grid_elem

2.80x speedup

A 4

Action:
Result:

4x4 unroll
big loop body with mem reuse

Kernel2: 735 cycles/grid_elem

