R Y R R VIRTUAL INSTITUTE — HIGH PRODUCTIVITY SUPERCOMPUTING

MPI Runtime Error Detection with MUST

At the 17th VI-HPS Tuning Workshop

Joachim Protze
IT Center RWTH Aachen University
February 2015

Barceions (=) Technische UNIVERSITE DE
Barcsona Universitét VERSAILLES
@ ey G C P 2 “wm Miinchen ST-QUENTIN-EN-YVELINES

U Lawrence Livermore frbilna
J JU L!’Smﬂ National Laboratory gl't'sum

{

O

THE
UNIVERSITY OF OREGON



VARTUALANSTITUTE —-HIGH-PRODUCTIVITY SUPERCOMPUTING

How many issues can you spot in this tiny example?

int main (int argc, char** argv)

{

int rank, size, buf[3];

MP1_Comm_rank (MPI1_COMM_WORLD, &rank);
MP1_Comm_size (MPI_COMM_WORLD, &size);

MP1_ Datatype type;
MP1_Type_contiguous (2, MPI_INTEGER, &type);

MPI_Recv (buf, 2, MPI_INT, size - rank, , MPI_COMM_WORLD, MPI_STATUS_ IGNORE);
MPI_Send (buf, 2, type, size - rank, , MP1_COMM_WORLD);
printf ("'Hello, I am rank %d of %d. ", rank, size);

return ;

} At least 8 Issues In this code example!

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 27/02/2015 2




Content

VARTUALANSTITUTE —-HIGH-PRODUCTIVITY SUPERCOMPUTING

= Motivation
= MPI usage errors

» Examples: Common MPI usage errors
* Including MUST’s error descriptions

= Correctness tools
= MUST usage
= Hands-on

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY

27/02/2015 3



VARTUALANSTITUTE —-HIGH-PRODUCTIVITY SUPERCOMPUTING

Motivation

* MPI programming is error prone
= Portability errors

(Just on some systems, just for some runs)
» Bugs may manifest as:

" Crash | Error more
= Application hanging .
- Finishes obvious

» Questions:
» Why crash/hang?
* |s my result correct?
= Will my code also give correct results on another system?

» Tools help to pin-point these bugs



% X ANVARTYUALANST ITUTE —-HIGH-PRODUCTIVITY SUPERCOMPUTING

Common MPI1 Error Classes

4 )
* Common syntactic errors: Tool to use:

* Incorrect arguments ]

= Resource usage MUST,

» Lost/Dropped Requests : :

s Buffer usage Statlc anaIySIS tOOI,

» Type-matching

» Deadlocks (DEbugger)
\ 4
4 )

= Semantic errors that are correct in terms of MPI standard, but do not

match the programmers intent:
» Displacement/Size/Count errors

Tool to use:
Debugger)

\_

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 27/02/2015 5



VARTUALANSTITUTE —-HIGH-PRODUCTIVITY SUPERCOMPUTING

MPI Usage Errors

» Complications in MPI usage:
* Non-blocking communication
» Persistent communication
= Complex collectives (e.g. Alltoallw)
» Derived datatypes
» Non-contiguous buffers

= Error Classes include:
» |[ncorrect arguments
= Resource errors
= Buffer usage
= Type matching
= Deadlocks

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 27/02/2015 6



Content

VARTUALANSTITUTE —-HIGH-PRODUCTIVITY SUPERCOMPUTING

= Motivation
= MPI usage errors

» Examples: Common MPI usage errors
* Including MUST’s error descriptions

= Correctness tools
= MUST usage
= Hands-on

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY

27/02/2015 7



VARTUALANSTITUTE —-HIGH-PRODUCTIVITY SUPERCOMPUTING

SKipping some errors

» Missing MPI_Init:
» Current release doesn’t start to work, implementation in progress
= Missing MPI_Finalize:
» Current release doesn’t terminate all analyses, work in progress
» Src/dest rank out of range (size-rank): leads to crash, use crash safe version of tool

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 27/02/2015 8



VARTUALANSTITUTE —-HIGH-PRODUCTIVITY SUPERCOMPUTING

Fixed these errors:

int main (int argc, char** argv)

{
int rank, size, buf[&];
MPI_Init (&argc, &argv);
MP1_Comm_rank (MPI1_COMM_WORLD, &rank);
MP1_Comm_size (MPI_COMM_WORLD, &size);
MP1_Datatype type;
MP1_Type_ contiguous (2, MPI_INTEGER, &type);
MP1_Recv (buf, 2, MPI_INT, size - rank - 1, , MPI_COMM_WORLD, MPI_STATUS IGNORE);
MP1_Send (buf, 2, type, size - rank - 1, , MP1_COMM_WORLD);
printf (“"Hello, 1 am rank %d of %d. ", rank, size);
MP1_Finalize ();
return O;
+

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 27/02/2015 9



VARTUALANSTITUTE —-HIGH-PRODUCTIVITY SUPERCOMPUTING

Must detects deadlocks

e What? Where? Detalls

MUST_Output.heml \
rences V

M Message
References of a representative
]Jr(l(:i—:h!i:
The application lssued a set of MPI calls that can cause a deadlock! A graphical representation of this situation 1s available in a detailed deadlock view reference 1 rank 0: MPL Recv
[ETTim {MUST Output-iiles™UST Deadlock bimlh References 1-2 list the involved calls (limited to the first 5 calls, further calls may be involved). The |15t occurrence) called from

application still runs, if the deadlock\ganifested (e.q. caused a hang on this MP] implementation) you can attach to the involved ranks with a debuegger #0 main@example.c:15

or abort the application (if necessary)

reference 2 rank 1: MPI_Recv
15t sccurrence) called from:
#) main@example.c:15

Click for graphical representation of
the detected deadlock situation.

