
17th VI-HPS Tuning Workshop (HLRS, Stuttgart, 23-27 Feb 2015) 1

Score-P – A Joint Performance

Measurement Run-Time Infrastructure for

Periscope, Scalasca, TAU, and Vampir

VI-HPS Team

17th VI-HPS Tuning Workshop (HLRS, Stuttgart, 23-27 Feb 2015) 2

Performance engineering workflow

2

• Calculation of metrics

• Identification of
performance problems

• Presentation of results

• Modifications
intended to
eliminate/reduce
performance problem

• Collection of
performance data

• Aggregation of
performance data

• Prepare application
with symbols

• Insert extra code
(probes/hooks)

Preparation Measurement

AnalysisOptimization

17th VI-HPS Tuning Workshop (HLRS, Stuttgart, 23-27 Feb 2015) 3

Score-P Overview

Application

Vampir Scalasca PeriscopeTAU

Accelerator-based
parallelism

(CUDA, OpenCL)

Score-P measurement infrastructure

Event traces (OTF2)

User instrumentation

Call-path profiles
(CUBE4, TAU)

Online
interfaceHardware counter (PAPI, rusage)

Process-level
parallelism

(MPI, SHMEM)

Thread-level
parallelism

(OpenMP, Pthreads)

Instrumentation wrapper

Source code
instrumentation

CUBE TAUdb

17th VI-HPS Tuning Workshop (HLRS, Stuttgart, 23-27 Feb 2015) 4

Partners

• Forschungszentrum Jülich, Germany

• German Research School for Simulation Sciences,

Aachen, Germany

• Gesellschaft für numerische Simulation mbH

Braunschweig, Germany

• RWTH Aachen, Germany

• Technische Universität Dresden, Germany

• Technische Universität München, Germany

• University of Oregon, Eugene, USA

17th VI-HPS Tuning Workshop (HLRS, Stuttgart, 23-27 Feb 2015) 5

Score-P Functionality

• Provide typical functionality for HPC performance tools

• Support all fundamental concepts of partner’s tools

• Instrumentation (various methods)

• Flexible measurement without re-compilation:

– Basic and advanced profile generation

– Event trace recording

– Online access to profiling data

• MPI, OpenMP, and hybrid parallelism (and serial)

• Enhanced functionality (OpenMP 3.0, CUDA,

highly scalable I/O)

17th VI-HPS Tuning Workshop (HLRS, Stuttgart, 23-27 Feb 2015) 6

Design Goals

• Functional requirements

– Generation of call-path profiles and event traces

– Using direct instrumentation, later also sampling

– Recording time, visits, communication data, hardware counters

– Access and reconfiguration also at runtime

– Support for MPI, SHMEM, OpenMP PTHREAD, CUDA, OpenCL

and combinations

• Non-functional requirements

– Portability: all major HPC platforms

– Scalability: petascale

– Low measurement overhead

– Easy and uniform installation through UNITE framework

– Robustness

– Open Source: New BSD License

17th VI-HPS Tuning Workshop (HLRS, Stuttgart, 23-27 Feb 2015) 7

Future Features and Management

• Scalability to maximum available CPU core count

• Support for sampling, binary instrumentation

• Support for new programming models, e.g., PGAS

• Support for new architectures

• Ensure a single official release version at all times

which will always work with the tools

• Allow experimental versions for new features or research

• Commitment to joint long-term cooperation

17th VI-HPS Tuning Workshop (HLRS, Stuttgart, 23-27 Feb 2015) 8

Hands-on: Cray XC40 Hornet

NPB-MZ-MPI / BT

17th VI-HPS Tuning Workshop (HLRS, Stuttgart, 23-27 Feb 2015) 9

Performance Analysis Steps

1. Reference preparation for validation

2. Program instrumentation

3. Summary measurement collection

4. Summary analysis report examination

5. Summary experiment scoring

6. Summary measurement collection with filtering

7. Filtered summary analysis report examination

8. Event trace collection

9. Event trace examination & analysis

17th VI-HPS Tuning Workshop (HLRS, Stuttgart, 23-27 Feb 2015) 10

NPB-MZ-MPI / BT Instrumentation

• Set up prefered program environment compilers

– PrgEnv-cray with CCE compilers is default

– PrgEnv-gnu, PrgEnv-intel, PrgEnv-pgi also available

• Copy tutorial sources to your working directory, ideally

on a parallel filesystem ($SCRATCH)

