
VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Periscope Tuning Framework

Michael Firbach
Technische Universität München

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Outline

▪Overview of the Periscope Tuning Framework
▪ Features
▪ Tuning plugins

▪Hands-on: Importance analysis
▪Hands-on: Using the CFS plugin

19TH VI-HPS TUNING WORKSHOP (SANTIAGO, CHILE, OCT 27TH-29TH, 2015) 2

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Overview of the Periscope Tuning
Framework

19TH VI-HPS TUNING WORKSHOP (SANTIAGO, CHILE, OCT 27TH-29TH, 2015)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Overview of the Periscope Tuning Framework

PTF is a framework for automated analysis
and tuning.

▪Distributed online tool
▪Based on expert knowledge
▪Currently being developed in Score-E
(BMBF) and READEX (EU-FP7)
▪Open source
▪Homepage: http://periscope.in.tum.de/

19TH VI-HPS TUNING WORKSHOP (SANTIAGO, CHILE, OCT 27TH-29TH, 2015) 4

Version 1.1
▪Current release, on download page
▪Uses custom measurement
infrastructure

Version 2.0
▪Beta-version, future development
▪Does not have all features of 1.1 yet
▪Uses Score-P measurement
infrastructure
▪Used in this course

http://periscope.in.tum.de/

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Overview of the Periscope Tuning Framework

PTF is a framework designed to be extended:
▪ It provides the infrastructure to instrument the application, run it, take
measurements and apply optimizations
▪ The actual tuning is done by tuning plugins
▪ Plugins address one specific optimization each (e.g. compiler flags, MPI settings, parallelism-

capping, energy-tuning, ...)
▪ The expert knowledge about specific optimizations is in the plugins, not in the framework
▪ Capabilities of PTF is determined by the available plugins

Application requirements:
▪SPMD
▪Repetitive main loop (timesteps, refinement iterations, etc.)
▪Many scientific codes qualify

19TH VI-HPS TUNING WORKSHOP (SANTIAGO, CHILE, OCT 27TH-29TH, 2015) 5

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Tuning plugins

How tuning plugins work

▪All tuning plugins follow the lifecycle to the
right
▪During the lifecycle, scenarios will be created
and executed
▪ For each scenario, plugins can:
▪ request performance properties
▪ apply tuning actions
▪ re-compile or re-run the application

Please note: This is a very simplified picture!

19TH VI-HPS TUNING WORKSHOP (SANTIAGO, CHILE, OCT 27TH-29TH, 2015) 6

Initialize
Instrumentation

and Analysis

Create scenarios

Test scenarios

Finalize

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Properties

▪All analysis and tuning functions are based on properties
▪ During the application run, Periscope tests various hypotheses about the performance
▪ When a hypothesis is fulfilled by measurement data, a property is generated
▪ Properties are generated for each relevant process and code region

▪Hypothesis examples:
▪ “This is an important code region for overall execution time”
▪ “This region is not energy-efficient”
▪ “OpenMP threads are imbalanced”
▪ …

▪ The severity of the property indicates how strong the impact is on the overall
performance

19TH VI-HPS TUNING WORKSHOP (SANTIAGO, CHILE, OCT 27TH-29TH, 2015) 7

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Software stack

▪Score-P gathers measurement data and
applies tuning actions (one for each
process)

▪ PTF agents connect to online access
interface and evaluate properties from
measurement data

▪ The PTF frontend exists only once
▪ Central accumulation of properties
▪ Runs the plugin to generate tuning decisions

19TH VI-HPS TUNING WORKSHOP (SANTIAGO, CHILE, OCT 27TH-29TH, 2015) 8

Score-P measurement infrastructure

Online Access Interface

Plugin Plugin Plugin

Periscope Tuning Framework

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Examples of tuning plugins

▪Compiler flag selection (CFS)
▪ Determines optimal combination of compiler flags
▪ Supports different compilers
▪ Very portable

▪Dynamic voltage and frequency scaling (DVFS)
▪ Modifies CPU voltage & frequency to consume less energy
▪ Weighted against increase in runtime
▪ Available on selected systems ony (root access / energy daemon required)

▪MPI parameters
▪ Optimizes MPI settings for given application
▪ Some MPI implementations ignore settings

See http://periscope.in.tum.de/ for a full list of plugins.

