

Automatic trace analysis with Scalasca

Dr. Alexandre Otto Strube Jülich Supercomputing Centre

scalasca 🗖

Automatic trace analysis

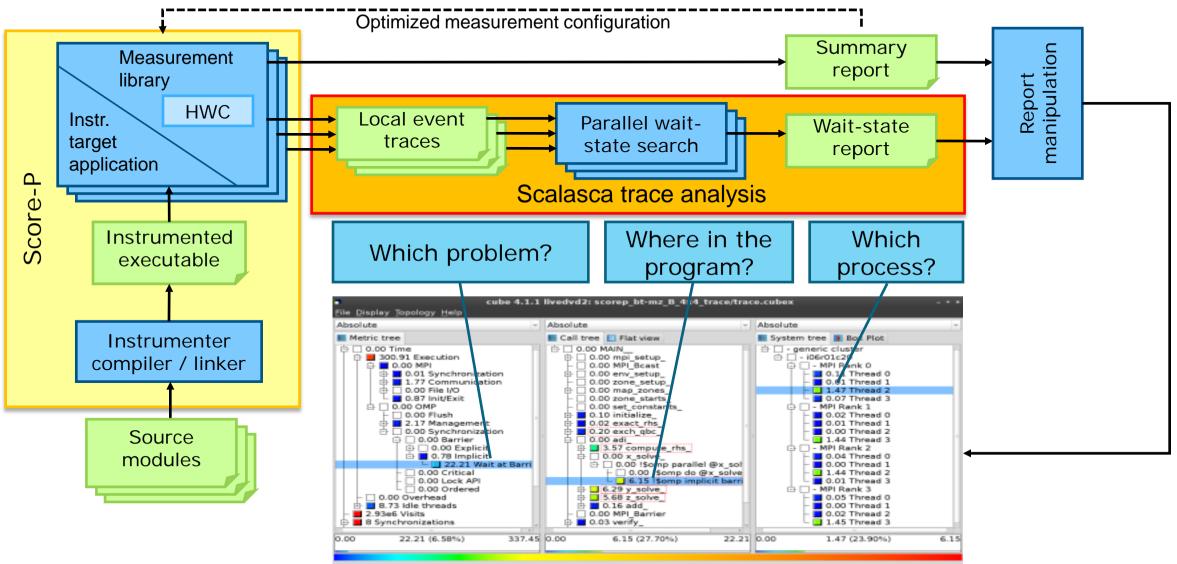
- Idea
 - Automatic search for patterns of inefficient behaviour
 - Classification of behavior & quantification of significance

- Guaranteed to cover the entire event trace
- Quicker than manual/visual trace analysis
- Parallel replay analysis exploits available memory & processors to deliver scalability

The Scalasca project: Overview

- Project started in 2006
 - Initial funding by Helmholtz Initiative & Networking Fund
 - Many follow-up projects
- Follow-up to pioneering KOJAK project (started 1998)
 - Automatic pattern-based trace analysis
- Now joint development of
 - Jülich Supercomputing Centre
 - German Research School for Simulation Sciences
 - Technische Universität Darmstadt Laboratory for Parallel Programming

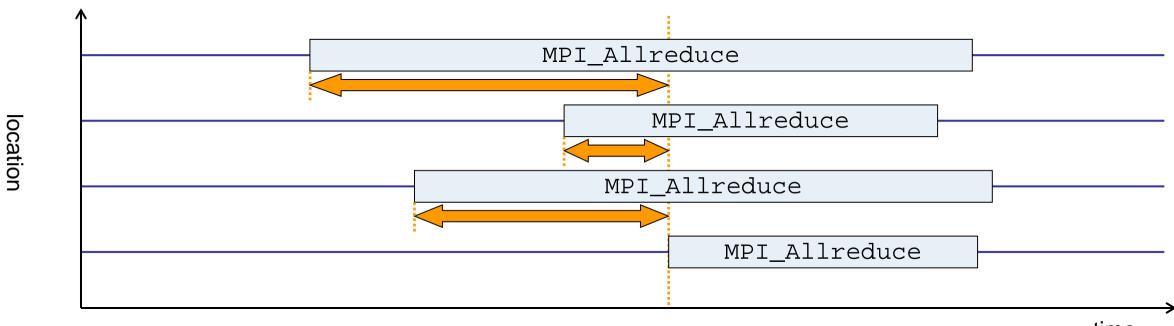
Scalasca 2.2 features


- Open source, New BSD license
- Fairly portable
 - IBM Blue Gene, Cray XT/XE/XK/XC, SGI Altix, Fujitsu FX10/100 & K computer, Linux clusters, Intel Xeon Phi (native MIC) ...
- Uses Score-P instrumenter & measurement libraries
 - Scalasca 2 core package focuses on trace-based analyses
 - Supports common data formats
 - Reads event traces in OTF2 format
 - Writes analysis reports in CUBE4 format
- Current limitations:
 - Unable to handle traces containing CUDA or SHMEM events, or OpenMP nested parallelism
 - PAPI/rusage metrics for trace events are ignored