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 27/02/2015 10



VARTUALANSTITUTE —-HIGH-PRODUCTIVITY SUPERCOMPUTING

| MUST Outpusrie 3| T MUST Outputile x [ .o o
[ @ file:ymermeipi41 6008MUST/example/MUST_Cutput-flesMUST Deadback bt n &

~ & [~

MUST Deadlock Details, date: Thu Nov 28 13:38:06 2013,

Back to MUST error report

8 application iss a set of MPI calls that can cause a deadlock! The graphs below show details on this situation. This includes & wait-for graph that shows active wait-for dependencies batween the
processes that cause the deadlock. Note that this process set only inchides processes that cause the deadlock and no further processes, A legend details the wait-for graph components in addition , while a
parallel call stack view summarizes the locations of the MPI calls that cause the deadlock . Below these graphs, a message queue graph shows active and unmatched point-to-point communications. This
graph only includes operations that could have been intended to match a puint—tu-gnint operation that is relevant to the deadlock situation. Finally, a parallel call stack shows the locations of any operation
in the parallel call stack. The leafs of this call stack graph show the components of the message queue graph that they span. The application still runs, if the deadlock manifested (e.g. caused a hang on this
MPI implementation) you can attach to the involved ranks with a debugger or abort the application (if necessary).

PP COMM WORLD
Active MPI Call
0: MPI_Recv
comm=A, lap= 123} comm= Sub Operation
Rank 0 waits
I: MPI_Rec
forrank 1
A waits for B and C
A B
and vv.
C
maindexample.c: 15
) H -
Simple call
MPI_Recv . :
stack for this N
example.




VARTUALANSTITUTE —-HIGH-PRODUCTIVITY SUPERCOMPUTING

Fix1: use asynchronous receive

int main (int argc, char** argv)

{

int rank, size, buf[3];
Use asynchronous

MPI_Init (&argc, &argv); receive: (MPI_Irecv)

MP1_Comm_rank (MPI1_COMM_WORLD, &rank);
MP1_Comm_size (MPI_COMM_WORLD, &size);

MP1_Datatype type;
MP1_Type_contiguous (2, MPI_INTEGER,

MP1_Request request;
MP1_Irecv (buf, 2, MPI_INT, size - rank - 1, , MPI_COMM_WORLD, &request);

MP1_Send (buf, 2, type, size - rank - 1, , MPI1_COMM_WORLD);
printf (""Hello, 1 am rank %d of %d. ", rank, size);
MP1_Finalize ();

return 0O;

}

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 27/02/2015 12



MUST detects errors in handling datatypes

VARTUALANSTITUTE —-HIGH-PRODUCTIVITY SUPERCOMPUTING

MUST Cutputhle

MUST ll.'llltpul_ starting date: Thu Moy 2

feifhomepi4 60 1BMUST exarmpl e UST_Output.html (

B 13:50:48 2013

Use of uncommited

e ivge]

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY

d . References of & rapI vennLE D
atatype: type process:
reference 1 rank 0: MPI_Send
Epresantative | 1st occurrence) called from:
A receive operation uses a (datatype,count) pair that can not hol ta transfered by the send it matches! The first element of the location o0 maln@example-fix].c:18
send that did not fit into the receive operation Is at (conthquousTOJMPL INTEGER) In the send type (consult the MUST manual for a MPI_Send (1st
a Error) detailed description of datatype positions). The send operation was started at reference 1, the receive operation was started at occurrence) called relerence 2 rank 1: MPI_Irecy
reference 2. (Information on communicator: MP1L COMM_WORLD) {Information on send of count 2 with type:Datatype created at from: |15t oocurrence) called from:
reference 3 Is for Fortran, based on the following type{s): { MP] INTEGER}) (Information on receive of count 2 with type:MPL INT] |#0 malni@example- [#0 maingexample-fix]_c:16
fixl.c:18
reference 3 rank O
IMPI_Type_conbiguous (1:t
pocurrence) called from:
#0 main@Eexample-fix].c:13
Reprosentative  [Relerences ol a ropresentative
location: [Prcess:
. N ,
01 |Brrod Argument 3 (datatype) ks not commited for transfar, call MPL Typs commit before using the tvpe for transfer] D;:ﬂf—jﬂiﬂ?(ﬂ;gd rafarence 1 rank Ti
{Information on datatypeDatatype created at reference 1 is for Fortran, based on the following type(s): { MP1_INTEGER}) it MPI_Type_contiguous (15t
#0 main@Eexample- pocurrence) called from:
hxl.c:18 #0 mainEexample-fixl.c:13
o . | g I 2 = ok £ th 1 gy = I N’ - N N fom F
I'he memory regions to be transfered by this send operation overlap with regions spanned by a pending non-blocking receive operation! References of a repressntative
{Information on the request associated with the other communication: Ronrocontative i
Request activated at reference 1) ]Im"a.r.':u;'-‘ rafarance 1 rank 0: MPL Tecy
(Information on the datatype dagt:lrl‘-g!';'llﬁ NN SO SRR MPI Send (1st  |1st occurrence) called from:
5 5 : courrence) calied [#0 maingexa - fix].c:
R The other communication overlaps with this communication at position:{(MPL INT) REEk Frr::u:” called {#0 main@example-fix].c:16
B e | &
Information on the datatype associated with this communication: b m';:-';'(::.?émvm ;:t];a[rﬂ.'uw:. l_-':mf.ﬁ' (1
Datatype created at reference 2 is for Fortran, based on the following type(s): { MPI INTEGER]}) iz 3 —T"'p:—.""'r!l 'Q!'I"""!'_ .
This communication overlaps with the other communication at posttion:(contiguous)f0{MPL INTEGER) ;ifﬂ,’ri‘lﬂi?; f;l::ﬁ; 13
A graphical representation of this situation 1s available in & detalled overlap view (MUST Output-flesMUST Overlap 0 0.html) e T REt
g . x : L 7 i i
[The memory regions to be transfered by this send operation overlap with regions spanned by a pending non-blocking receive operation! References of a represantative
rOCess:
{Information on the request assoctabed with the other communication: Representative P
Request activated at reference 1) i Rl :
(Information on the datatype associated with the other communication: e ) mfﬁm?’f’&_]_ ratn]\ I MP1_Irecy
MPL INTI MPI_Send (15t Jist occurrence) called from:
: e The other communication overlaps with this communication at positton:{MPI_INT) ':'“lmﬁ_n;:'l! aallad WG SIS TEL SAD
g X - I 2 "
(Information on the datatype associated with this communication: #0 '“T“‘]‘EL_'T;‘E'“E"“ reference 2 "“”LL e
Datatype created at reference 2 is for Fortran, based on the following type(s): { MP1 INTEGER}) e .'I'l:'plj.'_ltl'.lrl 9"““5'_': §

