
Accelerate HPC Development with
Allinea Performance Tools

19 April 2016

VI-HPS, LRZ

Florent Lebeau / Ryan Hulguin

flebeau@allinea.com / rhulguin@allinea.com

mailto:flebeau@allinea.com

Agenda

• 09:00 – 09:15 Introduction

• 09:15 – 09:45 Understand application behaviour with

Performance Reports

• 09:45 – 09:50 Dive in the code with Allinea MAP

• 09:50 – 09:20 Profile and Optimise

• 10:20 – 10:30 Wrap-up and questions

• Afternoon: Hands-on session

Introduction

Allinea : an expanding company since 2004

• Based in Warwick (UK), leader in HPC software tools
– Subsidiaries in USA, Japan

• Strong R&D investment to drive Innovation
– Significant part of the revenue is spent on R&D yearly

– Founder and board member of HPC consortiums

– Strong technological collaborations

• Strong references all around the world
– The main supercomputing centres in the world are using Allinea tools

They trust Allinea

Allinea’s vision

• Helping maximize HPC production

• Reduce HPC systems operating costs

• Resolve cutting-edge challenges

• Promote Efficiency (as opposed to Utilization)

• Transfer knowledge to HPC communities

• Helping the HPC community design the best applications

• Reach highest levels of performance and scalability

• Improve scientific code quality and accuracy

.
Bottleneck
isolation

Solver
tuning

Bug
Resolution

Code
certification

• New generation application are more complex
– Rely on MPI, OpenMP, TBB, CUDA, OpenACC...

– Several types of hardware: x86_64, ARM, GPUs, co-processors…

Improvements create pressure on developers

Allinea can help save time on multiple tasks

TIME

Understand Application Behaviour with

Performance Reports

Define your scope

• Before starting to optimize an application, it is important to
define the scope
– Objectives, target speedup

– Candidate technologies / hardware

– Development time

• To achieve this, developer have to:
– Understand the application behaviour

– Know its limitations

– What if they don’t know the source code?

• Prior to modifying the code, they need to:
– Define the best candidate versions

– Select reference and meaningful test cases

– Know the aspects of the code to refactor and corresponding effort

“Learn” with Allinea Performance Reports

Very simple start-up

No source code needed

Fully scalable, very low overhead

Rich set of metrics

Powerful data analysis

Matrix Multiplication Example

• With Allinea Performance Reports, it is not

important for the user to know exactly what an

application is doing

• The focus is on how well does the application

perform on a given system.

• In the next few slides we will generate and analyze

Performance Reports for an application that

multiplies two separate matrices

Usage and Select Options

Usage: perf-report [OPTION...] PROGRAM [PROGRAM_ARGS]

perf-report [OPTION...] (mpirun|mpiexec|aprun|...) [MPI_ARGS] PROGRAM [PROGRAM_ARGS]

perf-report [OPTION...] MAP_FILE

--cwd=DIRECTORY configure the current working directory for the target

--debug include extra debug information in log file

-h, --help display this help and exit

--input=FILE pass the contents of FILE to the target's stdin

--log=FILE writes a log to FILE

--nompi, --no-mpi run without MPI support

--mpiargs=ARGUMENTS command line arguments to pass to mpirun

--nodes=NUMNODES configure the number of nodes for MPI jobs

--openmp-threads=NUMTHREADS

configure the number of OpenMP threads for the target

-o, --output=FILE writes the Performance Report to FILE

-n, --np, --processes=NUMPROCS

specify the number of MPI processes

--procs-per-node=PROCS

configure the number of processes per node for MPI jobs

--verbose print extra information before and after report generation

-v, -V, --version display version information then exit

Report Summary – Compute-bound

Report Summary – MPI-bound

CPU

MPI

Memory

I/O – Home directory

I/O – Scratch Filesystem

1- Connect to UV2 using X forwarding “ssh –X”