The Scalasca project: Objective

- Development of a scalable performance analysis toolset for most popular parallel programming paradigms
- Specifically targeting large-scale parallel applications
 - such as those running on IBM BlueGene or Cray systems with one million or more processes/threads
- Latest release:
 - Scalasca v2.2 coordinated with Score-P v1.4 (January 2015)
 - initial support for Intel Xeon Phi (native mode only)
 - full support for traces in SIONlib format (if configured for OTF2)
 - basic support for POSIX threads and OpenMP tasking
 - added lock contention and root-cause/delay analysis
 - Scalasca v2.2.1 coordinated with Score-P 1.4.1 (May 2015)
 - bug-fixes and optimisations

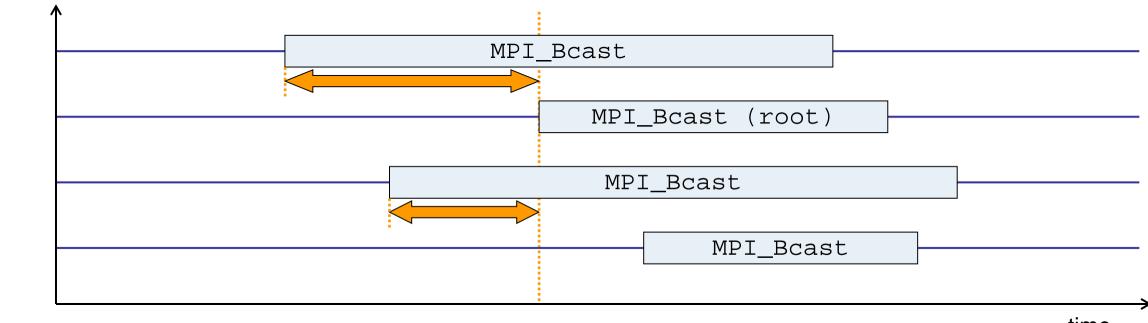
VI-HPS


Scalasca workflow

VI-HPS

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Example: Wait at NxN

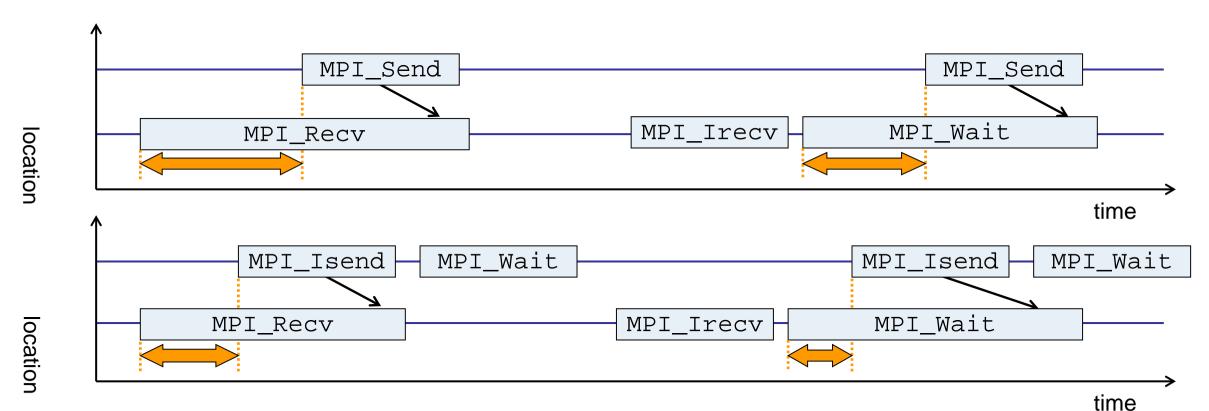

time

- Time spent waiting in front of synchronizing collective operation until the last process reaches the operation
- Applies to: MPI_Allgather, MPI_Allgatherv, MPI_Alltoall, MPI_Reduce_scatter, MPI_Reduce_scatter_block, MPI_Allreduce

location

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Example: Late Broadcast



time

- Waiting times if the destination processes of a collective 1-to-N operation enter the operation earlier than the source process (root)
- Applies to: MPI_Bcast, MPI_Scatter, MPI_Scatterv