27/02/2015

13



VARTUALANSTITUTE —-HIGH-PRODUCTIVITY SUPERCOMPUTING

Fix2: use MPI_Type commit

int main (int argc, char** argv)

{

int rank, size, buf[&];
MPI_Init (&argc, &argv);
MP1_Comm_rank (MPI_COMM_WORLD, &rank);
MP1_Comm_size (MPI_COMM_WORLD, &size);

MP1_Datatype type;

MPI_Type contiguous (2, MPI_INTEGER, &type); ( Commit the
MP1_Type_commit (&type); — datatype before
MP1_Request request; -\ Usage
MP1_Irecv (buf, 2, MPI_INT, size - rank - 1, , MP1_COMM_WORLD, &request);

MP1_Send (buf, 2, type, size - rank - 1, , MP1_COMM_WORLD);
printf (“"Hello, 1 am rank %d of %d. ", rank, size);
MP1_Finalize ();

return O;

JOACHIM kOTZE - RWTH AACHEN UNIVERSITY 27/02/2015 14



VARTUALANSTITUTE —-HIGH-PRODUCTIVITY SUPERCOMPUTING

MUST detects errors in transfer buffer sizes / types

MUST Dutputfie o - 8 x
filez\home/pjd 1600 8MUST /exampleMUST_Output. hitm| N f
MUST Output, starting date: Thu Nov 28 13:51:42 2013 S|Ze Of sent messa ge Ia rge r
. t h an rece ive b u ffe r He!:?éﬁ:::-:’ a representative

PriHCess:

reference 1 rank 0: MPI_Send
{15t occurrence) called from:
@0 main@example-fix?.c:19

A receive operation uses a (datatype,count) pair that can mot hold the data transfered by the send it matches] The first eloment relorence 2 rank 1: MPI_Irecy
of the send that did not fit into the receive operation is at (contiguous)[0]{(MP] INTEGER) in the send type (consult the MUST Representative location: |1st occurrence) called from:
manual for & detalled description of datatype positions). The send operation was started at reference 1, the receive operation |MPI_Send (1st occurrence)|#0 main@example-fiv?.c:17

was started at reference 2. (Information on communicator: MPI_COMM_WORLD) (Information on send of count 2 with called from:
type:Datatype created at reference 3 is for Fortran, commited at reference 4, based on the following type(s): { MPI_ INTEGER})| #0 main@example-fix2.c:19reference 3 rank 0:
(Information on receive of count 2 with type=MPI_INT) MPI_Type_contiguous (1st
courrence) called from:
#0 main@example-hx2.c:13
roference 4 rank 0
MPI_Type_commit (15t
recurrence) called from:
#0 main@example-fix2.c:14
Relerences of a representative
[PrCEss:
reference 1 rank 1: MPI_Send
N 1st occurrence) called from:
#0 main@example-Ax2.c:19
A recelve nJaF.ratlcun uses a (datatype,count) palr that can not hold the data transfered by the send it matches! The first element reference 2 rank 0: MPI_Irecy
of the send that did not it into the receive operation is at (contiguous)[0){MPI_INTEGER) in the send type (consull the MUST Representative location: (15t occurrence) called from:
1 Frron manual for a detailed description of datatype positions). The send operation was started at reference 1, the receive operation |MP1_Send (1st occurrence )[#0 maing@example-ix2.c:17
was started at reference 2. (Information on communicator: MP1COMM WORLD) (Information on send of count 2 with called from:
type:Datatype created at reference 3 is for Fortran, commited at reference 4, based on the following typels): { MPI_INTEGER | #0 maimsexample-fix2.c:19jreference 3 rank 1:
(Information on receive of count 2 with type:MPI INT) IMPI_Type_contiguous (1st

jpccurrence) called from:
o0 main@example-fix?.c:13

reference 4 rank 1:

MPI_Type_commit (1st
ceurrence) called from:

#0 main@example-fixd.c:14

References of a representative

PFCess:

The memory regions to be transfered by this send operation overlap with regions spanned by a pending non-blocking receive

operation! £ 1 o manEx L

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY

27/02/2015

15



VARTUALANSTITUTE —-HIGH-PRODUCTIVITY SUPERCOMPUTING

Fix3: use same message size for send and receive

int main (int argc, char** argv)

{

int rank, size, buf[8];

MP1_Init (&argc, &argv);
MP1_Comm_rank (MPI1_COMM_WORLD, &rank);
MP1_Comm_size (MPI_COMM_WORLD, &size);

MPI1_Datatype type;
MPI1_Type_contiguous (2, MPI_INTEGER, &type);
MP1_Type_commit (&type);

MPI1_Request request;
MP1_lIrecv (buf, 2, MPI_INT, size - rank - 1, , MP1_COMM_WORLD, &request);

MP1_Send (buf, 1, Ltype, size - rank - 1, , MPI_COMM_WQDID\'

Reduce the

printf ("'Hello, I am rank %d of %d. 1", rank, size);
L message size

MPI_Finalize ();

return O;

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 27/02/2015 16



VARTUALANSTITUTE —-HIGH-PRODUCTIVITY SUPERCOMPUTING

MUST det

ects use of wrong argument values

MUST Outputle

Tl ihome,

MUST ﬂutpul,

P4 160 1 EMUST exarnple UST_Output html

starting date: Mon Dec 2 13:11:12 2013

o

N &

[Rank(s)| Type]|

Error)

Use of Fortran type in C,
datatype mismatch between

sender and receiver

N\
feferences

!r-' HIETHES l:'r. ar 1"|JI'I e taLive
e

ference 1 rank 1:
PI_Send (1st occurrence)
d”('ll rl om:

A send and a receive operation use datatypes that do not match! Mismatch occurs at (contiguous)[0NMPL_INTEGER) in the send
type and at (MPI INT) in the receive type (consult the MUST manual for a detailed description of datatype positions). A graphical
'1*]1||:.-\.-':|||n‘.i|||| of this situation is avallable in a detailed tvpe mismatch view (MUST Output-files™MUST Tyvpemismatch 1o hiralh.
The send operation was started at reference 1, the receive operation was started at reference 2. (Information on communicator:
MPI COMM WORLD) (Information on send of count 1 with type:Datatype created at reference 3 is for Fortran, commited at
reference 4, based on the following bypeed): { MPI INTEGER}) (Information on receive of count 2 with bype:MPI_INT)

Representative location:
MPI_Send {1st

occurrence) called from:

#0 main@example-fixd.c: 19

loccurrence) called from:

loccurrence) called from:

#0 maind@example-fix3.c:19

reference 2 rank 0:

MPI_Irecv (15t ocourrence)
alled from:

#0 maind@example-fix3.c:17

reference 3 rank 1:
MPL Type contiguous (1=t

#0 main@example-fix3.c:13

reference 4 rank 1:
MPL Type commit (1st

#0 maindexample-fix3.c:14

a Error)

A sand and a receive operation use datatypes that do not matchl Mismatch occurs at (contiguousi[0{MPL_INTEGER) in the send
type and at (MPI_INT) in the receive type (consult the MUST manual for a detailed description of datatype positions). A graphical
The send operation was started at reference 1, the receive operation was started at reference 2, (Information on communicator:
MPI_COMM_ WORLD) (Information on send of count 1 with type:Datatype created at reference 3 is for Fortran, commited at
reference 4, based on the following type{s): { MPI INTEGER}] (Information on receive of count 2 with type:MPI INT)

Representative location:
MPI_Send {15t

occurrence] called from:

o0 main@example-fix3.c: 19

References of a representative
[POeCERS:

reference 1 rank 0:
MPIL_Send (1st occurrence)
lcalled from:

@0 main@example-fix3.c:1%

reference 2 rank 1:
MPL_Irecv (1st occurrence)
lcalled from:

#0 main@example-fix3.c:17

reference 3 rank 0:
MPL_Type_contiguous (1st
loccurrence) called from:

#0 main@example-fix3.c:13

reference 4 rank 0:

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY

MPL_ Type_commit (1st
securrence) called from:

#

L3} - L

27/02/2015

17



VARTUALANSTITUTE —-HIGH-PRODUCTIVITY SUPERCOMPUTING

Fix4: use C-datatype constants in C-code

int main (int argc, char** argv)

{
int rank, size, buf[8];
MP1_Init (&argc, &argv);
MP1_Comm_rank (MPI1_COMM_WORLD, &rank);
MP1_Comm_size (MPI_COMM_WORLD, &size);
MPI1_Datatype type; 7 :
MP1_Type contiguous (2, MPI_INT, &type); 7 Use the integer
MP1_Type_commit (&type); - L datatype intended
MPI1_Request request; for usage in C
MP1_lIrecv (buf, 2, MPI_INT, size - rank - 1, , MP1_COMM_WORLD, &request);
MP1_Send (buf, 1, type, size - rank - 1, , MP1_COMM_WORLD) ;
printf ("'Hello, I am rank %d of %d. 1", rank, size);
MPI_Finalize ();
return O;

be

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 27/02/2015 18



VARTUALANSTITUTE —-HIGH-PRODUCTIVITY SUPERCOMPUTING

MUST detects data races in asynchronous communication

(

MUST Dutputhie

-

MUST Output, starting date: Mon Dwec 2 18:36:19 2013

file:homepd 1601 8MUST/exa mpleMUST_Output.html

Data race between send and
ascynchronous receive operation

The memory regions to be transfered by this send operation overlap with r
nom-hlocking recelve operation!

(Information on the request associated with the other communication:
Illﬂ‘]l.lqvxr activated at reference 1)
(Information on the datatype associated with the other communication:
M1 INT)
The other communication overlaps with this communication at position:(MPI_INT})

(Information on the datatype assoclated with this communication:
Datatype created at reference 2 is for C, commited at reference 3, based on the following type(s): {

MPI _INT})
This communication overlaps with the other communication at pesition:(contiquens)[0J(MP1_INT)
A graphical representation of this situation is available in a detailed overlap view (MUST Output-

filesMUST Overlap 1 _0.html].

Reprasentative location:
MPI_Send {15t occurrence) called
from:

#0 maln@example-fixd.c:19

References of a representative process:

reference 1 rank 1: MPI_Irecv (1st
CCUNTeRCE ] called from:
#0 main@example-Axd.c:17

reference 2 rank 1: MPI_Type contiguous
(15t occurrence) called from:
#0 maind@example-Axd.c:13

reference 3 rank 1: MPI_Type_commit (1st
CCUTTERCE ) |:.-||'.|:|| r|1|r||-
#0 maind@example-Axd.c:14

0-1

There are 1 datatypes that are not freed when MPI_Finalize was issued, a quality application should free
all MPI resources before calling MPI_Finalize, Listing information for these datatypes:

-Datatype 1: Datatype created at reference 1 is for C, commited at reference 2, based on the following
typeisk: { MPLINT}

Representative location:
MPI_Type_contiguous (151
occurrence) called from:
#0 maln@example-fixd.c:13

Relerences of a representative process:

reference 1 rank 1: MPI_Type_contiguous
(15t occurrence) called from:
#0 main@examplo-fixd.c:13

reference 2 rank 1: MPI_Type_commit (1st
ocurrence) called from:
#0 main@example-fixd.c:14

0-1

E i

There are 1 requests that are not freed when MPI_Finalize was issued, a quality application should free
all MPI resources before calling MPI_Finalize. Listing information for these requests:

-Resquest 1: Request activated at reference 1

Representative location:
1M'I"F"I_I!'lﬂ.q'l.' {1zt occurrence) called
from:

#0 maini@example-fixd.c:17

References of a representative process:

reference 1 rank 1: MPI_lrecy (1st
jpccurrence) called from:
#0 maind@example-fixd.c:17

[ErTo]

The memery regions to be transfered by this send operation overlap with regions spanned by a pending
non-blocking receive operation!