19TH VI-HPS TUNING WORKSHOP (SANTIAGO, CHILE, OCT 27TH-29TH, 2015) 9

http://periscope.in.tum.de/

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Hands-on: Importance analysis

Finding important code regions

19TH VI-HPS TUNING WORKSHOP (SANTIAGO, CHILE, OCT 27TH-29TH, 2015)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Hands-on: Importance analysis

In this exercise, you will:
▪ Perform the most basic automated performance analysis
▪Define a Score-P online access region
▪ Analysis and tuning is done on each entry of this region
▪ Should be repetitive
▪ Additions to your own application (Fortran, C and C++):

#include "SCOREP_User.inc"
SCOREP_USER_REGION_DEFINE(OA_Phase)

SCOREP_USER_OA_PHASE_BEGIN(OA_Phase, "foo", 0)
// important code here
SCOREP_USER_OA_PHASE_END(OA_Phase)

19TH VI-HPS TUNING WORKSHOP (SANTIAGO, CHILE, OCT 27TH-29TH, 2015) 11

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Hands-on: Importance analysis

▪ I have prepared an instrumented version of BT-MZ:
$ cp -r /home/courses/instructor06/NPB3.3-MZ-MPI_instrumented ~
$ cd ~/NPB3.3-MZ-MPI_instrumented

▪Add to .bashrc:
module load scorep
module load periscope/2.0.0

▪Copy the Periscope config file to your home:
$ cp /home/courses/instructor06/.periscope ~

19TH VI-HPS TUNING WORKSHOP (SANTIAGO, CHILE, OCT 27TH-29TH, 2015) 12

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Overview of the Periscope Tuning Framework

▪Note that I have modified BT-MZ’s config/make.def to instrument with online
access:
F77 = scorep --online-access --user mpiifort -cpp

▪Build the benchmark (smaller class now, since we are doing a lot of runs):
$ make bt-mz CLASS=A NPROCS=4

▪Command line to run Periscope with Importance analysis:
psc_frontend --phase="foo" --apprun=./bt-mz.A.4 --mpinumprocs=4 --force-
localhost --strategy=Importance --debug=2

▪Run job script with:
$ cd bin
$ sbatch jobscript_importance.slurm

19TH VI-HPS TUNING WORKSHOP (SANTIAGO, CHILE, OCT 27TH-29TH, 2015) 13

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Hands-on: Importance analysis

▪Results:
$ cat out.txt

Procs Region Location Severity Description

P 0; foo; 27; psc_file_name_none:213; 100.000; ExecTimeImportance
P 3; foo; 27; psc_file_name_none:213; 100.000; ExecTimeImportance
[...]
P 0; adi_; 7; adi.f:0; 99.895; ExecTimeImportance
P 3; adi_; 7; adi.f:0; 97.640; ExecTimeImportance
[...]
P 2; z_solve_; 7; z_solve.f:0; 32.436; ExecTimeImportance
P 1; z_solve_; 7; z_solve.f:0; 32.358; ExecTimeImportance
[...]