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Example: Late Sender

- Waiting time caused by a blocking receive operation posted earlier than the corresponding send
- Applies to blocking as well as non-blocking communication

Hands-on: NPB-MZ-MPI / BT

scalasca 🗖

Performance Analysis Steps

- 0.0 Reference preparation for validation
- 1.0 Program instrumentation
- 1.1 Summary measurement collection
- 1.2 Summary analysis report examination
- 2.0 Summary experiment scoring
- 2.1 Summary measurement collection with filtering
- 2.2 Filtered summary analysis report examination
- 3.0 Event trace collection
- 3.1 Event trace examination & analysis

Scalasca command – One command for (almost) everything

usage: scalasca [OPTI 1. prepare applic scalasca -inst 2. run applicatio scalasca -anal 3. interactively	<pre>performance analysis of large-scale parallel applications ON] ACTION <argument> ation objects and executable for measurement: rument <compile-or-link-command> # skin (using scorep) n under control of measurement system: yze <application-launch-command> # scan explore measurement analysis report: ine <experiment-archive report> # square</experiment-archive report></application-launch-command></compile-or-link-command></argument></pre>
Options: -c,show-config -h,help -n,dry-run quickref -v,verbose -V,version	show configuration summary and exit show this help and exit show actions without taking them show quick reference guide and exit enable verbose commentary show version information and exit

• The 'scalasca -instrument' command is deprecated and only provided for backwards compatibility with Scalasca 1.x., recommended: use Score-P instrumenter directly

Scalasca compatibility command: skin

- Scalasca application instrumenter
 - Provides compatibility with Scalasca 1.x
 - Recommended: use Score-P instrumenter directly

Scalasca convenience command: scan

% scan		
Scalasca 2.2: measurement collection & analysis nexus		
usage: scan {options} [launchcmd [launchargs]] target [targetargs]		
where {options} may include:		
-h Help: show this brief usage message and exit.		
-v Verbose: increase verbosity.		
-n Preview: show command(s) to be launched but don't execute.		
-q Quiescent: execution with neither summarization nor tracing.		
-s Summary: enable runtime summarization. [Default]		
-t Tracing: enable trace collection and analysis.		
-a Analyze: skip measurement to (re-)analyze an existing trace.		
-e exptdir : Experiment archive to generate and/or analyze.		
(overrides default experiment archive title)		
-f filtfile : File specifying measurement filter.		
-l lockfile : File that blocks start of measurement.		
-m metrics : Metric specification for measurement.		

Scalasca measurement collection & analysis nexus

Scalasca advanced command: scout - Scalasca automatic trace analyzer

```
% scout.hyb --help
        Copyright (c) 1998-2015 Forschungszentrum Juelich GmbH
SCOUT
        Copyright (c) 2009-2014 German Research School for Simulation
                                Sciences GmbH
Usage: <launchcmd> scout.hyb [OPTION]... <ANCHORFILE | EPIK DIRECTORY>
Options:
                    Enables instance tracking and statistics [default]
  --statistics
  --no-statistics Disables instance tracking and statistics
  --critical-path
                     Enables critical-path analysis [default]
  --no-critical-path Disables critical-path analysis
                     Enables root-cause analysis [default]
  --rootcause
                     Disables root-cause analysis
  --no-rootcause
  --single-pass
                     Single-pass forward analysis only
                     Enables enhanced timestamp correction
  --time-correct
                     Disables enhanced timestamp correction [default]
  --no-time-correct
                     Increase verbosity
  --verbose, -v
  --help
                     Display this information and exit
```

Provided in serial (.ser), OpenMP (.omp), MPI (.mpi) and MPI+OpenMP (.hyb) variants

Scalasca advanced command: clc_synchronize

Scalasca trace event timestamp consistency correction

Usage: <launchcmd> clc_synchronize.hyb <ANCHORFILE | EPIK_DIRECTORY>

- Provided in MPI (.mpi) and MPI+OpenMP (.hyb) variants
- Takes as input a trace experiment archive where the events may have timestamp inconsistencies
 e.g., multi-node measurements on systems without adequately synchronized clocks on each compute node
- Generates a new experiment archive (always called ./clc_sync) containing a trace with event timestamp inconsistencies resolved
 - e.g., suitable for detailed examination with a time-line visualizer

