
VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Cache Performance Analysis

with Callgrind and KCachegrind

21th VI-HPS Tuning Workshop

April 2016, Garching

Josef Weidendorfer

Computer Architecture I-10, Department of Informatics
Technische Universität München, Germany

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Focus: Cache Simulation using a Simple Machine Model

Why simulation?

 reproducability

 no influence of tool on results

 allows to collect information not possible with real hardware

 no special permissions needed / can not crash machine

Focus only on cache / a simple model really enough?

 no: if real measurement shows cache issues, use simulation for details

 if bad cache exploitation dominates: you can ignore other bottlenecks

 benefits of simple machine models:
 easy to understand, still captures most problems, faster simulation…

WEIDENDORFER: CALLGRIND / KCACHEGRIND 2 / 30

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Outline

 Background

 Callgrind and {Q,K}Cachegrind
 Measurement

 Visualization

 Hands-On
 Example: Matrix Multiplication

WEIDENDORFER: CALLGRIND / KCACHEGRIND 3 / 30

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Single Node Performance: Cache Exploitation is Important

 „Memory Wall“

 Worst-case (local) access latencies on modern x86 processors ~ 200 cycles

 AVX2 can do 200 * 4 (vector) * 4 (2 FMA units) = 1600 DP-FLOPs

WEIDENDORFER: CALLGRIND / KCACHEGRIND

10

100

1000

10000

1991 2000 2010

CPU Peak Performance (clock & cores)
+ 40% / year

Main Memory Performance
+7% / year

Growing
Gap

4 / 30

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Single Node Performance: Cache Exploitation is Important

This will be true also in the future

 latency of main memory access does not improve

 bandwidth to main memory increases slower than compute power
 multicore, accelerators

 power consumption [Keynote Dongarra, PPAM 2011]

 DP FMADD: 100 pJ (2011) 10 pJ (expected 2018)

 DP Read DRAM: 4800 pJ (2011) 1920 pJ (expected 2018)

WEIDENDORFER: CALLGRIND / KCACHEGRIND 5 / 30

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Caches do their Job transparently...

Caches work because programs expose access locality
 temporal (hold recently used data) / spatial (work on blocks of memory)

The “Principle of Locality” is not enough... “Cache optimization”

Reasons for Performance Loss for SPEC2000
[Beyls/Hollander, ICCS 2004]

WEIDENDORFER: CALLGRIND / KCACHEGRIND 6 / 30

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

How to do Cache Optimization on Parallel Code

 Analyze sequential code phases
 optimization of sequential phases should always improve runtime

 no need to strip down to sequential program

 Influences of threads/tasks on cache exploitation
 on multi-core: all cores share bandwidth to main memory

 use of shared caches:

cores compete for space vs. cores prefetch for each other

 slowdown because of “false sharing”
 not easy to measure with hardware performance counters

 research topic (parallel simulation with acceptable slowdown)

WEIDENDORFER: CALLGRIND / KCACHEGRIND 7 / 30

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Go Sequential (just for a few minutes)...

 sequential performance bottlenecks
 logical errors (unneeded/redundant function calls)

 bad algorithm (high complexity or huge “constant factor”)

 bad exploitation of available resources (caches, vector units, pipelining,...)

 how to improve sequential performance
 use tuned libraries where available

 check for above obstacles by use of analysis tools

WEIDENDORFER: CALLGRIND / KCACHEGRIND 8 / 30

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Sequential Performance Analysis Tools

 count occurrences of events
 resource exploitation is related to events

 SW-related: function call, OS scheduling, ...

 HW-related: FLOP executed, memory access, cache miss, time spent for an activity (like

running an instruction)

 relate events to source code
 find code regions where most time is spent

 check for improvement after changes

 „Profile data“: histogram of events happening at given code positions

 inclusive vs. exclusive cost

WEIDENDORFER: CALLGRIND / KCACHEGRIND 9 / 30

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

How to measure Events

 target real hardware
 needs sensors for interesting events

 for low overhead: hardware support for event counting

 may be difficult to understand because of unknown micro-architecture, overlapping and

asynchronous execution

 target machine model
 events generated by a simulation of a (simplified) hardware model

 no measurement overhead: allows for sophisticated online processing

 simple models make it easier to understand the problem and to think about solution

 both methods (real vs. model) have advantages & disadvantages,

but reality matters in the end

WEIDENDORFER: CALLGRIND / KCACHEGRIND 10 / 30

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Back to the Memory Wall: Improvements

