
VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Cache Performance Analysis

with Callgrind and KCachegrind

21th VI-HPS Tuning Workshop

April 2016, Garching

Josef Weidendorfer

Computer Architecture I-10, Department of Informatics
Technische Universität München, Germany

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Focus: Cache Simulation using a Simple Machine Model

Why simulation?

 reproducability

 no influence of tool on results

 allows to collect information not possible with real hardware

 no special permissions needed / can not crash machine

Focus only on cache / a simple model really enough?

 no: if real measurement shows cache issues, use simulation for details

 if bad cache exploitation dominates: you can ignore other bottlenecks

 benefits of simple machine models:
 easy to understand, still captures most problems, faster simulation…

WEIDENDORFER: CALLGRIND / KCACHEGRIND 2 / 30

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Outline

 Background

 Callgrind and {Q,K}Cachegrind
 Measurement

 Visualization

 Hands-On
 Example: Matrix Multiplication

WEIDENDORFER: CALLGRIND / KCACHEGRIND 3 / 30

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Single Node Performance: Cache Exploitation is Important

 „Memory Wall“

 Worst-case (local) access latencies on modern x86 processors ~ 200 cycles

 AVX2 can do 200 * 4 (vector) * 4 (2 FMA units) = 1600 DP-FLOPs

WEIDENDORFER: CALLGRIND / KCACHEGRIND

10

100

1000

10000

1991 2000 2010

CPU Peak Performance (clock & cores)
+ 40% / year

Main Memory Performance
+7% / year

Growing
Gap

4 / 30

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Single Node Performance: Cache Exploitation is Important

This will be true also in the future

 latency of main memory access does not improve

 bandwidth to main memory increases slower than compute power
 multicore, accelerators

 power consumption [Keynote Dongarra, PPAM 2011]

 DP FMADD: 100 pJ (2011)  10 pJ (expected 2018)

 DP Read DRAM: 4800 pJ (2011)  1920 pJ (expected 2018)

WEIDENDORFER: CALLGRIND / KCACHEGRIND 5 / 30

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Caches do their Job transparently...

Caches work because programs expose access locality
 temporal (hold recently used data) / spatial (work on blocks of memory)

The “Principle of Locality” is not enough...  “Cache optimization”

Reasons for Performance Loss for SPEC2000
[Beyls/Hollander, ICCS 2004]

WEIDENDORFER: CALLGRIND / KCACHEGRIND 6 / 30

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

How to do Cache Optimization on Parallel Code

 Analyze sequential code phases
 optimization of sequential phases should always improve runtime

 no need to strip down to sequential program

 Influences of threads/tasks on cache exploitation
 on multi-core: all cores share bandwidth to main memory

 use of shared caches:

cores compete for space vs. cores prefetch for each other

 slowdown because of “false sharing”
 not easy to measure with hardware performance counters

 research topic (parallel simulation with acceptable slowdown)

WEIDENDORFER: CALLGRIND / KCACHEGRIND 7 / 30

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Go Sequential (just for a few minutes)...

 sequential performance bottlenecks
 logical errors (unneeded/redundant function calls)

 bad algorithm (high complexity or huge “constant factor”)

 bad exploitation of available resources (caches, vector units, pipelining,...)

 how to improve sequential performance
 use tuned libraries where available

 check for above obstacles  by use of analysis tools

WEIDENDORFER: CALLGRIND / KCACHEGRIND 8 / 30

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Sequential Performance Analysis Tools

 count occurrences of events
 resource exploitation is related to events

 SW-related: function call, OS scheduling, ...

 HW-related: FLOP executed, memory access, cache miss, time spent for an activity (like

running an instruction)

 relate events to source code
 find code regions where most time is spent

 check for improvement after changes

 „Profile data“: histogram of events happening at given code positions

 inclusive vs. exclusive cost

WEIDENDORFER: CALLGRIND / KCACHEGRIND 9 / 30

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

How to measure Events

 target real hardware
 needs sensors for interesting events

 for low overhead: hardware support for event counting

 may be difficult to understand because of unknown micro-architecture, overlapping and

asynchronous execution

 target machine model
 events generated by a simulation of a (simplified) hardware model

 no measurement overhead: allows for sophisticated online processing

 simple models make it easier to understand the problem and to think about solution

 both methods (real vs. model) have advantages & disadvantages,

but reality matters in the end

WEIDENDORFER: CALLGRIND / KCACHEGRIND 10 / 30

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Back to the Memory Wall: Improvements