% module swap PrgEnv-cray PrgEnv-gnu

% cd $SCRATCH

% tar zxvf ~hpcscabw/tutorial/NPB3.3-MZ-MPI.tar.gz

% cd NPB3.3-MZ-MPI

17th VI-HPS Tuning Workshop (HLRS, Stuttgart, 23-27 Feb 2015) 11

NPB-MZ-MPI / BT Instrumentation

• Load required modules

% module use /zhome/academic/HLRS/xhp/xhprt/privatemodules

% module load scorep

% module load cube

% module li

17th VI-HPS Tuning Workshop (HLRS, Stuttgart, 23-27 Feb 2015) 12

NPB-MZ-MPI / BT Instrumentation

• Edit config/make.def to adjust build configuration

– Modify specification of compiler/linker: MPIF77

SITE- AND/OR PLATFORM-SPECIFIC DEFINITIONS

#---

Items in this file may need to be changed for each platform.

#---

COMPFLAGS = -fopenmp -ffixed-line-length-none # gnu

...

#---

The Fortran compiler used for MPI programs

#---

#MPIF77 = ftn

Alternative variants to perform instrumentation

...

MPIF77 = scorep --user ftn

This links MPI Fortran programs; usually the same as ${MPIF77}

FLINK = $(MPIF77)

...

Uncomment the

Score-P compiler

wrapper specification

17th VI-HPS Tuning Workshop (HLRS, Stuttgart, 23-27 Feb 2015) 13

NPB-MZ-MPI / BT Instrumented Build

• Return to root directory and clean-up

• Re-build executable using Score-P compiler wrapper

% make clean

% make bt-mz CLASS=C NPROCS=8

cd BT-MZ; make CLASS=C NPROCS=8 VERSION=

make: Entering directory 'BT-MZ'

cd ../sys; cc -o setparams setparams.c -lm

../sys/setparams bt-mz 4 B

scorep ftn -c -O3 -fopenmp bt.f

[...]

cd ../common; scorep ftn -c -O3 -fopenmp timers.f

scorep ftn –O3 -fopenmp -o ../bin.scorep/bt-mz_B.4 \

bt.o initialize.o exact_solution.o exact_rhs.o set_constants.o \

adi.o rhs.o zone_setup.o x_solve.o y_solve.o exch_qbc.o \

solve_subs.o z_solve.o add.o error.o verify.o mpi_setup.o \

../common/print_results.o ../common/timers.o

Built executable ../bin.scorep/bt-mz_C.8

make: Leaving directory 'BT-MZ'

17th VI-HPS Tuning Workshop (HLRS, Stuttgart, 23-27 Feb 2015) 14

Measurement Configuration: scorep-info

• Score-P measurements are configured via

environmental variables:
% scorep-info config-vars --full

SCOREP_ENABLE_PROFILING

Description: Enable profiling

[...]

SCOREP_ENABLE_TRACING

Description: Enable tracing

[...]

SCOREP_TOTAL_MEMORY

Description: Total memory in bytes for the measurement system

[...]

SCOREP_EXPERIMENT_DIRECTORY

Description: Name of the experiment directory

[...]

SCOREP_FILTERING_FILE

Description: A file name which contain the filter rules

[...]

SCOREP_METRIC_PAPI

Description: PAPI metric names to measure

[...]

SCOREP_METRIC_RUSAGE

Description: Resource usage metric names to measure

[... More configuration variables ...]

17th VI-HPS Tuning Workshop (HLRS, Stuttgart, 23-27 Feb 2015) 15

Summary Measurement Collection

• Change to the directory containing the new executable

before running it with the desired configuration

• Check settings

• Submit job

% cd bin.scorep

% cp ../jobscript/hornet/scorep.pbs .

% vim scorep.pbs

export NPB_MZ_BLOAD=0

export OMP_NUM_THREADS=6

export SCOREP_EXPERIMENT_DIRECTORY=scorep_sum

aprun –n $NPROCS –d $OMP_NUM_THREADS $EXE

% qsub scorep.pbs

17th VI-HPS Tuning Workshop (HLRS, Stuttgart, 23-27 Feb 2015) 16

Summary Measurement Collection

• Check the output of the application run

% less scorep_mzmpibt.o167691

NAS Parallel Benchmarks (NPB3.3-MZ-MPI) - BT-MZ MPI+OpenMP Benchmark

Number of zones: 8 x 8

Iterations: 200 dt: 0.000300

Number of active processes: 4

Use the default load factors with threads

Total number of threads: 16 (4.0 threads/process)

Calculated speedup = 15.96

Time step 1

[... More application output ...]