Scalasca convenience command: square

```
% square
Scalasca 2.2: analysis report explorer
usage: square [-v] [-s] [-f filtfile] [-F] <experiment archive | cube file>
-c <none | quick | full> : Level of sanity checks for newly created reports
-F : Force remapping of already existing reports
-f filtfile : Use specified filter file when doing scoring
-s : Skip display and output textual score report
-v : Enable verbose mode
-n : Do not include idle thread metric
```

Scalasca analysis report explorer

Automatic measurement configuration

- scan configures Score-P measurement by automatically setting some environment variables and exporting them
 - e.g., experiment title, profiling/tracing mode, filter file, ...
 - Precedence order:
 - Command-line arguments
 - Environment variables already set
 - Automatically determined values
- Also, scan includes consistency checks and prevents corrupting existing experiment directories
- For tracing experiments, after trace collection completes then automatic parallel trace analysis is initiated
 - uses identical launch configuration to that used for measurement (i.e., the same allocated compute resources)

Setup environment

Load module

% module load intel impi scorep scalasca cube

- Change to directory containing NPB3.3-MZ-MPI sources
- Existing instrumented executable in bin.scorep/ directory can be reused

BT-MZ summary measurement collection...

```
% cd bin.scorep
% cp ../jobscript/leftraru/scalasca-profile.sbatch .
% vi scalasca-profile.sbatch
[...]
CLASS=C
NPROCS=32
EXE=./bt-mz_$CLASS.$NPROCS
#export SCOREP_FILTERING_FILE=../config/scorep.filt
#export SCOREP_TOTAL_MEMORY=78M
```

scalasca -analyze -s srun \$EXE

\$ sbatch ./scalasca-trace.sbatch

 Change to directory with the executable and edit the job script

Submit the job

BT-MZ summary measurement

.ERR FILE:

S=C=A=N: Scalasca 2.2.2 runtime summarization Using SCAN_MPI_RANKS=32 processes! S=C=A=N: ./scorep_bt-mz_C_32xO_sum experiment archive S=C=A=N: Mon Oct 26 13:23:52 2015: Collect start /usr/bin/srun ./bt-mz_C.32 (Here is the execution) S=C=A=N: Mon Oct 26 13:26:14 2015: Collect done (status=0) 142s S=C=A=N: ./scorep bt-mz C 32xO sum complete. Run the application using the Scalasca measurement collection & analysis nexus prefixed to launch command

.OUT FILE:

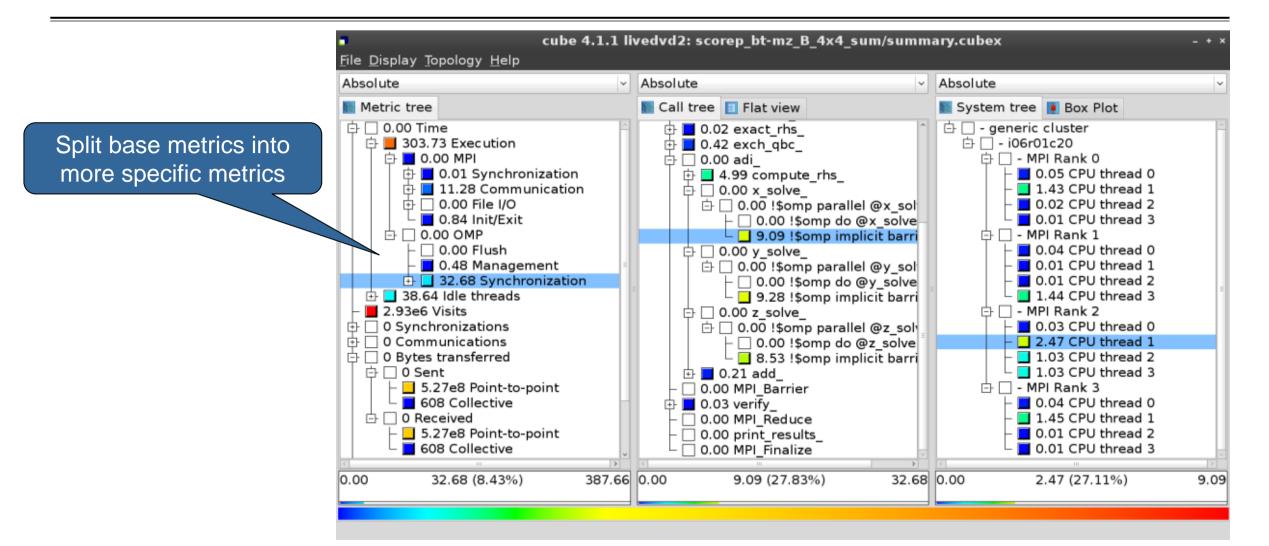
NAS Parallel Benchmarks NPB3.3-MZ-MPI) - BT-MZ MPI+OpenMP Benchmark
Number of zones: 16 x 16
Iterations: 200 dt: 0.000100
Number of active processes: 32
Use the default load factors with threads
Total number of threads: 32 (1.0 threads/process)
[...] More application output