Access latency
 exploit fast caches: improve locality of data

 allow hardware to prefetch data (use access patterns which are easy to predict)

 memory controller on chip (standard today)

Low bandwidth
 share data in caches among cores

 keep working set in cache (temporal locality)

 use good data layout (spatial locality)

 if memory accesses are unavoidable: duplicate data in NUMA nodes

WEIDENDORFER: CALLGRIND / KCACHEGRIND 12 / 30

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Cache Optimization (1): Reduce Number of Accesses

 use large data types (may be done by compiler)
 vectors instead of bytes

 1 cache line = 1 access: use full cache lines
 alignment: crossing cache line gives two accesses

 (redundant) calculation instead of memory access

 avoid unneeded writes
 check if a variable already has given value before writing

 writes result in higher bandwidth needs

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Cache Optimization (2): Reorder Accesses

 if possible, do sequential accesses at inner level
 exploit full cache line

 trigger hardware prefetcher

(small sequential accesses: reduce accuracy of prefetcher)

 blocking: reuse data as much as possible
 instead of multiple large sweeps over large buffer,

split up into multiple small sweeps over buffer parts

 useful in 1d, 2d, 3d, …

 recursive (multi-level) blocking: “cache-oblivious”:

best use of multiple cache levels at once!

 multi-core: consecutive iterations on cores with shared cache

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Cache Optimization (3): Improve Data Layout

 group data with same access frequency and access type (read vs. write)
 use every byte of a fetched cache line (unused data is wasted space + bandwidth)

 AoS-to-SoA

 reorder data in memory according to traversal order in program

 avoid power-of-2 strides: may produce conflict misses
 by padding

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Callgrind

Cache Simulation with Call-Graph Capturing

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Callgrind: Basic Features

Based on Valgrind

 runtime instrumentation infrastructure (no recompilation needed)

 dynamic binary translation of user-level processes

 Linux/AIX/OS X on x86, x86-64, PPC32/64, ARM, MIPS

 Open source (GPL), www.valgrind.org

 includes correctness checking & profiling tools
 “memcheck”: accessibility/validity of memory accesses

 “helgrind” / ”drd”: race detection on multithreaded code

 “cachegrind”/”callgrind”: cache & branch prediction simulation

 “massif”: memory profiling

WEIDENDORFER: CALLGRIND / KCACHEGRIND 17 / 30

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Callgrind: Basic Features

Part of Valgrind (since 3.1)

 Open Source, GPL

 extension of cachegrind
 dynamic call graph

 simulator extensions

 more control

 measurement
 profiling via machine simulation (simple cache model)

 instruments memory accesses to feed cache simulator

 hook into call/return instructions, thread switches, signal handlers

 instruments (conditional) jumps for CFG inside of functions

 presentation of results: callgrind_annotate / {Q,K}Cachegrind

WEIDENDORFER: CALLGRIND / KCACHEGRIND

Profile

Binary

2-level $ Simulator

Memory
Accesses

Event
Counters

Debug Info

18 / 30

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Pro & Contra (i.e. Simulation vs. Real Measurement)

Usage of Valgrind

 driven only by user-level instructions of one process

 slowdown (call-graph tracing: 15-20x, + cache simulation: 40-60x)
 “fast-forward mode”: 2-3x

 serializes threads

 detailed observation

 does not need root access / can not crash machine

Cache model

 “not reality”: synchronous 2-level inclusive cache hierarchy

(size/associativity taken from real machine, always including LLC)

 reproducible results independent on real machine load

 derived optimizations applicable for most architectures

WEIDENDORFER: CALLGRIND / KCACHEGRIND 19 / 30

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Callgrinds Cache Model vs. SuperMUC / UV2

 parameters: size, line size, associativity

 L1 / LLC, inclusive, LRU, shared among threads

 write back vs. write through does not matter for hit/miss counts

 optional stream prefetcher

SuperMUC node: 2x Intel E5-2680 (SandyBridge, 8 core, 20 MB L3)

SuperMUC-2 node: 2x Intel E5-2697v3 (Haswell, 14 core, 2x18 MB L3)

UV2: 96x Intel Westmere-EX (10 core, 30 MB L3)
 private L1 (D/I a 32kB) + L2 (256 kB) per core

 L1/L2 strictly inclusive to L3, L3 shared (Haswell: half of cores see shared half of L3)

Callgrind only simulates L1 and L3 (= LLC)  LLC hit count higher

WEIDENDORFER: CALLGRIND / KCACHEGRIND 20 / 30

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Callgrind: Advanced Features

 interactive control (backtrace, dump command, …)

