
VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

MAQAO

Performance Analysis and Optimization Tool

Andres S. CHARIF-RUBIAL

andres.charif@uvsq.fr

Performance Evaluation Team, University of Versailles S-Q-Y

http://www.maqao.org

VI-HPS 17th Stuttgart – 23/27 February 2015

http://www.maqao.org/

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

MAQAO Framework and Toolsuite

R&D Team: develop performance evaluation and optimization tools

Open Source software (LGPL 3)

 Currently only binary release (source => ongoing)

 Profilers (generic and MPI) work on any LSB/Most Unix

 Code quality analysis and hardware counters support only available

for Intel x86-64 and Xeon Phi

Funded by UVSQ, Intel and CEA (French department of energy)

Establish partnerships:

 Optimize industrial applications

 Provide building blocks (framework services) to other tools:
 TAU tool tau_rewrite: binary rewrtting feature (MIL)

 ATOS/BULL tool bullxprof : binary rewrtting feature (MIL)

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL 2

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Introduction
Performance analysis (1/2)

 Characterize the performance of an application
 Complex multicore CPUs and memory systems

 How well does it behaves on a given machine

 Generally a multifaceted problem
 What are the issues (numerous but finite) ?

 Which one(s) dominates ?

 Maximizing the number of views

 => Need for specialized tools

 Three main classes of issues
 Find/Select relevant algorithms

 Work sharing/decomposition

 Exploiting performance available at CPU level

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL 3

?

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Introduction
Performance analysis (2/2)

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL 4

6) Vector vs Scalar

2) Non-unit stride accesses

4) DIV/SQRT

5) Reductions

3) Indirect accesses

1) High number of statements

Motivating example: loop ~10% walltime

Source code and associated issues:

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Introduction
MAQAO: working at binary level (1/2)

Why ???

Most of the time the compiler changes source code

Some source code instrumentation may prevent the compiler from applying transformation

 i.e.: loop interchange

We want to evaluate the “real” executed code

We are able to reconstruct an abstract vue with functions and loops in order to be able to correlate

with your source code.

One little difference is understanding loops at assembly level

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL 5

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Introduction
MAQAO: working at binary level (2/2)

Source level V.S. Assembly level

You just need to understand the difference

But our tools’ reports always point to source code

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL 6

Source Loop
L255@file.c

ASM
Loop 1

ASM
Loop 2

ASM
Loop 3

ASM
Loop 4

ASM
Loop 5

Versioning
S
t
r
u
c
c
t
u
r
e

Peel/Prolog

Main

Tail/Epilog

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

MAQAO Perf: locating hotspots

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL 7

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

MAQAO Perf: locating hotspots
Introduction

Locating most time consuming hotspots is the first step you want to accomplish.

Multiple measurement methods available:

 Why is it important to know this ?

 Instrumentation
 Through binary rewriting

 High overhead / More precision

 Sampling
 Hardware counters (through perf_event_open system call)

 Linux kernel timers

 No instrumentation / Very low overhead / less details (i.e. function calls count)

 Default method: Sampling using hardware counters (if available) or timers

Runtime-agnostic: Only system processes and threads are considered

Where is time spent ? Which one(s) should I investigate first ?

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL 8

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

MAQAO Perf: locating hotspots
Time categorization

Sadly, executing an application is not just doing the science you are supposed to !

Work sharing/splitting

 Shared: Pthreads, OpenMP, etc …

 Distributed: MPI, etc…

Programming

 IO

 String manipulation

 Memory management

 Math (external librarires)

Doing actual science (Application)

 Functions

 Loops

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL 9

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

MAQAO Perf: locating hotspots
Function and loop hotspots (1/3)

Lets focus on science !

First we want to check function hotspots load balancing vue at (multi)node level

 For the same function

 Does it behave the same way on all the nodes ?

