L VIRTUAL INSTITUTE — HIGH PRODUCTIVITY SUPERCOMPUTING
- —pt - :

Introduction to
Parallel Performance Engineering

Marc Schlutter
JSC

(with content used with permission from tutorials
by Bernd Mohr/JSC and Luiz DeRose/Cray)

- [arence Livermore £\, TECHNISCHE UNIVERSITE DE
a“'nea g qumliﬂ!zgmﬂ ug National Laboratory @ g:&?ﬁsi%’ yTE:&ESNAI'IINE‘ElJfY%ELINES

@ = Qe RO RVERSITY TUT =2 O fianivizssias
: niversit UNIVERSITY OF OREG ON
ey Nacional s Sipcompumicin for Simulation Sciences Miinchen

VARTYUALANSTITUTE = HIGH PRODUCTIVITY SUPERCOMPUTING

Performance: an old problem

!lll Ill [ki || L ORL L8

ol

1 1 H 'H I} ||'l|i IHE!

' 1| ml ||"'lI '

y

v

"‘__'—"L" e

“The most constant difficulty in contriving
DTETE e eI the engine has arisen from the desire to
reduce the time in which the calculations

were executed to the shortest which is
possible.”

Charles Babbage
1791 — 1871

18TH VI-HPS TUNING WORKSHOP (UGA, GRENOBLE, 18TH-22TH MAY 2015) _

VARTYUALANSTITUTE = HIGH PRODUCTIVITY SUPERCOMPUTING

Today: the “free lunch” is over

= Moore's law is still in charge, but o
= Clock rates no longer increase 109 MgsrEsLaw
= Performance gains only through

increased parallelism

. . . f | . m=== Transistors
= Optimizations of applications more loff == ClockSpeed (Mna
difficult === Power (W) ===
)])) e Perf/Clock tick
n Increasmg appllcatlon compIeX|ty
= Multi-physics
= Multi-scale 102f --

= Increasing machine complexity
= Hierarchical networks / memory

= More CPUs / multi-core g
= Every doubling of scale reveals a new bottleneck! .1 /-

1970 1980 1990 2000 2010

18TH VI-HPS TUNING WORKSHOP (UGA, GRENOBLE, 18TH-22TH MAY 2015) 3

VARTYUALANSTITUTE = HIGH PRODUCTIVITY SUPERCOMPUTING

Performance factors of parallel applications

= “Sequential” performance factors

= Computation
% Choose right algorithm, use optimizing compiler

= Cache and memory
& Tough! Only limited tool support, hope compiler gets it right

= Input / output
< Often not given enough attention

= “Parallel” performance factors
= Partitioning / decomposition
= Communication (i.e., message passing)
= Multithreading

= Synchronization / locking
& More or less understood, good tool support

18TH VI-HPS TUNING WORKSHOP (UGA, GRENOBLE, 18TH-22TH MAY 2015) 6

VARTYUALANSTITUTE = HIGH PRODUCTIVITY SUPERCOMPUTING

Tuning basics

= Successful engineering is a combination of
= The right algorithms and libraries
= Compiler flags and directives
= Thinking !!!
= Measurement is better than guessing
= To determine performance bottlenecks

= TOo compare alternatives

= To validate tuning decisions and optimizations
& After each step!

18TH VI-HPS TUNING WORKSHOP (UGA, GRENOBLE, 18TH-22TH MAY 2015) 7

VARTYUALANSTITUTE = HIGH PRODUCTIVITY SUPERCOMPUTING

However...

“We should forget about small efficiencies,
say 97% of the time: premature optimization

is the root of all evil.”

Charles A. R. Hoare

= It's easier to optimize a slow correct program than to debug a fast incorrect one
% Nobody cares how fast you can compute a wrong answer...

18TH VI-HPS TUNING WORKSHOP (UGA, GRENOBLE, 18TH-22TH MAY 2015) I _

VARTYUALANSTITUTE = HIGH PRODUCTIVITY SUPERCOMPUTING

Performance engineering workflow

4 . . .
ePrepare application with symbols
e Insert extra code (probes/hooks)

= Collection of performance data
= Aggregation of performance data

_ Preparation Measurement

e Optimization

e Calculation of metrics

= ldentification of performance
problems

e Presentation of results

- Modifications intended to
eliminate/reduce performance
problem

-

VARTYUALANSTITUTE = HIGH PRODUCTIVITY SUPERCOMPUTING

The 80/20 rule

= Programs typically spend 80% of their time in 20% of the code

= Programmers typically spend 20% of their effort to get 80% of the total speedup

possible for the application
% Know when to stop!