17th VI-HPS Tuning Workshop (HLRS, Stuttgart, 23-27 Feb 2015) 17

• Creates experiment directory ./scorep_sum containing

– A record of the measurement configuration (scorep.cfg)

– The analysis report that was collated after measurement

(profile.cubex)

• Interactive exploration with CUBE

BT-MZ Summary Analysis Report Examination

% ls

bt-mz_C.8 scorep_sum

% ls scorep_sum

profile.cubex scorep.cfg

% cube scorep_sum/profile.cubex

[CUBE GUI showing summary analysis report]

17th VI-HPS Tuning Workshop (HLRS, Stuttgart, 23-27 Feb 2015) 18

Congratulations!?

• If you made it this far, you successfully used Score-P to

– instrument the application

– analyze its execution with a summary measurement, and

– examine it with one the interactive analysis report explorer GUIs

• ... revealing the call-path profile annotated with

– the “Time” metric

– Visit counts

– MPI message statistics (bytes sent/received)

• ... but how good was the measurement?

– The measured execution produced the desired valid result

– however, the execution took rather longer than expected!

• even when ignoring measurement start-up/completion, therefore

• it was probably dilated by instrumentation/measurement overhead

17th VI-HPS Tuning Workshop (HLRS, Stuttgart, 23-27 Feb 2015) 19

BT-MZ Summary Analysis Result Scoring

• Report scoring as textual output

• Region/callpath classification

– MPI (pure MPI library functions)

– OMP (pure OpenMP functions/regions)

– USR (user-level source local computation)

– COM (“combined” USR + OpenMP/MPI)

– ANY/ALL (aggregate of all region types)

% scorep-score scorep_sum/profile.cubex

Estimated aggregate size of event trace: 159 GB

Estimated requirements for largest trace buffer (max_buf): 20 GB

Estimated memory requirements (SCOREP_TOTAL_MEMORY): 20 GB

(hint: When tracing set SCOREP_TOTAL_MEMORY=20GB to avoid intermediate flushes

or reduce requirements using USR regions filters.)

flt type max_buf[B] visits time[s] time[%] time/visit[us] region

ALL 21,377,442,117 6,554,106,201 4946.18 100.0 0.75 ALL

USR 21,309,225,314 6,537,020,537 2326.51 47.0 0.36 USR

OMP 65,624,896 16,327,168 2607.63 52.7 159.71 OMP

COM 2,355,080 724,640 2.49 0.1 3.43 COM

MPI 236,827 33,856 9.56 0.2 282.29 MPI

USR

USR

COM

COM USR

OMP MPI

159 GB total memory

20 GB per rank!

17th VI-HPS Tuning Workshop (HLRS, Stuttgart, 23-27 Feb 2015) 20

BT-MZ Summary Analysis Report Breakdown

• Score report breakdown by region

% scorep-score -r scorep_sum/profile.cubex

[...]