 Creates experiment directory: ./scorep_bt-mz_C_32x0_sum

BT-MZ summary analysis report examination

Score summary analysis report

\$ square -s scorep_bt-mz_C_32x0_sum
INFO: Post-processing runtime summarization result...
INFO: Score report written to ./scorep bt-mz C 32x0 sum/scorep.score


Post-processing and interactive exploration with CUBE

\$ square scorep_bt-mz_C_32x0_sum
INFO: Displaying ./scorep_bt-mz_C_32x0_sum/summary.cubex...

[GUI showing summary analysis report]

 The post-processing derives additional metrics and generates a structured metric hierarchy

Post-processed summary analysis report

Performance Analysis Steps

- 0.0 Reference preparation for validation
- 1.0 Program instrumentation
- 1.1 Summary measurement collection
- 1.2 Summary analysis report examination
- 2.0 Summary experiment scoring
- 2.1 Summary measurement collection with filtering
- 2.2 Filtered summary analysis report examination
- 3.0 Event trace collection
- 3.1 Event trace examination & analysis

BT-MZ trace measurement collection...

% cd bin.scorep

- % cp ../jobscript/leftraru/scalasca-trace.sbatch .
- % vi scalasca-trace.sbatch

[...]

CLASS=C NPROCS=32 EXE=./bt-mz_\$CLASS.\$NPROCS

```
export SCOREP_FILTERING_FILE=../config/scorep.filt
```

```
export SCOREP_TOTAL_MEMORY=168M
export SCOREP_METRIC_PAPI=PAPI_TOT_INS,PAPI_TOT_CYC
```

scalasca -analyze -t srun \$EXE

\$ sbatch ./scalasca-trace.sbatch

 Change to directory with executable and edit job script

Submit the job

BT-MZ trace measurement ... collection

```
S=C=A=N: Mon Oct 26 16:18:56 2015: Collect start
/usr/bin/srun ./bt-mz_C.32
NAS Parallel Benchmarks (NPB3.3-MZ-MPI) - BT-MZ MPI+OpenMP Benchmark
Number of zones: 16 x 16
Iterations: 200 dt: 0.000100
Number of active processes: 32
```

[... More application output ...]

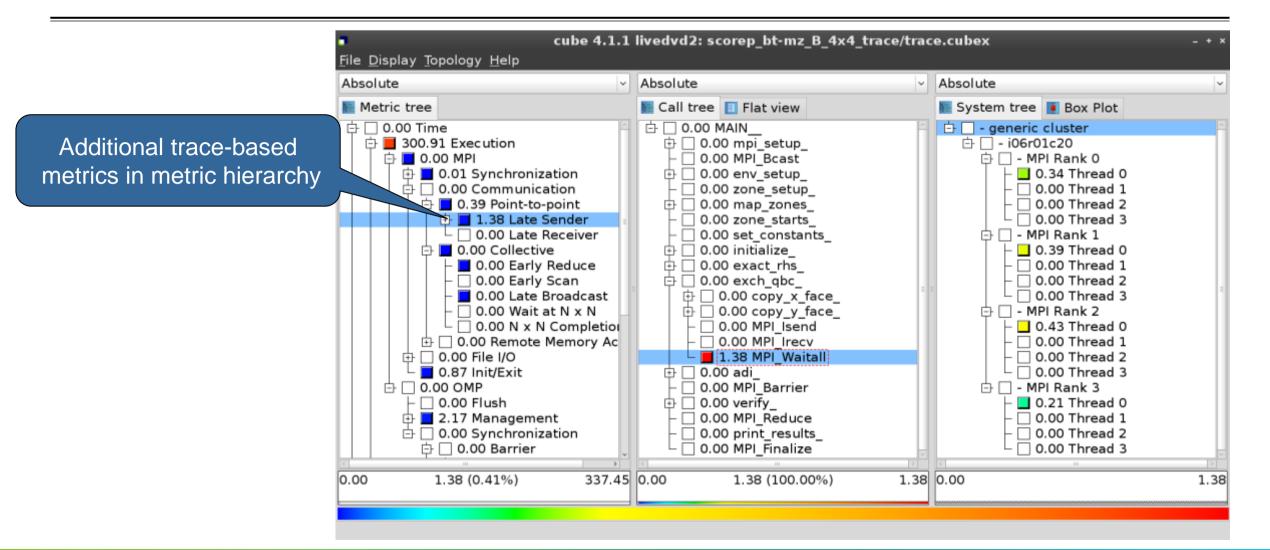
S=C=A=N: Mon Oct 26 16:20:59 2015: Collect done (status=0) 123s