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL 10

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

MAQAO Perf: locating hotspots
Function and loop hotspots (2/3)

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL 11

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

MAQAO Perf: locating hotspots
Function and loop hotspots (3/3)

Then analyse time spent in loops:

 Time spent in loop w.r.t. function

 Use MAQAO CQA tool to

analyse loops of interest

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL 12

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

MAQAO Perf/MPI: MPI characterization

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL 13

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

MAQAO Perf/MPI: MPI characterization
Introduction (1/2)

The previous profiler module only provided a global figure about time spent in the MPI runtime (X%)

We want the same kind of insight but dealing with MPI primitives

Our methodology:

 Coarse grain: overview, global trends/patterns => cheapest possible cost/overhead

 Fine grain: filtering precise issues => accept to pay higher cost/overhead if worth

Online profiling:

 No traces to void IO wall: no IOs (only one result file with pre-processed data)

 Avoid memory : reduced memory footprint thanks to aggregated metrics

 Scalable on 1000+ MPI processes

14MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

MAQAO Perf/MPI: MPI characterization
Introduction (2/2)

Summary: Perf/MPI is a simple MPI profiling tool targeting lightweight metrics which can be reduced

online (no trace required).

Does not require recompiling

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL 15

APPLICATION

MAQAO

In-browser Visualizer

profile.js

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

MAQAO Perf/MPI: MPI characterization
Global profile (1/3)

Summary vue: MPI primitives classified by hits (calls), time and size (if applicable)

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL 16

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

MAQAO Perf/MPI: MPI characterization
Global profile (2/3)

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL 17

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

MAQAO Perf/MPI: MPI characterization
Global profile: flat vue (3/3)

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL 18

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

MAQAO Perf/MPI: MPI characterization
Function scattering over time

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL 19

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

MAQAO Perf/MPI: MPI characterization
Probability densities: when and how long ?

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL 20

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

MAQAO Perf/MPI: MPI characterization
2D communication matrix

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL 21

Hit, time, size

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

MAQAO Perf/MPI: MPI characterization
Per rank distribution

Hit, time, size

Check load balancing

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL 22

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

MAQAO Perf/MPI: MPI characterization
3D Topology

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL 23

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

MAQAO CQA: Analysing the code quality of your loops

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL 24

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

MAQAO CQA: Analysing the code quality of your loops
Introduction

Main performance issues:

 Work sharing / communications / multicore interactions

 Core level

Most of the time core level is forgotten ! But that’s were science is computed

CQA works at (assembly) loop level:

 In HPC most of the time is spent in loops (V.S. functions)

 Assess the quality of code generated by the compiler

 Take into account processor’s (micro)architecture via simulation

 Hints and workarounds to improve static performance

Compute bound :

 this tool is not meant for optimizing memory issues

 It assumes that you have fixed them

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL 25

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

MAQAO CQA: Analysing the code quality of your loops
Goal: how will it help you ?

Produce reports:

 We deal with low level details (assembly, microarchitecture details)

 You get high level reports

Provide high level reports:

 Provide source loop context when

available (-g or equivalent)

 Describing a pathology/bottleneck

 Suggesting workarounds to improve

static performance

 Reports categorized by confidence level:
 gain, potential gain, hint and expert

No runtime cost/overhead:

 Your don’t need to execute your app

 Static analysis

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL 26

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

MAQAO CQA: Analysing the code quality of your loops
Processor Architecture: Core level

Maybe you want an efficient code that gets the best out of available computing resources ?

Concepts:

 Peak performance, TOP500/LINPACK

 Execution pipeline

 Ressources/Functional units

Most of the time applications only exploit at best 5% to 10% of the peak performance

Key performance levers:

 Vectorization

 Get rid of high latency instructions if possible

 Make the compiler generated an efficient code

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL 27

Same instruction – Same cost

Process up to
8X (SP) data

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

MAQAO CQA: Analysing the code quality of your loops
The compiler

Compiler remains our best friend

Be sure to select proper flags

 Know default flags (e.g., -xHost on AVX capable machines)

 Bypass conservative behavior when possible (e.g., 1/X precision)

Pragmas:

 Vectorization, Alignement, Unrolling, etc…

 Portable transformations

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL 28

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

MAQAO CQA: Analysing the code quality of your loops
GUI sample (1/2)

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL 29

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

MAQAO CQA: Analysing the code quality of your loops
GUI sample (2/2)

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL 30

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Thank you for your attention

Questions