(Information on the request associated with the other communication:
Request activated at reference 1)
(Information on the datatype associated with the other communbcation:
MPI_INT)
The other communication overlaps with this communication at position:(MP1 INT)

(Information on the datatype associated with this communication:
Datatype created at reference 2 is for C, commited at reference 3, based on the following type(s): {

MPL_INT}H
This communication overlaps with the other communication at p::-s:lnun [cnnugunus][ﬂl(M]’-‘] I‘\I'TJ
A graphical representation of this -z1|:|mtln-n 1] r\'-ﬂl]ahh" ing ¥

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY

HRepresentative location:
MPI_Send (15t occurrence) called
[rom:

#0 main@Eexample-fixd.c: 19

References of a representative process:

ralerence 1 rank 0: MPI_Irecy (15t
lpccurrence) called from:
0 main@example-fixd.c:17

relerence 2 rank 0: MPI_Type_contiguous
(15t ocourrence) called from:
w0 main@example-fixd.c:13

reference 3 rank 0: MPI_Type_commit {15t
leccurrence) called from:

o0 main@example-fixd.c:14

27/02/2015

19



VARTUALANSTITUTE —-HIGH-PRODUCTIVITY SUPERCOMPUTING

Graphical representation of the race condition

MUST Overlapfile |

I # [ @ Meimome/p LEOLEMUST/exampleMUST_Cutput-filesMUST_Overlap, L ot G ra p h | Ca I re p resentat | on Of t h e d ata
race location

MUST Overlap Details, date: Mon Dec 2 18:36:19 2013,

MPI_Send:send(bulf= Ox T 397 3a)

1

MPI_Type_contiguousicount=2) | MPI_Irecvorecy{buf= +x(l)

-.‘{2 J../J"

MPI_INT [*




% X ANVARTYUALANST ITUTE —-HIGH-PRODUCTIVITY SUPERCOMPUTING

Errors with MPI1 Datatypes — Overview

» Derived datatypes use constructors, example:

/IVI Pl_Type_vector ( \
\
S~ NumRows /*count*/,
\ 1 /*blocklength*/,
. NumColumns /*stride*/,
V' 2D Field MPI_INT /*oldtype*/,
(of integers) k&newType); /

» Errors that involve datatypes can be complex:
» Need to be detected correctly
= Need to be visualized

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 27/02/2015 21



VARTUALANSTITUTE —-HIGH-PRODUCTIVITY SUPERCOMPUTING

Errors with MPI Datatypes — Example

= C Code:

MP1_ Isend(buf, 1 ount*/, vectortype, target, tag,>
MP1_COMM_WORL
MP1_Recv(buf, 1 &ZTount*/, columnfype, target, tag,>
MPI1_COMM_WORLD,
MP1_ Wait (&request, &status);

7
= Memory: /a / / \

e A Tool must:
Error: buffer overlap - Detect the error

MPI_Isend reads, MPI_Recv writes at the - Pinpoint the user to the ecact
same time problem

N V' bl \ /

(of integers)

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 27/02/2015 22



VARTUALANSTITUTE —-HIGH-PRODUCTIVITY SUPERCOMPUTING

Errors with MPI Datatypes — Error Positions

» How to point to an error in a derived datatype?
» Derived types can span wide areas of memory
» Understanding errors requires precise knowledge
» E.g., not sufficient: Type X overlaps with type Y [Contiguous datatype to span a row
» Example:
» We use path expressions to

point to error positions
e example, overlap at:

O [20[O]J(MPI_INT)

S

2D Field
(of integers)

[Vector datatype to span a column

Error: buffer overlap \

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY

27/02/2015 23



VARTUALANSTITUTE —-HIGH-PRODUCTIVITY SUPERCOMPUTING

Fix5: use independent memory regions

int main (int argc, char** argv)

{
int rank, size, buf[8];
MP1_Init (&argc, &argv);
MP1_Comm_rank (MPI1_COMM_WORLD, &rank);
MP1_Comm_size (MPI_COMM_WORLD, &size);
MPI1_Datatype type;
MPI1_Type_contiguous (2, MPI_INTEGER, &type);
MP1_Type_commit (&type);
MPI1_Request request;
MP1_lIrecv (buf, 2, MPI_INT, size - rank - 1, , MP1_COMM_WORLD, &request);
MP1_Send (buf + 4, tvpe, size - rank - 1, , MPI_COMM_WORI DX - -

Offset points to

printf (""Hello, I am rank %d of %d. ', rank, size); L independent
MP1_Finalize (); memory
return 0Oj;

be

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 27/02/2015 24



VARTUALANSTITUTE —-HIGH-PRODUCTIVITY SUPERCOMPUTING

MUST detects leaks of user defined objects

MUST Cutputfile o - 8=
Mle:homep 41601 B UST/'exarmpleM UST_Cutput html - | " &
MUST ﬂutpul_ starting date: Thu Nov 28 13:55:26 2013

Rk ] Vicssege Fom TReferences

Rieferences of & representative process

There are 1 datatypes that are not freed when MPT_Finalize was issued, a quality application should
free all MPI resources before calling MPI_Finalize. Listing information for these datatypes:

reference 1 rank 0: MPI_Type_contiguouas (15t
joccurrence) called from:
#0 maingexample-fix5.c:13

Representative location:
MPI_Type_contlguous (15t

Datatype 1: Datatype created at reference 1 is for C, commited at reference 2, based on the following #UII'II'I'.;I;II”l;::n.:n]!l{‘pll—l*ﬁ‘ltmp|. 3
I i e fix5.c:

typeis): { MPI_INT} h reference 2 rank O0: MPI_Tyvpe_commit (15t
courrence] called [rom:
#{ maingexample-fix5.c:14

Heferences of a representative Presoess:

0-1  [Error]

There are 1 requests that are not freed when MPI_Finalize was issued, a quality applica
free all MPI resources before calling MPI Finalize. Listing information for these requests?