[...] flt type max_tbc time % region

flt type max_buf[B] visits time[s] time[%] time/visit[us]region

ALL 21,377,442,117 6,554,106,201 4946.18 100.0 0.75 ALL

USR 21,309,225,314 6,537,020,537 2326.51 47.0 0.36 USR

OMP 65,624,896 16,327,168 2607.63 52.7 159.71 OMP

COM 2,355,080 724,640 2.49 0.1 3.43 COM

MPI 236,827 33,856 9.56 0.2 282.29 MPI

USR 6,883,222,086 2,110,313,472 651.44 13.2 0.31 matvec_sub_

USR 6,883,222,086 2,110,313,472 720.38 14.6 0.34 matmul_sub_

USR 6,883,222,086 2,110,313,472 881.32 17.8 0.42 binvcrhs_

USR 293,617,584 87,475,200 29.93 0.6 0.34 binvrhs_

USR 293,617,584 87,475,200 33.03 0.7 0.38 lhsinit_

USR 101,320,128 31,129,600 7.78 0.2 0.25 exact_solution_

USR

USR

COM

COM USR

OMP MPI

More than

18 GB just for

these 6 regions

17th VI-HPS Tuning Workshop (HLRS, Stuttgart, 23-27 Feb 2015) 21

BT-MZ Summary Analysis Score

• Summary measurement analysis score reveals

– Total size of event trace would be ~159 GB

– Maximum trace buffer size would be ~20 GB per rank

• smaller buffer would require flushes to disk during measurement

resulting in substantial perturbation

– 99.8% of the trace requirements are for USR regions

• purely computational routines never found on COM call-paths

common to communication routines or OpenMP parallel regions

– These USR regions contribute around 32% of total time

• however, much of that is very likely to be measurement overhead

for frequently-executed small routines

• Advisable to tune measurement configuration

– Specify an adequate trace buffer size

– Specify a filter file listing (USR) regions not to be measured

17th VI-HPS Tuning Workshop (HLRS, Stuttgart, 23-27 Feb 2015) 22

BT-MZ Summary Analysis Report Filtering

• Report scoring with prospective filter listing 6 USR

regions
% cat ../config/scorep.filt

SCOREP_REGION_NAMES_BEGIN EXCLUDE

binvcrhs*

matmul_sub*

matvec_sub*

exact_solution*

binvrhs*

lhs*init*

timer_*

% scorep-score -f ../config/scorep.filt scorep_sum/profile.cubex

Estimated aggregate size of event trace: 521 MB

Estimated requirements for largest trace buffer (max_buf): 66 MB

Estimated memory requirements (SCOREP_TOTAL_MEMORY): 78 MB

(hint: When tracing set SCOREP_TOTAL_MEMORY=78MB to avoid intermediate flushes

or reduce requirements using USR regions filters.)

521 MB of memory in total,

66 MB per rank!

17th VI-HPS Tuning Workshop (HLRS, Stuttgart, 23-27 Feb 2015) 23

BT-MZ Summary Analysis Report Filtering

• Score report breakdown by region

% scorep-score -r –f ../config/scorep.filt \

> scorep_sum/profile.cubex

flt type max_buf[B] visits time[s] time[%] time/visit[us] region

- ALL 21,377,442,117 6,554,106,201 4946.18 100.0 0.75 ALL

- USR 21,309,225,314 6,537,020,537 2326.51 47.0 0.36 USR

- OMP 65,624,896 16,327,168 2607.63 52.7 159.71 OMP

- COM 2,355,080 724,640 2.49 0.1 3.43 COM

- MPI 236,827 33,856 9.56 0.2 282.29 MPI

* ALL 68,216,855 17,085,673 2622.30 53.0 153.48 ALL-FLT

+ FLT 21,309,225,262 6,537,020,528 2323.88 47.0 0.36 FLT

- OMP 65,624,896 16,327,168 2607.63 52.7 159.71 OMP-FLT

* COM 2,355,080 724,640 2.49 0.1 3.43 COM-FLT

- MPI 236,827 33,856 9.56 0.2 282.29 MPI-FLT

* USR 52 9 2.63 0.1 292158.12 USR-FLT

+ USR 6,883,222,086 2,110,313,472 651.44 13.2 0.31 matvec_sub_

+ USR 6,883,222,086 2,110,313,472 720.38 14.6 0.34 matmul_sub_

+ USR 6,883,222,086 2,110,313,472 881.32 17.8 0.42 binvcrhs_

+ USR 293,617,584 87,475,200 29.93 0.6 0.34 binvrhs_

+ USR 293,617,584 87,475,200 33.03 0.7 0.38 lhsinit_

+ USR 101,320,128 31,129,600 7.78 0.2 0.25 exact_solution_

Filtered
routines

marked

with ‘+’

