Accelerate HPC Development with
Allinea Performance Tools

19 April 2016

VI-HPS, LRZ
Florent Lebeau / Ryan Hulguin /1=HPS M

flebeau@allinea.com / rhulguin@allinea.com L
allinea

mailto:flebeau@allinea.com

Agenda

 09:00 - 09:15 Introduction

* 09:15-09:45 Understand application behaviour with
Performance Reports

* 09:45-09:50 Dive in the code with Allinea MAP

* 09:50-09:20 Profile and Optimise

« 10:20-10:30 Wrap-up and questions

« Afternoon: Hands-on session

Introduction

Allinea : an expanding company since 2004

« Based in Warwick (UK), leader in HPC software tools
— Subsidiaries in USA, Japan

« Strong R&D investment to drive Innovation

— Significant part of the revenue is spent on R&D yearly
— Founder and board member of HPC consortiums
— Strong technological collaborations

« Strong references all around the world
— The main supercomputing centres in the world are using Allinea tools

They trust Allinea

<& _ CSCS

- Lq n \‘ ‘ Centro Svizzero di Calcolo Scientifico
. Y Swiss National Supercomputing Centre

IT4Innovations
national
supercomputing
center

[Sleloe

~
— A
rererrreer I"I

BERKELEY LAB

Lierence Berkeley National Laberatory

H L R | S

High-Performance Computing Center | Stuttgart

#))ULICH

FORSCHUMGSZEMTRLUM

OAK

£ RIDGE

National Laboratory

Leibniz Supercomputing Centre
of the Bavarian Academy of Sciences and Humanities

SMNIC

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Allinea’s vision

* Helping maximize HPC production
« Reduce HPC systems operating costs
allinea ° Resolve cutting-edge challenges
PERFORMANCE

REPORTS ¢ Promote Efficiency (as opposed to Utilization)
« Transfer knowledge to HPC communities

« Helping the HPC community design the best applications

-4 allinea * Reach highest levels of performance and scalability

! EQRMGAE * Improve scientific code quality and accuracy

Improvements create pressure on developers

* New generation application are more complex

— Rely on MPI, OpenMP, TBB, CUDA, OpenACC...
— Several types of hardware: x86 64, ARM, GPUs, co-processors...

Allinea can help save time on multiple tasks

Bottleneg Code
isolatio tification

Understand Application Behaviour with
Performance Reports

Define your scope

« Before starting to optimize an application, it is important to

define the scope
— ODbjectives, target speedup
— Candidate technologies / hardware
— Development time

« To achieve this, developer have to:
— Understand the application behaviour
— Know its limitations
— What if they don’t know the source code?

* Prior to modifying the code, they need to:
— Define the best candidate versions
— Select reference and meaningful test cases
— Know the aspects of the code to refactor and corresponding effort

“Learn” with Allinea Performance Reports

MADbench2

16 processes, 1 node

sandybridge2

Mon Nov 4 12:27:50 2013
109 seconds (2 minutes)

allinea
PERFORMANCE

REPORTS

ftmp/MADbench2

Summary: MADbench2 is |/O-bound in this configuration

The total wallclock ime was spent as follows:

CPU as% |

vel e
o s

This application run was /C

CPU

A breakdown of how the 4 5% total CPU time was spent:
Scalar numericops 4.9% |

Vector numericops 0.1% |

Memory accesses 95.0% [N

Other 0.0 |

The per-core performance is memory-bound. Use a profiler to
identify ime-consuming loops and check their cache performance.

No time was spent in vectorized instructions. Check the compiler's
veclorization advice o see why key loops could nol be vedorized.

110

A breakdown of how the 53.9% total /O ime was spent:
Tire in reads 5. 7%]

Time in writes 96.3% [|

Estimated read rate 272 Mb/s I

Estimated write rate 7.06 Mb/s |

Most of the time is spent in write operations, which have a very low
transfer rate. This may be caused by contention for the filesystem or
inefficient access patterns. Use an I/O profiler to investigate which
write calls are affected.

12-core server / HDD / 16 readers + writers MPI ~ 1o

Time spent running application code. High values are usually good.
This is low; it may be worth improving /O performance first.

Time spent in MPI calls. High values are usually bad,
This is average; check the MPI breakdown for advice on reducing it.

Time spent in filesystem I/O. High values are usually bad.
This is high; check the /O breakdown section for optimization advice.

ound. A breakdown of this time and advice for investigating further is in the /O section below.