▪Note: Properties are generated for each process
▪ Written to XML file for further analysis

▪ Line numbers not yet working with compiler-instrumented Fortran codes :-(

19TH VI-HPS TUNING WORKSHOP (SANTIAGO, CHILE, OCT 27TH-29TH, 2015) 14

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Hands-on: Importance analysis

Other analysis strategies are available (besides Importance analysis):
▪OpenMP load imbalances
▪MPI load imbalances
▪ Energy inefficiencies
▪…

▪Still incomplete support in Periscope 2.0

19TH VI-HPS TUNING WORKSHOP (SANTIAGO, CHILE, OCT 27TH-29TH, 2015) 15

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Hands-on: Using the CFS-plugin

Finding the optimal combination of compiler flags

19TH VI-HPS TUNING WORKSHOP (SANTIAGO, CHILE, OCT 27TH-29TH, 2015)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Hands-on: Importance analysis

▪ Many compiler flags for
code generation

▪ All possible combinations
form a search space

▪ For every search step, the
application is rebuilt and
re-run

▪ Result of the search is
optimal flag combination

Applicable to:
▪ Compute-bound
applications

▪ Single-core optimization

19TH VI-HPS TUNING WORKSHOP (SANTIAGO, CHILE, OCT 27TH-29TH, 2015) 17

CFS Plug-in

scenarios = flags combinations
Compiler flags

Application search
strategy

Re-compilation
Measurements

Flags
advice

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Hands-on: Using the CFS plugin

Contents of the cfs_config.cfg:

makefile_path = "..";
makefile_flags_var = "CFS_FLAGS";
makefile_args = "bt-mz CLASS=A NPROCS=4";
application_src_path = "../BT-MZ";
make_selective = "false";

search_algorithm = "exhaustive";

tp "OPT" = "-O" ["1", "2", "3"];
tp "FAST" = " " [" ", "-xHOST"];

19TH VI-HPS TUNING WORKSHOP (SANTIAGO, CHILE, OCT 27TH-29TH, 2015) 18

Build
instructions

Search
strategy
Flags to test
(2×3 scenarios)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Hands-on: Using the CFS plugin

▪Modify BT-MZ’s config/make.def to add a place for the compiler flags:
F77 = scorep --online-access --nocompiler --user mpiifort -cpp
[...]
FFLAGS = ${CFS_FLAGS}

▪Compiler flags to be tested are inserted at ${CFS_FLAGS}
▪ --nocompiler reduces overhead (only our custom region is instrumented)

▪Run job script with:
$ cd bin
$ sbatch jobscript_cfs.slurm
$ tail -F out.txt

19TH VI-HPS TUNING WORKSHOP (SANTIAGO, CHILE, OCT 27TH-29TH, 2015) 19

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Hands-on: Using the CFS plugin

My results on Leftraru:

Scenario | Severity
0 | 4.96712
1 | 4.88561
2 | 4.43144
3 | 4.25404
4 | 4.49323
5 | 4.16391

▪ Worst to best case: about 16% reduction
▪ Which flag has had more impact?

19TH VI-HPS TUNING WORKSHOP (SANTIAGO, CHILE, OCT 27TH-29TH, 2015) 20

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Hands-on: Using the CFS plugin

Advanced features for big searches (see User’s Guide):

▪ Other search strategies, like individual search:
▪ Creates scenarios with only one flag altered at a time
▪ Might miss the optimal combination
▪ Much faster (linear complexity)

▪ Selective make:
▪ Periscope can determine relevant source files automatically and re-build only those
▪ Or, user provides list of files
▪ Selected files are touched, then the application is re-built

▪ Periscope can suggest flags to test for a specific compiler

19TH VI-HPS TUNING WORKSHOP (SANTIAGO, CHILE, OCT 27TH-29TH, 2015) 21

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Hands-on: Using the CFS plugin

What you can expect:

▪ Performance increase will be moderate in most cases (maybe 5% to 10%)

▪ However, you don’t invest a lot of time
▪ Instrument application
▪ Configure plugin
▪ Plugin runs without user interaction

▪ Probably a good ratio of time spent and runtime improvement

19TH VI-HPS TUNING WORKSHOP (SANTIAGO, CHILE, OCT 27TH-29TH, 2015) 22

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Done!

Thank you for your attention.

You can now tune your own applications.

19TH VI-HPS TUNING WORKSHOP (SANTIAGO, CHILE, OCT 27TH-29TH, 2015)

