
VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

OpenMP Runtime Error Detection with ARCHER

At the 21th VI-HPS Tuning Workshop

Joachim Protze, Simone Atzeni

RWTH Aachen University, University of Utah

April 2016

+

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Data race example in OpenMP

static double farg1,farg2;

#define FMAX(a,b) (farg1=(a),farg2=(b),farg1>farg2?farg1:farg2)

1619: #pragma omp parallel for shared(bar, foo, THRESH)

1620: for (x=0; x<1000; x++)

1621: T = FMAX(0.1111*foo*bar[x],THRESH);

Tool flags a write-write race in line 1621

22/04/2016 JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 2

What could
possibly go

wrong?

Double checked scoping of variables:
everything seems to be fine

What could
possibly go

wrong?

To avoid side effects, the arguments
are copied to temporary storage

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Threaded Applications (OpenMP)
Threaded Defects

22/04/2016 JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 3

Deadlocks
Data
Races

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Threaded Applications (OpenMP)
Threaded Defects – Deadlock

A circular wait condition exists in the system that causes two or more parallel units to wait indefinitely

22/04/2016 JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 4

#pragma omp parallel sections
{
 #pragma omp section
 {
 omp_set_lock(&lock_a);
 omp_set_lock(&lock_b);
 omp_unset_lock(&lock_b);
 omp_unset_lock(&lock_a);
 }
 #pragma omp section
 {
 omp_set_lock(&lock_b);
 omp_set_lock(&lock_a);
 omp_unset_lock(&lock_a);
 omp_unset_lock(&lock_b);
 }
}

Deadlocking
Execution Order

• Thread 1 waits for lock_b owned by
thread 2

• Thread 2 waits for lock_a, owned by
Thread 1.

• Neither thread can free a lock and
both threads wait indefinitely.

set(lock_a)

Thread1

Thread2

set(lock_a) set(lock_b)

set(lock_b)

time

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Threaded Applications (OpenMP)
Threaded Defects – Data Race

Program behavior dependent on execution order of threads/processes

22/04/2016 JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 5

int x,y;
#pragma omp parallel
{
 x = omp_get_thread_num ();
 #pragma omp barrier
 #pragma omp master
 printf (“Master is:%d” ,x);
}

int x,y;
#pragma omp parallel
{
 #pragma omp master
 sleep(5);
 x = omp_get_thread_num ();
 #pragma omp barrier
 #pragma omp master
 printf (“Master is:%d” ,x);
}

A write-write race on x If the master thread is intended to write x, it
will usually do so, due to the sleep; But

sometimes it may not …

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Threaded Applications (OpenMP)
Definitions

Data race
 Two threads access the same shared

variable

 at least one thread modifies the variable

 the accesses are concurrent, i.e.

unsynchronized

 Leads to non-deterministic behavior

 Hard to find with traditional debugging

tools

22/04/2016 JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 6

Deadlock
 Two or more threads are waiting for

each other to release locks while

holding the lock the other leads to non-

deterministic behavior

 Program hangs

 May be non-deterministic

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Threaded Applications (OpenMP)
Archer

 Error checking tool for

 Memory errors

 Threading errors

(OpenMP, Pthreads)

 Based on ThreadSanitizer (runtime check)

 Available for Linux, Windows and Mac

 Supports C, C++ (Fortran in work)

 Modified OpenMP runtime improved for data

race detection

 More info: https://github.com/PRUNER/archer

22/04/2016 JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 7

https://github.com/PRUNER/archer
https://github.com/PRUNER/archer

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Threaded Applications (OpenMP)
Archer – Background

 Static Analysis

 Only for OpenMP programs

 Exclude race free regions and sequential code from runtime analysis to reduce overhead

 Runtime check

 Error detection only in software branches that are executed

 Low runtime overhead

 Roughly 2x - 20x

 Detect races in large OpenMP applications

 No false positives

 Compiler instrumentation

 Slower compilation process (apply different passes on the source code to identify race free

regions of code, instruments only the rest)

22/04/2016 JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 8

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Threaded Applications (OpenMP)
Archer – Usage

 Compile the program with the –g compiler flag

 clang-archer myprog.c –o myprog

 Run the program under control of Archer Runtime

 export OMP_NUM_THREADS=...

./myprog

 Detects problems only in software branches that are executed

 Understand and correct the threading errors detected

 Edit the source code

 Repeat until no errors reported

22/04/2016 JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 9

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Threaded Applications (OpenMP)
Archer – Result Summary

 1 #include <stdio.h>

 2

 3 int main(int argc, char **argv) {

 4 int a = 0;

 5 #pragma omp parallel

 6 {

 7 if (a < 100) {

 8 #pragma omp critical

 9 a++;

10 }

11 }

12 }

22/04/2016 JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 10

WARNING: ThreadSanitizer: data race

Read of size 4 at 0x7fffffffdcdc by thread T2:

 #0 .omp_outlined. race.c:7

(race+0x0000004a6dce)

 #1 __kmp_invoke_microtask <null>

(libomp_tsan.so)

Previous write of size 4 at 0x7fffffffdcdc by

main thread:

 #0 .omp_outlined. race.c:9

(race+0x0000004a6e2c)

 #1 __kmp_invoke_microtask <null>

(libomp_tsan.so)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Using Archer on uv2 during the workshop

Like for the other tools:

$ source /home/hpc/a2c06/lu23bud/LRZ-VIHPSTW21/tools/source-me.archer.sh

Use NPB-OMP, modify config/make.def to use clang-archer:

Line 78: CC = clang-archer

Build IS or DC:

$ make dc CLASS=W

$ OMP_NUM_THREADS=8 bin/dc.W.x

No report means no threading-issue detected 

22/04/2016 JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 11

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Hands-on

$ cp -r $ARCHER_EXAMPLES archer-examples

$ cd archer-examples

$ clang-archer –g prime_omp.c

$ OMP_NUM_THREADS=8 ./a.out

Fix the issues, recompile, test again

22/04/2016 JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 12

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Conclusions

 Deadlocks:

 Avoid locks when possible

 Prefer critical/master/…

 Races:

 Often hard to detect, in many cases only visible from time to time

 Races manifesting only at large scale are often detectable by ARCHER at small scale

 (Fortran) consider: default(private)

 Use tools to detect defects as early as possible:

 During development + unit testing

 Development of ARCHER is ongoing effort, also porting to more architectures and OpenMP

runtimes.

22/04/2016 JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 13

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Thank You