Very simple start-up

No source code needed

Fully scalable, very low overhead

MPI
Ofthe 41 3% total time spent in MPI calls:
% I

Time in colleciive calls 1
Time in point-to-point calls 0.0%

Estimated collective rate 407 bytes/'s I

Estimated point-to-point rate 0 bytes/s |

All of the time is spent in collective calls with a very low transfer rate.
This suggests a significant load imbalance is causing

synchronization overhead. You can investigate this further with an
MPI profiler.

Rich set of metrics

Memory

Per-process memory usage may also affect scaling:
Mean process memory usage 160 Mb [N
Peak process memory usage 173 Mb I

Peak node memory usage 172% 1

P ful data analysis
The peak node memory usage is low. You may be able to reduce y
the total number of CPU hours used by running with fewer MPI
processes and more data on each process.

Matrix Multiplication Example

« With Allinea Performance Reports, it is not

Important for the

user to know exactly what an

application is doing
* The focus is on how well does the application

 |Inthe next few s
Performance Re
multiplies two se

perform on a given system.

ides we will generate and analyze
ports for an application that
parate matrices

Usage and Select Options

Usage: perf-report [OPTION...] PROGRAM [PROGRAM ARGS]
perf-report [OPTION...] (mpirun|mpiexec|aprun|...) [MPI_ARGS] PROGRAM [PROGRAM ARGS]
perf-report [OPTION...] MAP FILE

--cwd=DIRECTORY configure the current working directory for the target
--debug include extra debug information in log file

-h, --help display this help and exit

--input=FILE pass the contents of FILE to the target's stdin
--log=FILE writes a log to FILE

--nompi, --no-mpi run without MPI support

--mpiargs=ARGUMENTS command line arguments to pass to mpirun
--nodes=NUMNODES configure the number of nodes for MPI jobs
--openmp-threads=NUMTHREADS

configure the number of OpenMP threads for the target
-0, --output=FILE writes the Performance Report to FILE
-n, --np, --processes=NUMPROCS

specify the number of MPI processes
--procs-per-node=PROCS

configure the number of processes per node for MPI jobs
--verbose print extra information before and after report generation
-v, -V, --version display version information then exit

Report Summary — Compute-bound

mpirun -n 12 ./mmult3_c.exe 4608 o
1 node (12 physical, 24 logical cores per node)]
H 12 processes
alllnea . A

PERFORMANC mic2
REPORTS Fri Feb 20 21:31:21 2015

39 seconds (1 minute)

/scratch/allinea/ mmult/3_fix

Summary: mmult3_c.exe is CPU-bound in this configuration

CPU 61.4% Time spent running application code. High values are usually good.
' ' _ This is average; check the CPU performance section for optimization advice.
MPl 38.1% Time spent in MPI calls. High values are usually bad.

' - This is average; check the MPI breakdown for advice on reducing it

Time spent in filesystem |/O. High values are usually bad.

/O os5% |

This is very low; however single-process /O often causes large MPI wait times.

This application run was CPU-bound. A breakdown of this time and advice for investigating further is in the CPU section
below.

MPI /O

Report Summary — MPIl-bound

mpirun -n 6 —-bind-to-core ./mmult3_c.exe 4608 I _"
1 node (12 physical, 24 logical cores per node) |
H b processes
allinea A

PERFORMANCE mic2 2\
REPORTS Fri Feb 20 21:46:04 2015

118 seconds (2 minutes)

[home/allinea/mmult/3_fix

Summary: mmult3_c.exe is MPI-bound in this configuration

CPU 37.5% Time spent running application code. High values are usually good.
) ' - This is low; it may be worth improving MPI or |/O performance first.
VPl 53.7% Time spent in MPI calls. High values are usually bad.

' - This is high; check the MPI breakdown for advice on reducing it.

Time spentin filesystem 1/0. High values are usually bad.

/O 8.8% I

This is low; check the I/O breakdown section for optimization advice.

This application run was MPl-bound. A breakdown of this time and advice for investigating further is in the MPI section
below.

CPU

CPU

A breakdown of the 61.4% CPU time:

Scalar numericops 16.1% §
Vector numericops 10.1% |

Memory accesses 73.8% R

The per—core performance is memory-bound. Use a profiler to
identify time-consuming loops and check their cache

performance.

Little time is spent in vectorized instructions. Check the
compiler's vectorization advice to see why key loops could not be

vectorized.