 Starts measurement with collection of trace files ...

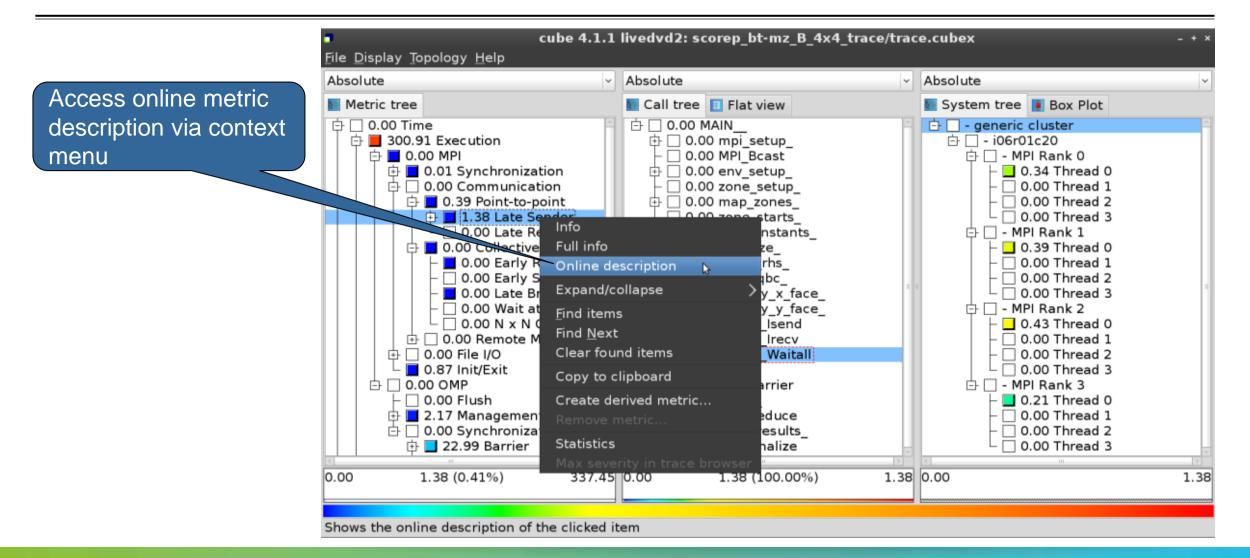
BT-MZ trace measurement ... analysis

<pre>S=C=A=N: Mon Oct 26 18:12:54 2015: Analyze start /usr/bin/srun -n 32 /home/apps/scalasca/2.2.2/bin/scout.hyb \ ./scorep_bt-mz_C_32xO_trace/traces.otf2 SCOUT Copyright (c) 1998-2015 Forschungszentrum Juelich GmbH Copyright (c) 2009-2014 German Research School for Simulation Sciences GmbH</pre>
Analyzing experiment archive ./scorep_bt-mz_C_32x0_trace/traces.otf2
Opening experiment archive done (0.033s). Reading definition data done (0.030s). Reading event trace data done (0.111s). Preprocessing done (0.072s). Analyzing trace data done (2.707s). Writing analysis report done (0.222s).
Max. memory usage : 61.559MB
Total processing time : 3.223s S=C=A=N: Mon Oct 26 18:12:58 2015: Analyze done (status=0) 4s

