
VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

OpenMP Runtime Error Detection with ARCHER

At the 21th VI-HPS Tuning Workshop

Joachim Protze, Simone Atzeni

RWTH Aachen University, University of Utah

April 2016

+

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Data race example in OpenMP

static double farg1,farg2;

#define FMAX(a,b) (farg1=(a),farg2=(b),farg1>farg2?farg1:farg2)

1619: #pragma omp parallel for shared(bar, foo, THRESH)

1620: for (x=0; x<1000; x++)

1621: T = FMAX(0.1111*foo*bar[x],THRESH);

Tool flags a write-write race in line 1621

22/04/2016 JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 2

What could
possibly go

wrong?

Double checked scoping of variables:
everything seems to be fine

What could
possibly go

wrong?

To avoid side effects, the arguments
are copied to temporary storage

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Threaded Applications (OpenMP)
Threaded Defects

22/04/2016 JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 3

Deadlocks
Data
Races

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Threaded Applications (OpenMP)
Threaded Defects – Deadlock

A circular wait condition exists in the system that causes two or more parallel units to wait indefinitely

22/04/2016 JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 4

#pragma omp parallel sections
{
 #pragma omp section
 {
 omp_set_lock(&lock_a);
 omp_set_lock(&lock_b);
 omp_unset_lock(&lock_b);
 omp_unset_lock(&lock_a);
 }
 #pragma omp section
 {
 omp_set_lock(&lock_b);
 omp_set_lock(&lock_a);
 omp_unset_lock(&lock_a);
 omp_unset_lock(&lock_b);
 }
}

Deadlocking
Execution Order

• Thread 1 waits for lock_b owned by
thread 2

• Thread 2 waits for lock_a, owned by
Thread 1.

• Neither thread can free a lock and
both threads wait indefinitely.

set(lock_a)

Thread1

Thread2

set(lock_a) set(lock_b)

set(lock_b)

time

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Threaded Applications (OpenMP)
Threaded Defects – Data Race

Program behavior dependent on execution order of threads/processes

22/04/2016 JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 5

int x,y;
#pragma omp parallel
{
 x = omp_get_thread_num ();
 #pragma omp barrier
 #pragma omp master
 printf (“Master is:%d” ,x);
}

int x,y;
#pragma omp parallel
{
 #pragma omp master
 sleep(5);
 x = omp_get_thread_num ();
 #pragma omp barrier
 #pragma omp master
 printf (“Master is:%d” ,x);
}

A write-write race on x If the master thread is intended to write x, it
will usually do so, due to the sleep; But

sometimes it may not …

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Threaded Applications (OpenMP)
Definitions

Data race
 Two threads access the same shared

variable

 at least one thread modifies the variable

 the accesses are concurrent, i.e.

unsynchronized

 Leads to non-deterministic behavior

 Hard to find with traditional debugging

tools

22/04/2016 JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 6

Deadlock
 Two or more threads are waiting for

each other to release locks while

holding the lock the other leads to non-

deterministic behavior

 Program hangs

 May be non-deterministic

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Threaded Applications (OpenMP)
Archer

 Error checking tool for

 Memory errors

 Threading errors

(OpenMP, Pthreads)

 Based on ThreadSanitizer (runtime check)

 Available for Linux, Windows and Mac

 Supports C, C++ (Fortran in work)

 Modified OpenMP runtime improved for data

race detection

 More info: https://github.com/PRUNER/archer

22/04/2016 JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 7

https://github.com/PRUNER/archer
https://github.com/PRUNER/archer

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Threaded Applications (OpenMP)
Archer – Background

 Static Analysis

 Only for OpenMP programs

 Exclude race free regions and sequential code from runtime analysis to reduce overhead

 Runtime check

 Error detection only in software branches that are executed

 Low runtime overhead

 Roughly 2x - 20x

 Detect races in large OpenMP applications

 No false positives

 Compiler instrumentation

 Slower compilation process (apply different passes on the source code to identify race free

regions of code, instruments only the rest)

22/04/2016 JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 8

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Threaded Applications (OpenMP)
Archer – Usage

 Compile the program with the –g compiler flag

 clang-archer myprog.c –o myprog

 Run the program under control of Archer Runtime

 export OMP_NUM_THREADS=...

./myprog

 Detects problems only in software branches that are executed

 Understand and correct the threading errors detected

 Edit the source code

 Repeat until no errors reported

22/04/2016 JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 9

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Threaded Applications (OpenMP)
Archer – Result Summary

 1 #include <stdio.h>

 2

 3 int main(int argc, char **argv) {

 4 int a = 0;

 5 #pragma omp parallel

 6 {

 7 if (a < 100) {

 8 #pragma omp critical

 9 a++;

10 }

11 }

12 }

22/04/2016 JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 10

WARNING: ThreadSanitizer: data race

Read of size 4 at 0x7fffffffdcdc by thread T2:

 #0 .omp_outlined. race.c:7

(race+0x0000004a6dce)

 #1 __kmp_invoke_microtask <null>

(libomp_tsan.so)

Previous write of size 4 at 0x7fffffffdcdc by

main thread:

 #0 .omp_outlined. race.c:9

(race+0x0000004a6e2c)

 #1 __kmp_invoke_microtask <null>

(libomp_tsan.so)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Using Archer on uv2 during the workshop

Like for the other tools:

$ source /home/hpc/a2c06/lu23bud/LRZ-VIHPSTW21/tools/source-me.archer.sh

Use NPB-OMP, modify config/make.def to use clang-archer:

Line 78: CC = clang-archer

Build IS or DC:

$ make dc CLASS=W

$ OMP_NUM_THREADS=8 bin/dc.W.x

No report means no threading-issue detected

22/04/2016 JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 11

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Hands-on

$ cp -r $ARCHER_EXAMPLES archer-examples

$ cd archer-examples

$ clang-archer –g prime_omp.c

$ OMP_NUM_THREADS=8 ./a.out

Fix the issues, recompile, test again

22/04/2016 JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 12

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Conclusions

 Deadlocks:

 Avoid locks when possible

 Prefer critical/master/…

 Races:

 Often hard to detect, in many cases only visible from time to time

 Races manifesting only at large scale are often detectable by ARCHER at small scale

 (Fortran) consider: default(private)

 Use tools to detect defects as early as possible:

 During development + unit testing

 Development of ARCHER is ongoing effort, also porting to more architectures and OpenMP

runtimes.

22/04/2016 JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 13

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Thank You