Access latency
 exploit fast caches: improve locality of data

 allow hardware to prefetch data (use access patterns which are easy to predict)

 memory controller on chip (standard today)

Low bandwidth
 share data in caches among cores

 keep working set in cache (temporal locality)

 use good data layout (spatial locality)

 if memory accesses are unavoidable: duplicate data in NUMA nodes

WEIDENDORFER: CALLGRIND / KCACHEGRIND 12 / 30

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Cache Optimization (1): Reduce Number of Accesses

 use large data types (may be done by compiler)
 vectors instead of bytes

 1 cache line = 1 access: use full cache lines
 alignment: crossing cache line gives two accesses

 (redundant) calculation instead of memory access

 avoid unneeded writes
 check if a variable already has given value before writing

 writes result in higher bandwidth needs

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Cache Optimization (2): Reorder Accesses

 if possible, do sequential accesses at inner level
 exploit full cache line

 trigger hardware prefetcher

(small sequential accesses: reduce accuracy of prefetcher)

 blocking: reuse data as much as possible
 instead of multiple large sweeps over large buffer,

split up into multiple small sweeps over buffer parts

 useful in 1d, 2d, 3d, …

 recursive (multi-level) blocking: “cache-oblivious”:

best use of multiple cache levels at once!

 multi-core: consecutive iterations on cores with shared cache

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Cache Optimization (3): Improve Data Layout

 group data with same access frequency and access type (read vs. write)
 use every byte of a fetched cache line (unused data is wasted space + bandwidth)

 AoS-to-SoA

 reorder data in memory according to traversal order in program

 avoid power-of-2 strides: may produce conflict misses
 by padding

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Callgrind

Cache Simulation with Call-Graph Capturing

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Callgrind: Basic Features

Based on Valgrind

 runtime instrumentation infrastructure (no recompilation needed)

 dynamic binary translation of user-level processes

 Linux/AIX/OS X on x86, x86-64, PPC32/64, ARM, MIPS

 Open source (GPL), www.valgrind.org

 includes correctness checking & profiling tools
 “memcheck”: accessibility/validity of memory accesses

 “helgrind” / ”drd”: race detection on multithreaded code

 “cachegrind”/”callgrind”: cache & branch prediction simulation

 “massif”: memory profiling

WEIDENDORFER: CALLGRIND / KCACHEGRIND 17 / 30

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Callgrind: Basic Features

Part of Valgrind (since 3.1)

 Open Source, GPL

 extension of cachegrind
 dynamic call graph

 simulator extensions

 more control

 measurement
 profiling via machine simulation (simple cache model)

 instruments memory accesses to feed cache simulator

 hook into call/return instructions, thread switches, signal handlers

 instruments (conditional) jumps for CFG inside of functions

 presentation of results: callgrind_annotate / {Q,K}Cachegrind

WEIDENDORFER: CALLGRIND / KCACHEGRIND

Profile

Binary

2-level $ Simulator

Memory
Accesses

Event
Counters

Debug Info

18 / 30

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Pro & Contra (i.e. Simulation vs. Real Measurement)

Usage of Valgrind

 driven only by user-level instructions of one process

 slowdown (call-graph tracing: 15-20x, + cache simulation: 40-60x)
 “fast-forward mode”: 2-3x

 serializes threads

 detailed observation

 does not need root access / can not crash machine

Cache model

 “not reality”: synchronous 2-level inclusive cache hierarchy

(size/associativity taken from real machine, always including LLC)

 reproducible results independent on real machine load

 derived optimizations applicable for most architectures

WEIDENDORFER: CALLGRIND / KCACHEGRIND 19 / 30

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Callgrinds Cache Model vs. SuperMUC / UV2

 parameters: size, line size, associativity

 L1 / LLC, inclusive, LRU, shared among threads

 write back vs. write through does not matter for hit/miss counts

 optional stream prefetcher

SuperMUC node: 2x Intel E5-2680 (SandyBridge, 8 core, 20 MB L3)

SuperMUC-2 node: 2x Intel E5-2697v3 (Haswell, 14 core, 2x18 MB L3)

UV2: 96x Intel Westmere-EX (10 core, 30 MB L3)
 private L1 (D/I a 32kB) + L2 (256 kB) per core

 L1/L2 strictly inclusive to L3, L3 shared (Haswell: half of cores see shared half of L3)

Callgrind only simulates L1 and L3 (= LLC) LLC hit count higher

WEIDENDORFER: CALLGRIND / KCACHEGRIND 20 / 30

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Callgrind: Advanced Features

 interactive control (backtrace, dump command, …)