Representative location:
Irecy (1st occurrence) called
from:

nple-fixS.c:17

\

0-1 EXTor reference 1 rank 0: MPI_Irecy (1 st occurrence)
-alled from:

#1 maingexample-fixb.c:17

-Request 1: Request activated at reference 1

MUST has completed successfully, end date: Thu Nov 28 13:55:26 2003,

Leak of user defined

» User defined objects include datatype object
= MPI_Comms (even by MPI_Comm_dup)
= MPI_Datatypes
= MPI1_Groups

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 27/02/2015 25



VARTUALANSTITUTE —-HIGH-PRODUCTIVITY SUPERCOMPUTING

Fix6: Deallocate datatype object

int main (int argc, char** argv)

{

int rank, size, buf[8];

MP1_Init (&argc, &argv);
MP1_Comm_rank (MPI1_COMM_WORLD, &rank);
MP1_Comm_size (MPI_COMM_WORLD, &size);

MPI1_Datatype type;
MP1_Type_contiguous (2, MPI_INT, &type);
MP1_Type_commit (&type);

MPI1_Request request;
MP1_lIrecv (buf, 2, MPI_INT, size - rank - 1, , MP1_COMM_WORLD, &request);

MP1_Send (buf + 4, 1, type, size - rank - 1, , MP1_COMM_WORLD);

printf ("'Hello, I am rank %d of %d. 1", rank, size);
MPI_Type_free (&type);

'
MPI_Finalize Q; Deallocate the

created datatype

return O;

}

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 27/02/2015 26




VARTUALANSTITUTE —-HIGH-PRODUCTIVITY SUPERCOMPUTING

MUST detects unfinished asynchronous communication

MUST Outputle

file:ihomeip 41601 BMUST fexarmpleMUST_Output html

MUST Output, starting date: Thu Nov 28 13:55:49 2013

N &

E—k(lj Message

There are 1 requests that are not freed when MPI_Finalize was issued, a quality application should free all MPI

efor 1 lize - - -
01  [Error resources before calling MP] Finalize. Listing information for these requests:

-Request 1: Request activated at reference 1

Representative location: References of 4 representative process

MPI_Irecy (15t occurrence)
called from:
#0 maln@example-fixG.c:17

reference 1 rank 0: MPI_Irecv | 1st
courrence) called from:
#0 malnigexample-fixG.c:17

MUST has completed successfully, end date: Thu Nov 28 13:55:40 2013,

Remaining unfinished
asynchronous receive

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY

27/02/2015 27



VARTUALANSTITUTE —-HIGH-PRODUCTIVITY SUPERCOMPUTING

Fix7: use MPI_Wait to finish asynchronous communication

int main (int argc, char** argv)

{
int rank, size, buf[8];
MP1_Init (&argc, &argv);
MP1_Comm_rank (MPI_COMM_WORLD, &rank);
MP1_Comm_size (MPI_COMM_WORLD, &size);
MPI1_Datatype type;
MP1_Type_contiguous (2, MPI_INT, &type);
MP1_Type_commit (&type);
MPI_Request request;
MP1_ lrecv (buf, 2, MPI_INT, size - rank - 1, , MP1_COMM_WORLD, &request);
MP1_Send (buf + 4, 1, type, size - rank - 1, , MPI1_COMM_WORLD);
MPI_Wait (&request, MPI_STATUS IGNORE); —_—— r Finish the
printf (""Hello, 1 am rank %d of %d. 1", rank, size); asynchronous
MP1_Type_free (&type); communication
MP1_Finalize Q;
return 0;
}

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 27/02/2015 28



VARTUALANSTITUTE —-HIGH-PRODUCTIVITY SUPERCOMPUTING

Finally

MUST Cutputfile o - &=
e ivhome/p4 1601 BMUST fexampleM UST_Output_html ol - B "N &
MUST Output, starting date: Thu Nov Z8 13:56:03 2013

Hamnki Message [
Information MUST detected no MPI usage errors nor any suspicious behavior during this application run.

MUST has completed successfully, end date: Thu Nov 28 13:56:0

No further error
detected

Hopefully this message
applies to many
applications

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 27/02/2015 29



Content

VARTUALANSTITUTE —-HIGH-PRODUCTIVITY SUPERCOMPUTING

= Motivation
= MPI usage errors

» Examples: Common MPI usage errors
* Including MUST’s error descriptions

= Correctness tools
= MUST usage
= Hands-on

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY

27/02/2015

30



% X ANVARTYUALANST ITUTE —-HIGH-PRODUCTIVITY SUPERCOMPUTING

Tool Overview — Approaches Techniques

» Debuggers:
» Helpful to pinpoint any error
* Finding the root cause may be hard
= \Won’t detect sleeping errors
» E.g.: gdb, TotalView, Allinea DDT

» Static Analysis:
» Compilers and Source analyzers
» Typically: type and expression errors
» E.g.: MPI-Check

» Model checking:

» Requires a model of your applications
= State explosion possible
» E.g.: MPI-Spin

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY

MPI_Recv (buf, 5, MPL_INT,
l,

23, MPI_COMM_WORLD, &status);

“-1" instead of “MPI_ANY_SOURCFE”

)

if (rank == 1023)
crash ();

Only works with less than 1024 tasks

27/02/2015

31



VARTUALANSTITUTE —-HIGH-PRODUCTIVITY SUPERCOMPUTING

Tool Overview — Approaches Techniques (2)

» Runtime error detection:
» |[nspect MPI calls at runtime
» Limited to the timely interleaving that is observed
» Causes overhead during application run
» £E.g.: Intel Trace Analyzer, Umpire, Marmot, MUST

MPI_Send(to:1, type=MPI_INT) MPI_Recv(from:0, type=MPI_FLOAT)