= Don't optimize what does not matter
& Make the common case fast!

“If you optimize everything,
you will always be unhappy.”

Donald E. Knuth

18TH VI-HPS TUNING WORKSHOP (UGA, GRENOBLE, 18TH-22TH MAY 2015) 10 I

VARTYUALANSTITUTE = HIGH PRODUCTIVITY SUPERCOMPUTING

Metrics of performance

= What can be measured?
= A count of how often an event occurs
= E.g., the number of MPI point-to-point messages sent

= The duration of some interval
= E.g., the time spent these send calls

= The size of some parameter
= E.g., the number of bytes transmitted by these calls

s Derived metrics

= E.g., rates / throughput
= Needed for normalization

18TH VI-HPS TUNING WORKSHOP (UGA, GRENOBLE, 18TH-22TH MAY 2015) 11

VARTYUALANSTITUTE = HIGH PRODUCTIVITY SUPERCOMPUTING

Example metrics

s EXxecution time
= Number of function calls

= CPI
= CPU cycles per instruction
= FLOPS

= Floating-point operations executed per second g

“math” Operations?

HW Operations?
HW Instructions?
32-/64-bit? ...

T —
12

18TH VI-HPS TUNING WORKSHOP (UGA, GRENOBLE, 18TH-22TH MAY 2015)

VARTYUALANSTITUTE = HIGH PRODUCTIVITY SUPERCOMPUTING

Execution time

= Wall-clock time
= Includes waiting time: 1I/0, memory, other system activities
= In time-sharing environments also the time consumed by other applications

= CPU time
= Time spent by the CPU to execute the application

= Does not include time the program was context-switched out
= Problem: Does not include inherent waiting time (e.g., 1/0)
= Problem: Portability? What is user, what is system time?

s Problem: Execution time is hon-deterministic
= Use mean or minimum of several runs

18TH VI-HPS TUNING WORKSHOP (UGA, GRENOBLE, 18TH-22TH MAY 2015) 13

X > VARTYUALANSTITUTE = HIGH PRODUCTIVITY SUPERCOMPUTING

Inclusive vs. Exclusive values

s Inclusive

= Information of all sub-elements aggregated into single value
= EXclusive

= Information cannot be subdivided further

int foo()

4 1

{ int a;
a=1+ 1;
Inclusive < Exclusive bar();
{ a=a+ 1;
_ return a;

18TH VI-HPS TUNING WORKSHOP (UGA, GRENOBLE, 18TH-22TH MAY 2015)

14

VARTYUALANSTITUTE = HIGH PRODUCTIVITY SUPERCOMPUTING

Classification of measurement techniques

= How are performance measurements triggered?
= Sampling
= Code instrumentation

= How is performance data recorded?

= Profiling / Runtime summarization
= Tracing

= How is performance data analyzed?
= Online
= Post mortem

18TH VI-HPS TUNING WORKSHOP (UGA, GRENOBLE, 18TH-22TH MAY 2015) 15

VARTYUALANSTITUTE = HIGH PRODUCTIVITY SUPERCOMPUTING

Sampling
t t t t t t t t
! £ § { P P { §
o | EE | I N . o
{ . .
* Running program is periodically interrupted to take int i1;
measurement for (i=0; ¥ < 3; i++)
= Timer interrupt, OS signal, or HWC overflow Too(1);
= Service routine examines return-address stack return O;
» Addresses are mapped to routines using symbol table ks
Information void foo(int i)
» Statistical inference of program behavior 1
» Not very detailed information on highly volatile metrics if (i >0)
= Requires long-running applications foo(n — 1);
= Works with unmodified executables 1

18TH VI-HPS TUNING WORKSHOP (UGA, GRENOBLE, 18TH-22TH MAY 2015) 16

VARTYUALANSTITUTE = HIGH PRODUCTIVITY SUPERCOMPUTING

Instrumentation
t t t t. tt t t t,. bt t
i ¢ P P 1 13 $° I kA
—] N N I
i int 1;
* Measurement code is inserted such that every event Enter(“main”);
_ _ _ for (1=0; 1 < 3; 1++)
of interest is captured directly foo(i):
= Can be done in various ways kggxsr(]“na?in");

= Advantage: 3}
= Much more detailed information

) void foo(int 1)
* Disadvantage:

= Processing of source-code / executable E?tglifgfgg)
necessary foo(i — 1)
= Large relative overheads for small functions Leave(“fo0™);

18TH VI-HPS TUNING WORKSHOP (UGA, GRENOBLE, 18TH-22TH MAY 2015) 17

VARTYUALANSTITUTE = HIGH PRODUCTIVITY SUPERCOMPUTING

Instrumentation techniques

= Static instrumentation
= Program is instrumented prior to execution

= Dynamic instrumentation
= Program is instrumented at runtime

= Code is inserted

= Manually

= Automatically
= By a preprocessor / source-to-source translation tool
= By a compiler
= By linking against a pre-instrumented library / runtime system
= By binary-rewrite / dynamic instrumentation tool

18TH VI-HPS TUNING WORKSHOP (UGA, GRENOBLE, 18TH-22TH MAY 2015) 18

VARTYUALANSTITUTE = HIGH PRODUCTIVITY SUPERCOMPUTING

Critical I1ssues

= Accuracy

= Intrusion overhead
= Measurement itself needs time and thus lowers performance

= Perturbation
= Measurement alters program behaviour
= E.g., memory access pattern

= Accuracy of timers & counters

= Granularity
= How many measurements?
= How much information / processing during each measurement?

% Tradeoff: Accuracy vs. Expressiveness of data

18TH VI-HPS TUNING WORKSHOP (UGA, GRENOBLE, 18TH-22TH MAY 2015)

19

VARTYUALANSTITUTE = HIGH PRODUCTIVITY SUPERCOMPUTING

Classification of measurement techniques

= How are performance measurements triggered?
= Sampling
= Code instrumentation

= How is performance data recorded?
= Profiling / Runtime summarization
= Tracing

= How is performance data analyzed?

= Online
= Post mortem

18TH VI-HPS TUNING WORKSHOP (UGA, GRENOBLE, 18TH-22TH MAY 2015) 20

VARTYUALANSTITUTE = HIGH PRODUCTIVITY SUPERCOMPUTING

Profiling /7 Runtime summarization

= Recording of aggregated information
= Jotal, maximum, minimum, ...

= FOr measurements
™ Time

= Counts
= Function calls
= Bytes transferred
= Hardware counters

= Over program and system entities
= Functions, call sites, basic blocks, loops, ...
= Processes, threads

& Profile = summarization of events over execution interval

18TH VI-HPS TUNING WORKSHOP (UGA, GRENOBLE, 18TH-22TH MAY 2015)

21

VARTYUALANSTITUTE = HIGH PRODUCTIVITY SUPERCOMPUTING

Types of profiles

= Flat profile
= Shows distribution of metrics per routine / instrumented region
= Calling context is not taken into account
= Call-path profile
= Shows distribution of metrics per executed call path
= Sometimes only distinguished by partial calling context
(e.g., two levels)
= Special-purpose profiles
= Focus on specific aspects, e.g., MPI calls or OpenMP constructs
= Comparing processes/threads

18TH VI-HPS TUNING WORKSHOP (UGA, GRENOBLE, 18TH-22TH MAY 2015) 22

VARTYUALANSTITUTE = HIGH PRODUCTIVITY SUPERCOMPUTING

Tracing

= Recording detailed information about significant points (events) during execution of

the program

= Enter / leave of a region (function, loop, ...)
= Send / receive a message, ...

s Save information in event record

= Timestamp, location, event type
= Plus event-specific information (e.g., communicator,
sender / receiver, ...)

s Abstract execution model on level of defined events

% Event trace = Chronologically ordered sequence of
event records

18TH VI-HPS TUNING WORKSHOP (UGA, GRENOBLE, 18TH-22TH MAY 2015) 23

Event tracing Local trace A

MONITOR

VARTYUALANSTITUTE = HIGH PRODUCTIVITY SUPERCOMPUTING

Global trace view

Process A
=
instrument
Process B
—

MONITOR

58

ENTER foo

62

SEND to B

64

EXIT foo

Local trace B

58 A |ENTER foo
60 | B | ENTER bar
62| A |SENDto B
64 | A | EXIT foo

68 | B | RECV from A
69 | B | EXIT bar

merg eT

60

ENTER bar

68

RECV from A

69

EXIT bar

18TH VI-HPS TUNING WORKSHOP (UGA, GRENOBLE, 18TH-22TH MAY 2015)