17th VI-HPS Tuning Workshop (HLRS, Stuttgart, 23-27 Feb 2015) 24

BT-MZ Filtered Summary Measurement

• Set new experiment directory and re-run measurement

with new filter configuration

– Adjust configuration and re-run measurement

– Submit job

%vim scorep.pbs

export OMP_NUM_THREADS=6

export SCOREP_EXPERIMENT_DIRECTORY=scorep_sum_with_filter

export SCOREP_FILTERING_FILE=../config/scorep.filt

aprun –n $NPROCS –d $OMP_NUM_THREADS $EXE

%qsub scorep.pbs

17th VI-HPS Tuning Workshop (HLRS, Stuttgart, 23-27 Feb 2015) 25

Performance Analysis Steps

1. Reference preparation for validation

2. Program instrumentation

3. Summary measurement collection

4. Summary analysis report examination

5. Summary experiment scoring

6. Summary measurement collection with filtering

7. Filtered summary analysis report examination

8. Event trace collection

9. Event trace examination & analysis

17th VI-HPS Tuning Workshop (HLRS, Stuttgart, 23-27 Feb 2015) 26

Warnings and Tips Regarding Tracing

• Traces can become extremely large and unwieldy

– Size is proportional to number of processes/threads (width),

duration (length) and detail (depth) of measurement

• Traces containing intermediate flushes are of little value

Uncoordinated flushes result in cascades of distortion

– Reduce size of trace

– Increase available buffer space

• Traces should be written to a parallel file system

– /work or /scratch are typically provided for this purpose

• Moving large traces between file systems is often

impractical

– However, systems with more memory can analyze larger traces

– Alternatively, run trace analyzers with undersubscribed nodes

17th VI-HPS Tuning Workshop (HLRS, Stuttgart, 23-27 Feb 2015) 27

BT-MZ Trace Measurement Collection...

• Adjust configuration and re-run the application using the

tracing mode of Score-P

• Submit job

% vim scorep.pbs

export OMP_NUM_THREADS=6

export SCOREP_EXPERIMENT_DIRECTORY=scorep_trace

export SCOREP_FILTERING_FILE=../config/scorep.filt

export SCOREP_ENABLE_TRACING=true

export SCOREP_ENABLE_PROFILING=false

export SCOREP_TOTAL_MEMORY=300M

aprun –n $NPROCS –d $OMP_NUM_THREADS $EXE

%qsub scorep.pbs

17th VI-HPS Tuning Workshop (HLRS, Stuttgart, 23-27 Feb 2015) 28

BT-MZ Trace Measurement Collection...

• Separate trace file per thread written straight into new

experiment directory ./scorep_trace

• Interactive trace exploration with Vampir

% vampir scorep_bt-mz_B_4x4_trace/traces.otf2

17th VI-HPS Tuning Workshop (HLRS, Stuttgart, 23-27 Feb 2015) 29

Advanced Measurement Configuration: Metrics

• Recording hardware counters via PAPI

• Also possible to record them only per rank

• Recording operating system resource usage

% export SCOREP_METRIC_PAPI=PAPI_L2_TCM,PAPI_FP_OPS

% export SCOREP_METRIC_PAPI_PER_PROCESS=PAPI_L3_TCM

% export SCOREP_METRIC_RUSAGE_PER_PROCESS=ru_maxrss,ru_stime

17th VI-HPS Tuning Workshop (HLRS, Stuttgart, 23-27 Feb 2015) 30

Advanced Measurement Configuration: Metrics

• Available PAPI metrics

– Preset events: common set of events deemed relevant and

useful for application performance tuning

• Abstraction from specific hardware performance counters,

mapping onto available events done by PAPI internally

– Native events: set of all events that are available on the CPU

(platform dependent)

% papi_avail

% papi_native_avail

Note:
Due to hardware restrictions
- number of concurrently recorded events is limited
- there may be invalid combinations of concurrently recorded events

17th VI-HPS Tuning Workshop (HLRS, Stuttgart, 23-27 Feb 2015) 31

Advanced Measurement Configuration: Metrics

• Available resource usage metrics
% man getrusage

[... Output ...]

struct rusage {

struct timeval ru_utime; /* user CPU time used */

struct timeval ru_stime; /* system CPU time used */

long ru_maxrss; /* maximum resident set size */

long ru_ixrss; /* integral shared memory size */

long ru_idrss; /* integral unshared data size */

long ru_isrss; /* integral unshared stack size */

long ru_minflt; /* page reclaims (soft page faults) */

long ru_majflt; /* page faults (hard page faults) */

long ru_nswap; /* swaps */

long ru_inblock; /* block input operations */

long ru_oublock; /* block output operations */

long ru_msgsnd; /* IPC messages sent */

long ru_msgrcv; /* IPC messages received */

long ru_nsignals; /* signals received */

long ru_nvcsw; /* voluntary context switches */

long ru_nivcsw; /* involuntary context switches */

};

[... More output ...]