 “fast forward”-mode to quickly get at interesting code phases

 application control via “client requests” (start/stop, dump)

Optional

 best-case simulation of simple stream prefetcher

 byte-wise usage of cache lines before eviction

 branch prediction

 dynamic context in function names (call chain/recursion depth)

 wallclock time spent in system calls (useful for MPI)

WEIDENDORFER: CALLGRIND / KCACHEGRIND 21 / 30

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Callgrind: Usage

 valgrind –tool=callgrind [callgrind options] yourprogram args

 cache simulator: --cache-sim=yes

 branch prediction simulation: --branch-sim=yes

 enable for machine code annotation: --dump-instr=yes

 start in “fast-forward”: --instr-atstart=yes
 switch on event collection: callgrind_control –i on

 spontaneous dump: callgrind_control –d [dump identification]

 current backtrace of threads (interactive): callgrind_control –b

 separate output per thread: --separate-threads=yes

 jump-profiling in functions (CFG): --collect-jumps=yes

 time in system calls: --collect-systime=yes

 byte-wise usage within cache lines: --cacheuse=yes

WEIDENDORFER: CALLGRIND / KCACHEGRIND 22 / 30

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

{Q,K}Cachegrind

Graphical Browser for Profile Visualization

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Features

Open source, GPL, kcachegrind.github.io

(includes pure Qt version, able to run on Linux / OS-X / Windows)

Visualization of

 call relationship of functions (callers, callees, call graph)

 exclusive/Inclusive cost metrics of functions
 grouping according to ELF object / source file / C++ class

 source/assembly annotation: costs + CFG

 arbitrary events counts + specification of derived events

Callgrind support: file format, events of cache model

WEIDENDORFER: CALLGRIND / KCACHEGRIND 24 / 30

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Usage

qcachegrind callgrind.out.<pid>

 left: “Dockables”
 list of function groups

groups according to
 library (ELF object)

 source

 class (C++)

 list of functions with
 inclusive

 exclusive costs

 right: visualization panes

WEIDENDORFER: CALLGRIND / KCACHEGRIND 25 / 30

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

• List of event types

• List of callers/callees

• Treemap visualization

• Call Graph

• Source annotation

•Assemly annotation

Visualization panes for selected function

WEIDENDORFER: CALLGRIND / KCACHEGRIND 26 / 30

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Hands-on

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Getting started

 Try it out
 on ice1-login/interactive job on uv2 ...

 module load valgrind/3.10

 cp -r /lrz/sys/courses/VIHPS21TW/kcg ~

 GUI (ssh -X ice1-login): ~/kcg/qcachegrind

 Test: What happens in „/bin/ls“ ?
 run valgrind --tool=callgrind ls /usr/bin

 run ~/kcg/qcachegrind

 function with highest instruction execution count? Purpose?

 where is the main function?

 run with cache simulation: --cache-sim=yes

28 / 30WEIDENDORFER: CALLGRIND / KCACHEGRIND

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Detailed analysis of matrix multiplication

 Kernel for C = A * B
 Side length N N3 multiplications + N3 additions

 3 nested loops (i,j,k): Best index order?

 Optimization for large matrixes: Blocking

29 / 30WEIDENDORFER: CALLGRIND / KCACHEGRIND

BC A= *

i j

k

i

k j

c[k][i] = a[k][j] * b[j][i]

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Detailed analysis of matrix multiplication

 To try out...
 cd ~/kcg; make

 timing of orderings (e.g. size 512): ./mm 512

 cache behavior for small matrix (fits into cache):

valgrind --tool=callgrind --cache-sim=yes ./mm 300

 How good is L1/L2 exploitation of the MM versions?

 Large matrix (800, pregenerated callgrind.out).

How does blocking help?

WEIDENDORFER: CALLGRIND / KCACHEGRIND 30 / 30

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

How to run with MPI

 export OMP_NUM_THREADS=4

 module load valgrind/3.10

 srun -n 4 -t 4 valgrind --tool=callgrind --cache-sim=yes \

--separate-threads=yes ./bt-mz_B.4

 reduce iterations in BT_MZ
 sys/setparams.c, write_bt_info, set niter = 5

 load all profile dumps at once:
 run in new directory, “qcachegrind callgrind.out”

WEIDENDORFER: CALLGRIND / KCACHEGRIND 31 / 30

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

WEIDENDORFER: CALLGRIND / KCACHEGRIND

Q A&
?

?

Josef Weidendorfer
TUM, Informatics I-10
weidendo@in.tum.de

32 / 30