AN

Type mismatch

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 27/02/2015 32



VARTUALANSTITUTE —-HIGH-PRODUCTIVITY SUPERCOMPUTING

Tool Overview — Approaches Techniques (3)

» Formal verification:
» Extension of runtime error detection
» Explores all relevant interleavings (explore around nondet.)
» Detects errors that only manifest in some runs
= Possibly many interleavings to explore
= E.g.: ISP

MPI_Recv (from:ANY)
MPI_Recv (from:0)
MPI_Barrier ()

spend_some_time()
MPI_Send (to:1)
MPI_Barrier ()

MPI_Send (to:1)
MPI_Barrier ()

[Deadlock if MPI_Send(to:1)@0 matches MPI_Recv(from:ANY)@1

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 27/02/2015

33



VARTUALANSTITUTE —-HIGH-PRODUCTIVITY SUPERCOMPUTING

Approaches to Remove Bugs (Selection)

Repartitioning?
Representative input?

Our contribution: Grid> Reproducibility?
MUST hil
R t Ch k TOTALVIEW
untime Checkin
2 Debuggers

Node Memory?

~/" i
/j Umpire ISP/ alllnecy
< WarmoT DAMPI | ADDT
Static Code Analysis Model Checking
TASS , Barrier Analysis .
pCrG's Spin.;

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 27/02/2015 34



Content

VARTUALANSTITUTE —-HIGH-PRODUCTIVITY SUPERCOMPUTING

= Motivation
= MPI usage errors

» Examples: Common MPI usage errors
* Including MUST’s error descriptions

= Correctness tools
* MUST usage
= Hands-on

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY

27/02/2015

35



VARTUALANSTITUTE —-HIGH-PRODUCTIVITY SUPERCOMPUTING

S e o M U S T

= MPI runtime error detection tool

» Open source (BSD license)
http://www.itc.rwth-aachen.de/MUST/

» Wide range of checks, strength areas:
= Overlaps in communication buffers

» Errors with derived datatypes
» Deadlocks

» Largely distributed, able to scale with the application

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 27/02/2015 36



< X VARTUALANSTITUTE —-HIGH-PRODUCTIVITY SUPERCOMPUTING

MUST — Basic Usage

» Apply MUST with an mpiexec wrapper, that’s it:

% mpicc source.c —0 exe % mpicc —g source.c —0 exe
% mpiexec —np 4 ./exe % mustrun —np 4 ./exe

» After run: inspect “MUST_Output.html”

» “mustrun” (default config.) uses an extra process:
= |.e.: “mustrun —np 4 ...” will use 5 processes
» Allocate the extra resource in batch jobs!
» Default configuration tolerates application crash; BUT is very slow (details later)

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 27/02/2015 37



MUST — Usage on frontend - backend machines

» Prepare on frontend

% mpicc source.c —0 exe
% mpiexec —np 4 ./exe

% mpicc —g source.c —0 exe
% mustrun --must:mpiexec mpiexec —np 4 ./exe \
—--must:mode prepare

» Submit a job to the backend:

% mustrun --must:mpiexec mpiexec —np 4 ./exe \
——-must:mode run

» Open MUST_Output.html with a browser

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY

27/02/2015

38




MUST — At Scale (highly recommended for =10 processes)

* Provide a branching factor (fan-in) for the tree infrastructure:

% mustrun --must:mpiexec mpiexec —nhp 4 ./exe --must:fanin 8

» Get info about the number of processes:

% mustrun --must:mpiexec mpiexec —hp 4 ./exe --must:fanin 8 \
——must:info

- This will give you the number of processes needed with tool attached

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 27/02/2015 39



Content

VARTUALANSTITUTE —-HIGH-PRODUCTIVITY SUPERCOMPUTING

= Motivation
= MPI usage errors

» Examples: Common MPI usage errors
* Including MUST’s error descriptions

= Correctness tools
= MUST usage
= Hands-on

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY

27/02/2015

40



Hands On — Build for MUST

X ANARTYALANST FTUTE —HIGH-PRODUCTIVITY SUPERCOMPUTING

* Go into the NPB directory

» Edit config/make.def

» Disable any other tool (i.e.
use mpif77, unset PREP)

» Use intel or gnu tool chain

= Build:

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY

COMPFLAGS = -openmp -g -extend-source -dynamic # intel

MPIF77 = ftn

% module switch PrgEnv-cray/5.2.40 PrgEnv-intel
% module use —xhpjp/.modules

% module load must-intel

% make clean

% make bt-mz NPROCS=6 CLASS=C

= NAS PARALLEL BENCHMARKS 3.3 =
= MPI+OpenMP Multi-Zone Versions =
= F77 =

cd BT-MZ; make CLASS=C NPROCS=6
make[1]: Entering directory

ftn -O3 -g -openmp -extend-source -o ../bin/bt-mz_C.6
bt scorep user.o

27/02/2015

41




Hands On — Prepare MUST

X ANARTYALANST FTUTE —HIGH-PRODUCTIVITY SUPERCOMPUTING

» Go to the bin directory:

= On machines with dedicated
serial frontend nodes and
backend nodes you need to
prepare MUST on the
frontend

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY

% cd bin

% mustrun -n 4 -d 6 ./bt-mz_C.4 --must:mode prepare

[MUST] MUST configuration ... centralized checks with fall-back
application crash handling (very slow)

[MUST] Information: overwritting old intermediate data in directory
"/zhome/academic/HLRS/xhp/xhpjp/NPB3.3-MZ-MPI1/bin/must_temp"!
[MUST] Weaver ... success

[MUST] Code generation ... success

[MUST] Build file generation ... success

[MUST] Configuring intermediate build ... success

[MUST] Building intermediate sources ... success

[MUST] Installing intermediate modules ... success

[MUST] Generating P*"nMPI configuration ... success
%

27/02/2015 42




< AVARTUALANST TUTE —-HIGH-PRODUCTIVITY SUPERCOMPUTING

Hands On - Prepare Job

= Create and edit the jobscript

cp ../jobscript/hornet/run.pbs ./must.pbs
vim must.pbs

= Jobscript:

#PBS -g R_vihps04

module switch PrgEnv-cray PrgEnv-intel
module use —xhpjp/.modules ™~
module load must-intel

MUST needs one extra process!

export OMP_NUM_THREADS=6 We use 6 processes * 6 threads + 1 tool
CLASS=C process
NPROCS=6 /

mustrun --must:mpiexec aprun -n $NPROCS -d $SOMP_NUM_THREADS $EXE --must:mode run

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 27/02/2015 43



% X ANVARTYUALANST ITUTE —-HIGH-PRODUCTIVITY SUPERCOMPUTING

Hands On — Executing with MUST

» Submit the jobscript:

qsub must.pbs

» Job output should read:

NAS Parallel Benchmarks (NPB3.3-MZ-MPI) - BT-MZ MPI+0OpenMP Benchmark

Total number of threads: 16 ( 3.0 threads/process)
Calculated speedup = 11.97

Time step 1
Verification Successful

[MUST] Execution finished, inspect “(...)/MUST_Output.html"!

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 27/02/2015 44



VARTUALANSTITUTE —-HIGH-PRODUCTIVITY SUPERCOMPUTING

BT — MUST Results

* Open the MUST output: <Browser> MUST_Output.html

\
( BT-MZ should evaluate the “provided”

Rank(s)] Type | Message ' thread level and don’t use threads.
You requested 3 threads by OM — )
requested thread level MPI AD FUNNE rom | MPI _Init thread (Ist
0-3 Warningj the mpi library but thr library provides no thread occurrence) called
support.This is ok as long as your application doesn't make from:
use of OpenMP #0 MAIN @bt.f:90

#1 main@bt.f:319

References of a

There are 1 communicators that are not freed when Representative . )
MPI Finalize was issued, a quality application should free location: representative process:
all MPI resources before calling MPI Finalize. Listing |MPI_Comm_split (Ist} ¢ 1 ce 1 rank 2-
0-3 Error information for these communicators: occurrence) called

o MPI_Comm_split (1st
-Communicator 1: Communicator crea ence 1 #0 MAIN @bt.f:90 Lomosimiosl oo el o
size=4 L "1 main@bt.f:310  [#O MAIN__@bt.f:90
- #1 main@bt.f:319

Resource leak:
A commmunicator created with
MPI_Comm_split is not freed

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY




VARTUALANSTITUTE —-HIGH-PRODUCTIVITY SUPERCOMPUTING

Stacktraces in MUST

» We use an external lib for stacktraces Representative
Thic I : location:
This |IF) has no support for In_tel cor_npﬂer | o MPI Init_thread (1st
= But: in most cases it’'s compatible to icc compiled C applications occurrence) called
» Nevertheless, the must-intel module is built without stacktrace from:
: .. main(@bt.f:
» [fort compiled FORTRAN applications lead to segfault: ©
= Use MUST w/o stacktraces for fortran applications Eeligisaﬁgiﬁwe
» Use GNU compiler to build your application and use MUST w/ MPI_Co _split (1st
stacktraces occurrence) called
from:
. : #0 MAIN bt.f:90
= Supposed your application has no faults you won’t need #1 mamﬁﬁrfﬂlg

stacktraces © —
Rank(s Message
> tio MUST detected no MPI usage errors nor any
suspicious behavior during this application run.

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY 27/02/2015 46




Conclusions

VARTUALANSTITUTE —-HIGH-PRODUCTIVITY SUPERCOMPUTING

» Many types of MPI usage errors
» Some errors may only manifest sometimes
» Consequences of some errors may be “invisible”
= Some errors can only manifest on some systems/MPIs

= Use MPI correctness tools

= Runtime error detection with MUST
= Provides various correctness checks
= Verifies type matching

= Detects deadlocks
= Verifies collectives

JOACHIM PROTZE - RWTH AACHEN UNIVERSITY

27/02/2015

47



VIRTUAL INSTITUTE — HIGH PRODUCTIVITY SUPERCOMPUTING

Thank You

UNIVERSITE DE
VERSAILLES

ST-QUENTIN-EN-YVELINES

(=) Technische
e RN e
e Superoomputaciin for Simulation Sclences. bt

J Jlj LICH ug hzfaﬁw;enr;?euu\rennor;e é&gﬁg 0

FORSCHUNGSZENTRUM

o
|

{

UNIVERSITY OF OREGON




	MPI Runtime Error Detection with MUST��At the 17th VI-HPS Tuning Workshop
	How many issues can you spot in this tiny example?
	Content
	Motivation
	Common MPI Error Classes
	MPI Usage Errors 
	Content
	Skipping some errors
	Fixed these errors:
	Must detects deadlocks
	Slide Number 11
	Fix1: use asynchronous receive
	MUST detects errors in handling datatypes
	Fix2: use MPI_Type_commit
	MUST detects errors in transfer buffer sizes / types
	Fix3: use same message size for send and receive
	MUST detects use of wrong argument values
	Fix4: use C-datatype constants in C-code
	MUST detects data races in asynchronous communication
	Graphical representation of the race condition
	Errors with MPI Datatypes – Overview
	Errors with MPI Datatypes – Example
	Errors with MPI Datatypes – Error Positions
	Fix5: use independent memory regions
	MUST detects leaks of user defined objects
	Fix6: Deallocate datatype object
	MUST detects unfinished asynchronous communication
	Fix7: use MPI_Wait to finish asynchronous communication
	Finally
	Content
	Tool Overview – Approaches Techniques
	Tool Overview – Approaches Techniques (2)
	Tool Overview – Approaches Techniques (3)
	Approaches to Remove Bugs (Selection)
	Content
	MUST – Overview
	MUST – Basic Usage
	MUST – Usage on frontend - backend machines
	MUST – At Scale (highly recommended for >10 processes)
	Content
	Hands On – Build for MUST
	Hands On – Prepare MUST
	Hands On - Prepare Job
	Hands On – Executing with MUST
	BT – MUST Results
	Stacktraces in MUST
	Conclusions
	Thank You