 “fast forward”-mode to quickly get at interesting code phases

 application control via “client requests” (start/stop, dump)

Optional

 best-case simulation of simple stream prefetcher

 byte-wise usage of cache lines before eviction

 branch prediction

 dynamic context in function names (call chain/recursion depth)

 wallclock time spent in system calls (useful for MPI)

WEIDENDORFER: CALLGRIND / KCACHEGRIND 21 / 30

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Callgrind: Usage

 valgrind –tool=callgrind [callgrind options] yourprogram args

 cache simulator: --cache-sim=yes

 branch prediction simulation: --branch-sim=yes

 enable for machine code annotation: --dump-instr=yes

 start in “fast-forward”: --instr-atstart=yes
 switch on event collection: callgrind_control –i on

 spontaneous dump: callgrind_control –d [dump identification]

 current backtrace of threads (interactive): callgrind_control –b

 separate output per thread: --separate-threads=yes

 jump-profiling in functions (CFG): --collect-jumps=yes

 time in system calls: --collect-systime=yes

 byte-wise usage within cache lines: --cacheuse=yes

WEIDENDORFER: CALLGRIND / KCACHEGRIND 22 / 30

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

{Q,K}Cachegrind

Graphical Browser for Profile Visualization

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Features

Open source, GPL, kcachegrind.github.io

(includes pure Qt version, able to run on Linux / OS-X / Windows)

Visualization of

 call relationship of functions (callers, callees, call graph)

 exclusive/Inclusive cost metrics of functions
 grouping according to ELF object / source file / C++ class

 source/assembly annotation: costs + CFG

 arbitrary events counts + specification of derived events

Callgrind support: file format, events of cache model

WEIDENDORFER: CALLGRIND / KCACHEGRIND 24 / 30

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Usage

qcachegrind callgrind.out.<pid>

 left: “Dockables”
 list of function groups

groups according to
 library (ELF object)

 source

 class (C++)

 list of functions with
 inclusive

 exclusive costs

 right: visualization panes

WEIDENDORFER: CALLGRIND / KCACHEGRIND 25 / 30

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

• List of event types

• List of callers/callees

• Treemap visualization

• Call Graph

• Source annotation

•Assemly annotation

Visualization panes for selected function

WEIDENDORFER: CALLGRIND / KCACHEGRIND 26 / 30

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Hands-on

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Getting started

 Try it out
 on ice1-login/interactive job on uv2 ...

 module load valgrind/3.10

 cp -r /lrz/sys/courses/VIHPS21TW/kcg ~

 GUI (ssh -X ice1-login): ~/kcg/qcachegrind

 Test: What happens in „/bin/ls“ ?
 run valgrind --tool=callgrind ls /usr/bin

 run ~/kcg/qcachegrind

 function with highest instruction execution count? Purpose?

 where is the main function?

 run with cache simulation: --cache-sim=yes

28 / 30WEIDENDORFER: CALLGRIND / KCACHEGRIND

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Detailed analysis of matrix multiplication

 Kernel for C = A * B
 Side length N  N3 multiplications + N3 additions

 3 nested loops (i,j,k): Best index order?

 Optimization for large matrixes: Blocking

29 / 30WEIDENDORFER: CALLGRIND / KCACHEGRIND

BC A= *

i j

k

i

k j

c[k][i] = a[k][j] * b[j][i]

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Detailed analysis of matrix multiplication

 To try out...
 cd ~/kcg; make

 timing of orderings (e.g. size 512): ./mm 512

 cache behavior for small matrix (fits into cache):

valgrind --tool=callgrind --cache-sim=yes ./mm 300

 How good is L1/L2 exploitation of the MM versions?

 Large matrix (800, pregenerated callgrind.out).

How does blocking help?

WEIDENDORFER: CALLGRIND / KCACHEGRIND 30 / 30

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

How to run with MPI

 export OMP_NUM_THREADS=4

 module load valgrind/3.10

 srun -n 4 -t 4 valgrind --tool=callgrind --cache-sim=yes \

--separate-threads=yes ./bt-mz_B.4

 reduce iterations in BT_MZ
 sys/setparams.c, write_bt_info, set niter = 5

 load all profile dumps at once:
 run in new directory, “qcachegrind callgrind.out”

WEIDENDORFER: CALLGRIND / KCACHEGRIND 31 / 30

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

WEIDENDORFER: CALLGRIND / KCACHEGRIND

Q A&
?

?

Josef Weidendorfer
TUM, Informatics I-10
weidendo@in.tum.de

32 / 30