$ ssh –X <username>@lxlogin1.lrz.de

$ ssh –X <username>@ssh -Y ice1-login

2- Retrieve labs

$ scp /home/hpc/a2c06/lu23vow/allinea/allinea_workshop.tar.gz ~

$ tar xzvf allinea_workshop.tar.gz

3- Configure your environment

$ cd allinea_workshop

$. env.sh

$ perf-report -v

Getting started on UV2

Usage Instructions for the UV2 System

• Compile code with Intel MPI Library

module unload mpi/mpt

module load mpi/intel

• Use the thread safe MPI version

CFLAGS = -mt_mpi

FFLAGS = -mt_mpi

UV2 Instructions continued

Submission script modifications:

source /etc/profile.d/modules.sh

module use /home/hpc/a2c06/lu23vow/allinea/modulefiles

module load perf-reports-6.0.3

module unload mpi.mpt

module load mpi.intel

export

ALLINEA_MPI_WRAPPER=/home/hpc/a2c06/lu23vow/.allinea/wrapper/

libmap-sampler-pmpi-uv2-intel.so

UV2 Instructions continued

Change the MPI launch line from

srun_ps –n NUMPROCS –t NUMTHREADS ./prog.exe

to

perf-report -np=NUMPROCS --openmp-threads=NUMTHREADS

./prog.exe

Hydro Application

• Hydro solves the compressible Euler equations of

hydrodynamics

• It is a simplified version of a real HPC code named

RAMSES to study large scale structure and galaxy

formation

• More details of this application can be found in the

article below located at www.prace.ri-eu

Hydro Reports on UV2

• Reports are available at allinea_workshop/0_reports
from the allinea_workshop.tar.gz file

Dive in the code with Allinea MAP

Code optimisation
can be time-
consuming.

Efficient tools can
help you focus on
the most important
bottlenecks.

The quest for the Holy Performance

Allinea MAP: Performance made easy

Low overhead measurement

• Accurate, non-intrusive application performance profiling

• Seamless – no instrumentation required

Easy to use

• Source code viewer pinpoints bottleneck locations

• Zoom in to explore iterations, functions and loops

• Re-compile with “-g” and profile by adding “map” to the mpirun command

Deep

• Measures CPU, communication, I/O and memory to identify problem causes

• Identifies vectorization and cache performance

Allinea MAP and tracing tools: a great synergy

Simple
optimization

with
Allinea MAP

• Characterize performance at-scale with a lightweight tool

• See which lines of code are hotspots

• Identify common problems at once

Prepare
optimization
strategy with
Allinea MAP

• Identify loop(s) to instrument

• Identify performance counter(s) to record

• Document performance issues to communicate to profiling experts

Fine tune the
code

with tracing tool

• Retrieve low-level details using traces

• Fix up CPU usage to make the code fly

• Who had a rogue behaviour ?

‒ Merges stacks from processes and threads

• Where did it happen?

‒ Allinea DDT leaps to source automatically

• How did it happen?

‒ Detailed error message given to the user

‒ Some faults evident instantly from source

• Why did it happen?

‒ Unique “Smart Highlighting”

‒ Sparklines comparing data across processes

Check your code with Allinea DDT

Run

with Allinea tools

Identify
a problem

Gather info
Who, Where,

How, Why

Fix

Profile and Optimise

• Prepare the code

$ mpicc –O3 –g myapp.c –o myapp

• Profile the application with Allinea MAP

$ make-profiler-libraries

Follow the instructions displayed in the terminal

Edit your job script to replace the srun_ps command by:

map --profile -n 8 ./myapp arg1 arg2

• Open the results in the GUI afterwards

$ map ./myapp_8p_YYYY-MM-DD_HH-MM.map

How to use Allinea MAP on UV2

Using the remote client

• Install the Allinea Remote Client

Go to : http://www.allinea.com/products/downloads

• Copy the *.map file on your laptop

• View the results locally

http://www.allinea.com/products/downloads

Exercise:

Matrix Multiplication: C = A x B + C

k

k

i A

B

C size

j i, j, k: loop indexes

nslices = 4

Algorithm

1- Master initialises matrices A, B & C

2- Master slices the matrices A & C, sends them to slaves

3- Master and Slaves perform the multiplication

4- Slaves send their results back to Master

5- Master writes the result Matrix C in an output file

Exercise objectives:

– Load Allinea Forge environment

– Compile a code for allinea MAP

– Submit the job through the queue

– Discover allinea MAP interface and features

– Analyse the application and identify vectorisation metrics

Content

– Source code in C and F90 + Makefile

– Submission script

Useful commands:

$ make

$ make clean

$ sbatch job.sub

$ squeue –cluster=uv2

$ scancel JOB_ID

Tutorial:

Wrap-up and questions

Thank you

Your contacts :

– Questions? flebeau@allinea.com

rhulguin@allinea.com

– Sales team: sales@allinea.com

mailto:flebeau@allinea.com
mailto:rhulguin@allinea.com
mailto:sales@allinea.com