24

VARTYUALANSTITUTE = HIGH PRODUCTIVITY SUPERCOMPUTING

Tracing Pros & Cons

= Tracing advantages

= Event traces preserve the temporal and spatial relationships among individual events
(= context)
= Allows reconstruction of dynamic application behaviour on any required level of abstraction
= Most general measurement technique
= Profile data can be reconstructed from event traces

= Disadvantages

= [races can very quickly become extremely large
= Writing events to file at runtime may causes perturbation

18TH VI-HPS TUNING WORKSHOP (UGA, GRENOBLE, 18TH-22TH MAY 2015)

25

VARTYUALANSTITUTE = HIGH PRODUCTIVITY SUPERCOMPUTING

Classification of measurement techniques

= How are performance measurements triggered?
= Sampling
= Code instrumentation

= How is performance data recorded?
= Profiling / Runtime summarization
= Tracing

= How is performance data analyzed?

= Online
= Post mortem

18TH VI-HPS TUNING WORKSHOP (UGA, GRENOBLE, 18TH-22TH MAY 2015) 26

VARTYUALANSTITUTE = HIGH PRODUCTIVITY SUPERCOMPUTING

Online analysis

= Performance data is processed during measurement run

= Process-local profile aggregation

= More sophisticated inter-process analysis using
= “Piggyback” messages

= Hierarchical network of analysis agents

= Inter-process analysis often involves application steering to interrupt and re-
configure the measurement

18TH VI-HPS TUNING WORKSHOP (UGA, GRENOBLE, 18TH-22TH MAY 2015) 27

VARTYUALANSTITUTE = HIGH PRODUCTIVITY SUPERCOMPUTING

Post-mortem analysis

s Performance data is stored at end of measurement run

= Data analysis is performed afterwards
= Automatic search for bottlenecks
= Visual trace analysis

s Calculation of statistics

18TH VI-HPS TUNING WORKSHOP (UGA, GRENOBLE, 18TH-22TH MAY 2015) 28

VARTYUALANSTITUTE = HIGH PRODUCTIVITY SUPERCOMPUTING

Example: Time-line visualization

. main
Global trace view

M foo
M bar
58| A |ENTER foo
60| B | ENTER bar
62| A |SENDto B A —

Post-Mortem
64 | A | EXIT foo —
68 | B |RECV from A Analysis o
69 | B | EXIT bar
I I I I I I I

58 60 62 64 66 68 70

18TH VI-HPS TUNING WORKSHOP (UGA, GRENOBLE, 18TH-22TH MAY 2015) 29

VARTYUALANSTITUTE = HIGH PRODUCTIVITY SUPERCOMPUTING

No single solution is sufficient!

A combination of different methods, tools and techniques is typically needed!
= Analysis
» Statistics, visualization, automatic analysis, data mining, ...
= Measurement
= Sampling / instrumentation, profiling / tracing, ...
» [nstrumentation
= Source code / binary, manual / automatic, ...

18TH VI-HPS TUNING WORKSHOP (UGA, GRENOBLE, 18TH-22TH MAY 2015)

30

VARTYUALANSTITUTE = HIGH PRODUCTIVITY SUPERCOMPUTING

Typical performance analysis procedure

= Do I have a performance problem at all?
= Time / speedup / scalability measurements

= What is the key bottleneck (computation / communication)?
= MPI / OpenMP / flat profiling

= Where is the key bottleneck?
= Call-path profiling, detailed basic block profiling

= Why is it there?
= Hardware counter analysis, trace selected parts to keep trace size manageable

= Does the code have scalability problems?
= Load imbalance analysis, compare profiles at various sizes function-by-function

18TH VI-HPS TUNING WORKSHOP (UGA, GRENOBLE, 18TH-22TH MAY 2015) 31

	Introduction to�Parallel Performance Engineering
	Performance: an old problem
	Today: the “free lunch” is over
	Performance factors of parallel applications
	Tuning basics
	However…
	Performance engineering workflow
	The 80/20 rule
	Metrics of performance
	Example metrics
	Execution time
	Inclusive vs. Exclusive values
	Classification of measurement techniques
	Sampling
	Instrumentation
	Instrumentation techniques
	Critical issues
	Classification of measurement techniques
	Profiling / Runtime summarization
	Types of profiles
	Tracing
	Foliennummer 24
	Tracing Pros & Cons
	Classification of measurement techniques
	Online analysis
	Post-mortem analysis
	Example: Time-line visualization
	No single solution is sufficient!
	Typical performance analysis procedure