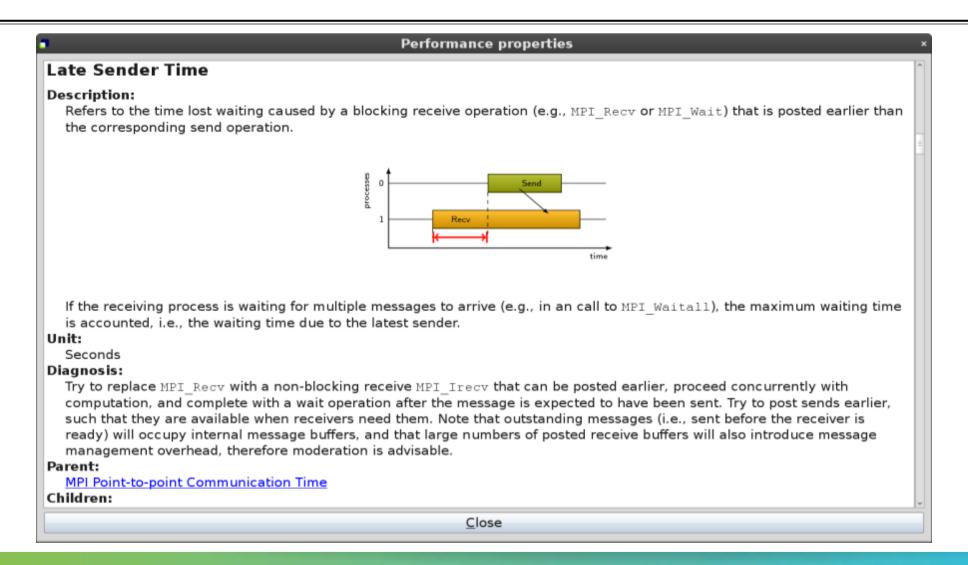
 Continues with automatic (parallel) analysis of trace files


scout.log

BT-MZ trace analysis report exploration

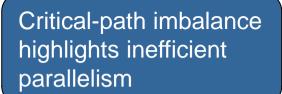

 Produces trace analysis report in experiment directory containing trace-based waitstate metrics

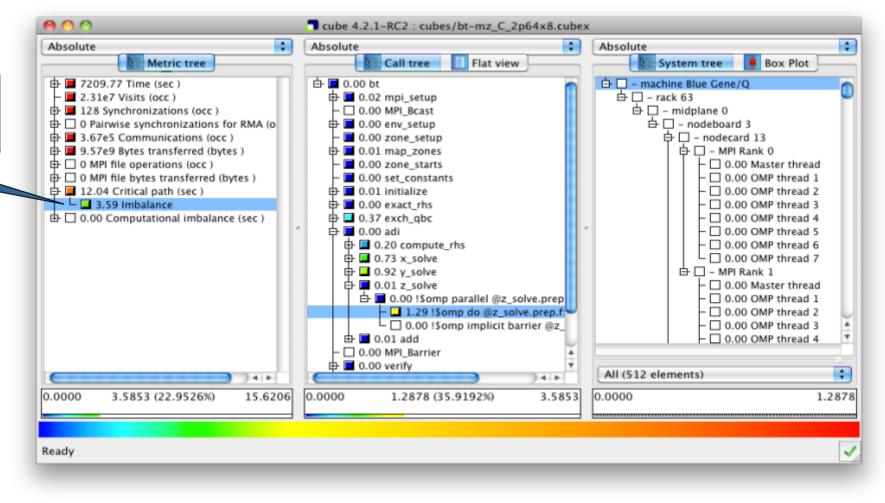
% square scorep_bt-mz_C_32x0_trace INFO: Post-processing runtime summarization result... INFO: Post-processing trace analysis report... INFO: Displaying ./scorep_bt-mz_C_32x0_trace/trace.cubex...