MPI

MPI

A breakdown of the 53.7% MPI time:

Time in collective calls 97.5% 1N
Time in point-to—point calls 2.5% |
Effective process collective rate 0.00 bytes/s |

Effective process point-to-point rate 462 MB/s IR

Most of the time is spent in collective calls with a very low transfer
rate. This suggests load imbalance is causing synchonization
overhead; use an MPI profiler to investigate further.

Memory

Memory

Per-process memory usage may also affect scaling:

Mean process memory usage 198 MB |
Peak process memory usage 555 MB |

Peak node memory usage 14.0% |

There is significant variation between peak and mean memory
usage. This may be a sign of workload imbalance or a memory

leak.

The peak node memory usage is very low. Running with fewer MPI
processes and more data on each process may be more efficient.

/O — Home directory

/0

A breakdown of the 8. 8% /0O time:

Time in reads 0.0% |

Time in writes 100.0% N

Effective process read rate 0.00 bytes/s |
[]

Effective process write rate 4.07 MB/s

Most of the time is spent in write operations with a very low
effective transfer rate. This may be caused by contention for the
filesystem or inefficient access patterns. Use an |/O profiler to
investigate which write calls are affected.

/O — Scratch Filesystem

1/0

A breakdown of the 0.5% 1/0 time:

Time in reads 0.0% |

Time in writes 100.0% N
Effective process read rate 0.00 bytes/s |

Effective process write rate 112 MB/s |

Most of the time is spent in write operations with an average

effective transfer rate. It may be possible to achieve faster
effective transfer rates using asynchronous file operations.

Getting started on UV?2

1- Connect to UV2 using X forwarding “ssh —X"

$ ssh -X <username>@lxloginl.lrz.de
$ ssh -X <username>@ssh -Y icel-login

2- Retrieve labs
$ scp /home/hpc/a2c06/1lu23vow/allinea/allinea_workshop.tar.gz ~
$ tar xzvf allinea_workshop.tar.gz

3- Configure your environment

$ cd allinea_workshop
$. env.sh

$ perf-report -v

Usage Instructions for the UV2 System

« Compile code with Intel MPI Library
module unload mpi/mpt
module load mpi/intel

 Use the thread safe MPI version

CFLAGS
FFLAGS

-mt mpi

-mt mpi

allinea

UV?2 Instructions continued

Submission script modifications:

source /etc/profile.d/modules.sh

module use /home/hpc/a2c06/1lu23vow/allinea/modulefiles
module load perf-reports-6.0.3

module unload mpi.mpt

module load mpi.intel

export
ALLINEA MPI WRAPPER=/home/hpc/a2c06/lu23vow/.allinea/wrapper/

libmap-sampler-pmpi-uv2-intel. so

allinea

UV?2 Instructions continued

Change the MPI launch line from

srun_ps —-n NUMPROCS -t NUMTHREADS ./prog.exe

to

perf-report -np=NUMPROCS --openmp-threads=NUMTHREADS
./prog.exe

allinea

Hydro Application

« Hydro solves the compressible Euler equations of
nydrodynamics

 |tis a simplified version of a real HPC code named
RAMSES to study large scale structure and galaxy
formation

« More details of this application can be found in the
article below located at www.prace.ri-eu

Porting and optimizing HYDRO to new platforms and
programming paradigms — lessons learnt

Pierre-Frangois Lavallée®, Guillaume Colin de Verdiére”, Philippe Wautelet®,

Dimitri Lecas®, Jean-Michel Dupays®
*IDRIS/CNRS. Campus universitaire d'Orsay. rue John Von Neumann. Bitiment 506, F-91403 Orsay, France
*CEA Centre DAM Ile-de-France, Bruyeres-le-Chatel.F-01227 Arpajon. France

Hydro Reports on UV2

Jhome/hpc/a2cl6/lu2 3vow,/ryan/Hydro/HydroC/HydroC99_2DMpi/5rc ﬁyd'ro -
-

fhome/hpc/a2c06/lu2 3vow/ryan/Hydro/HydroC/HydroC99_2DMpi/Bin/rung/../ ../ ../ ../In
1 node (960 physical, 1920 logical cores per node) JEN

3028 GB per node

1 process, OMP_NUM_THREADS was 64 MPI 170
uv2

Sun Apr 17 19:01:58 2016

2098 seconds

/home/hpc/a2c06/lu23vow/ryan/Hydro/HydroC/

HydroC99_2DMpi/Src
/home/hpc/a2c06/lu23vow/ryan/Hydro/HydroC/HydroC99_2DMpi/Src ﬁyd'ro :e
-

/home/hpc/a2c06/lu23vow/ryan/Hydro/HydroC/HydroC99_2DMpi/Bin/runs/../../../../In
1 node (960 physical, 1920 logical cores per node)

3028 GB per node P —

1 process, OMP_NUM_THREADS was 128 MP) 110
uv2

Sun Apr 17 19:02:26 2016

4473 seconds

Jhome/hpc/a2cl6/lu2 3vow/ryan/Hydro/HydroC/
HydroC99_2DMpi/Src

* Reports are available at allinea workshop/0 reports
from the allinea workshop.tar.gz file II.