Note:
(1) Not all fields are maintained on each

platform.

(2) Check scope of metrics (per process
vs. per thread)

17th VI-HPS Tuning Workshop (HLRS, Stuttgart, 23-27 Feb 2015) 32

Advanced Measurement Configuration: MPI

• Record only for subset of the MPI functions events

• All possible sub-groups
– cg Communicator and group management

– coll Collective functions

– env Environmental management

– err MPI Error handling

– ext External interface functions

– io MPI file I/O

– misc Miscellaneous

– perf PControl

– p2p Peer-to-peer communication

– rma One sided communication

– spawn Process management

– topo Topology

– type MPI datatype functions

– xnonblock Extended non-blocking events

– xreqtest Test events for uncompleted requests

% export SCOREP_MPI_ENABLE_GROUPS=cg,coll,p2p,xnonblock

17th VI-HPS Tuning Workshop (HLRS, Stuttgart, 23-27 Feb 2015) 34

Score-P User Instrumentation API

• Can be used to mark initialization, solver & other phases

– Annotation macros ignored by default

– Enabled with [--user] flag

• Appear as additional regions in analyses

– Distinguishes performance of important phase from rest

• Can be of various type

– E.g., function, loop, phase

– See user manual for details

• Available for Fortran / C / C++

17th VI-HPS Tuning Workshop (HLRS, Stuttgart, 23-27 Feb 2015) 35

Score-P User Instrumentation API (Fortran)

• Requires processing by the C preprocessor

#include "scorep/SCOREP_User.inc"

subroutine foo(…)

! Declarations

SCOREP_USER_REGION_DEFINE(solve)

! Some code…

SCOREP_USER_REGION_BEGIN(solve, “<solver>", \

SCOREP_USER_REGION_TYPE_LOOP)

do i=1,100

[...]

end do

SCOREP_USER_REGION_END(solve)

! Some more code…

end subroutine

17th VI-HPS Tuning Workshop (HLRS, Stuttgart, 23-27 Feb 2015) 36

Score-P User Instrumentation API (C/C++)

#include "scorep/SCOREP_User.h"

void foo()

{

/* Declarations */

SCOREP_USER_REGION_DEFINE(solve)

/* Some code… */

SCOREP_USER_REGION_BEGIN(solve, “<solver>", \

SCOREP_USER_REGION_TYPE_LOOP)

for (i = 0; i < 100; i++)

{

[...]

}

SCOREP_USER_REGION_END(solve)

/* Some more code… */

}

17th VI-HPS Tuning Workshop (HLRS, Stuttgart, 23-27 Feb 2015) 37

Score-P User Instrumentation API (C++)

#include "scorep/SCOREP_User.h"

void foo()

{

// Declarations

// Some code…

{

SCOREP_USER_REGION(“<solver>", SCOREP_USER_REGION_TYPE_LOOP)

for (i = 0; i < 100; i++)

{

[...]

}

}

// Some more code…

}

17th VI-HPS Tuning Workshop (HLRS, Stuttgart, 23-27 Feb 2015) 38

Score-P Measurement Control API

• Can be used to temporarily disable measurement for

certain intervals

– Annotation macros ignored by default

– Enabled with [--user] flag

#include “scorep/SCOREP_User.inc”

subroutine foo(…)

! Some code…

SCOREP_RECORDING_OFF()

! Loop will not be measured

do i=1,100

[...]

end do

SCOREP_RECORDING_ON()

! Some more code…

end subroutine

#include “scorep/SCOREP_User.h”

void foo(…) {

/* Some code… */

SCOREP_RECORDING_OFF()

/* Loop will not be measured */

for (i = 0; i < 100; i++) {

[...]

}

SCOREP_RECORDING_ON()

/* Some more code… */

}

Fortran (requires C preprocessor) C / C++

17th VI-HPS Tuning Workshop (HLRS, Stuttgart, 23-27 Feb 2015) 39

Further Information

Score-P

– Community instrumentation & measurement infrastructure

• Instrumentation (various methods)

• Basic and advanced profile generation

• Event trace recording

• Online access to profiling data

– Available under New BSD open-source license

– Documentation & Sources:

• http://www.score-p.org

– User guide also part of installation:

• <prefix>/share/doc/scorep/{pdf,html}/

– Contact: info@score-p.org

– Bugs: support@score-p.org