Post-processed trace analysis report

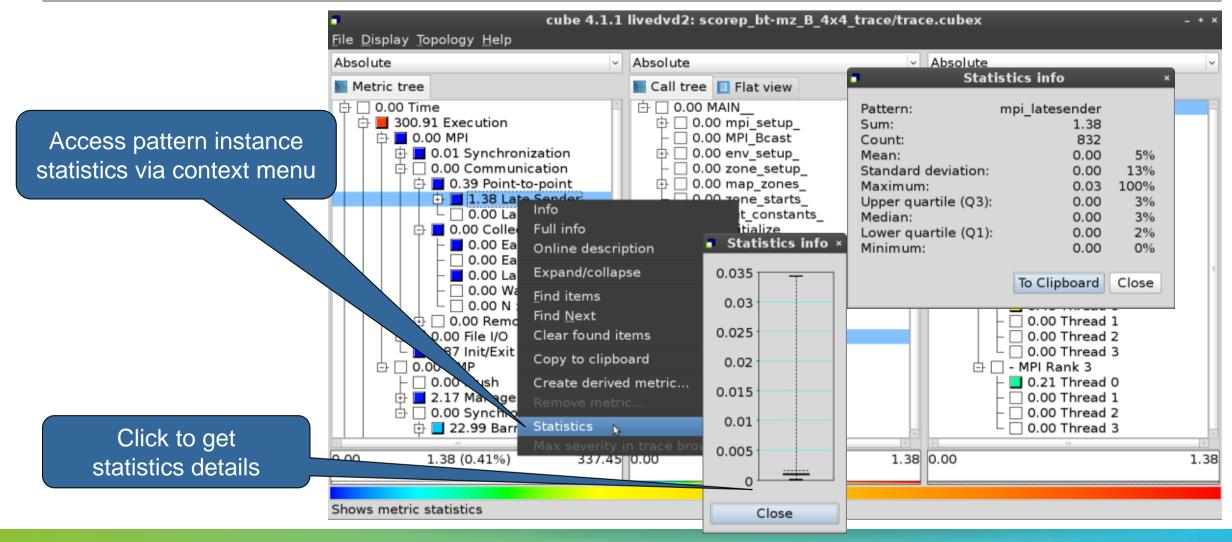
Online metric description

Online metric description


VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING


Critical-path analysis

000 cube 4.2.1-RC2 : cubes/bt-mz C 2p64x8.cubex • • ٢ Absolute Absolute Absolute Metric tree Call tree System tree Flat view Box Plot 由 📕 7209.77 Time (sec) 🗄 🗌 – machine Blue Gene/Q 中 🗖 0.01 bt 由 □ - rack 63 2.31e7 Visits (occ.) 🖶 🔲 0.03 mpi setup Ġ □ - midplane 0 128 Synchronizations (occ) 0.00 MPI Bcast Critical-path profile shows O Pairwise synchronizations for RMA (o 🗗 🗖 0.00 env_setup d □ - nodecard 13 3.67e5 Communications (occ) 0.00 zone setup wall-clock time impact 9.57e9 Bytes transferred (bytes) 🗄 🗖 0.01 map_zones 由 □ – MPI Rank 0 O MPI file operations (occ) 0.00 zone starts 0.00 Master thread O MPI file bytes transferred (bytes) 0.00 set constants 0.00 OMP thread 1 🖶 📕 15.62 Critical path (sec) 0.04 initialize 0.00 OMP thread 2 由 0.00 Computational imbalance (sec) 🗗 🔲 0.02 exact rhs 0.00 OMP thread 3 🕀 🗖 1.06 exch abc 0.00 OMP thread 4 占 🔲 0.02 adi - 0.00 OMP thread 5 1.49 compute rhs 0.00 OMP thread 6 由 ⊒ 3.74 x solve - 0.00 OMP thread 7 🕀 🗖 4.49 v solve B - MPI Rank 1 🗗 🗖 0.04 z solve 0.00 Master thread 占 🗖 0.01 !\$omp parallel @z_solve.prep 0.00 OMP thread 1 - 4.49 !Somp do @z_solve.prep.f: 0.00 OMP thread 2 0.01 !Somp implicit barrier @z 0.00 OMP thread 3 ¥ 🕂 🗖 0.13 add 0.00 OMP thread 4 0.00 MPI Barrier 🖶 🔲 0.02 verify : All (512 elements) 14 + 0.0000 0.0000 0.0000 15.6206 (100.0000%) 15.6206 15.6206 4.4934 4.4934 (28.7656%) ~ Ready


VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Critical-path analysis

Pattern instance statistics

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Further information

Scalable performance analysis of large-scale parallel applications

- toolset for scalable performance measurement & analysis of MPI, OpenMP & hybrid parallel applications
- supporting most popular HPC computer systems
- available under New BSD open-source license
- sources, documentation & publications:
 - http://www.scalasca.org
 - mailto: scalasca@fz-juelich.de