Dive In the code with Allinea MAP

The gquest for the Holy Performance

TiME CO3T

STRATEGY A
GTRATEGY B

ANALYZING \WWHETHER
SIRATEGY A OR B
1S MORE EFFICIENT

THE REASON I AM 50 INEFFICIENT

Code optimisation
can be time-
consuming.

Efficient tools can
help you focus on
the most important
bottlenecks.

Allinea MAP: Performance made easy

Low overhead measurement

* Accurate, non-intrusive application performance profiling
» Seamless — no instrumentation required

Easy to use

. » Source code viewer pinpoints bottleneck locations
N '+ Zoom in to explore iterations, functions and loops
44 : . . “ o_n . . 7] ” H
* Re-compile with “-g” and profile by adding “map” to the mpirun command

Deep

* Measures CPU, communication, I/O and memory to identify problem causes
* |dentifies vectorization and cache performance

Allinea MAP and tracing tools: a great synergy

Simple
optimization
with
Allinea MAP

Prepare
optimization

strategy with
Allinea MAP

Fine tune the
code
with tracing tool

Characterize performance at-scale with a lightweight tool
See which lines of code are hotspots
|ldentify common problems at once

|dentify loop(s) to instrument
|dentify performance counter(s) to record
Document performance issues to communicate to profiling experts

Retrieve low-level details using traces
Fix up CPU usage to make the code fly

Check your code with Allinea DDT

« Who had a rogue behaviour ? Run
with Allinea tools
— Merges stacks from processes and threads
Identify
o a problem
« Where did it happen?
Gather info
— Allinea DDT leaps to source automatically Who, Where,
How, Why
 How did it happen? Fix
— Detailed error message given to the user
— Some faults evident instantly from source
Locals Current Line(s) I Current Shckl
. . . ﬂ Current Line(s) B X »
Why did it happen? Ve Name e
— Unique “Smart Highlighting” -
- mype [2724
— Sparklines comparing data across processes '
150119] i §--c;eate_ocn_communicamr (oorr‘!mu‘nicate.BO:BOO)

\, | . B create_ocn_communicator (communicate 90:303)

Profile and Optimise

How to use Allinea MAP on UV2

 Prepare the code

$ mpicc -03 -g myapp.c -0 myapp

* Profile the application with Allinea MAP

$ make-profiler-libraries

Follow the instructions displayed in the terminal

Edit your job script to replace the srun_ps command by:

map --profile -n 8 ./myapp argl arg2

 Open the results in the GUI afterwards

$ map ./myapp 8p_YYYY-MM-DD_ HH-MM.map

Using the remote client

* |nstall the Allinea Remote Client

Go to : http://www.allinea.com/products/downloads

« Copy the *.map file on your laptop

* View the results locally

http://www.allinea.com/products/downloads

Exercise:
Matrix Multiplication: C=AxB + C

k i i, j, k: loop indexes

Algorithm

1- Master initialises matrices A, B & C

nslices =4

2- Master slices the matrices A & C, sends them to slaves
3- Master and Slaves perform the multiplication

4- Slaves send their results back to Master

5- Master writes the result Matrix C in an output file

Tutorial:

Exercise objectives:

— Load Allinea Forge environment

— Compile a code for allinea MAP

— Submit the job through the queue

— Discover allinea MAP interface and features

— Analyse the application and identify vectorisation metrics

Content

— Source code in C and F90 + Makefile

— Submission script

Useful commands:

$ make
make clean
sbatch job.sub

squeue -cluster=uv2

Y v B B

scancel JOB_ID

Wrap-up and guestions

Thank you

Your contacts :

— Questions? flebeau@allinea.com
rhulguin@allinea.com
— Sales team: sales@allinea.com

allinea

mailto:flebeau@allinea.com
mailto:rhulguin@allinea.com
mailto:sales@allinea.com

