Performance Analysis with CrayPat

Part 2

Aniello Esposito
(esposito@cray.com)

Outline

e Loop work estimates with CrayPat
e How to prepare the code for collection of loop statistics.

e Reveal
e Generate the program library.
e Use the GUI.

e Profiling OpenMP

e Load balancing Analysis
e Using Apprentice2

e Monitoring Power

e Craypat-lite

Loop Work Estimates \

e Assess suitability of loop nests for optimization

e Gives information on inclusive time spent in the loop nests and
typical trip count of the loops.

e Only available with CCE. CrayPAT can generate this information via

a special kind of tracing experiment. Just like adding automatic
tracing at the function level, we can add tracing to individual loops

———{ > module load perftools

« Makes the default version of CrayPAT available

> ftn -c -h profile _generate himeno.f90
> ftn -o himeno.exe himeno.o

> pat_build -w[-u] himeno.exe J

» Recompile your program for gathering loop statistics.

* It is recommended to turn off OpenMP and OpenACC for the loop
work estimates via -h noomp -h noacc

* Instrument the application for tracing (APA also possible)

Loop Work Estimates

—

aprun -n 24 ./himeno.exe+pat

Execute the instrumented program.

« This generates one or more raw data files(s) in .xf format.

—

>

-
\

pat_report -o report.txt himeno.exe+pat*.xf J

Process the raw data files(s) for use with Reveal.

This generates a performance data file *.ap2 and text
report report. txt.

Even without the -u option to pat _build in the previous
step you will see user functions listed in the first table.
These are routines containing loops.

Consider the -0 profile loops option to pat report to
show the time spent in loops compared to other routines.

Reveal can use the *.ap2 to visualize time expensive loops.

Table 2: Loop Stats by function

93.0%
77 .8%
77 .8%
77 .3%
14.1%
14.0%
10.7%
4.3%
4.3%
4.3%
2.7%
2.7%
2.7%

Loop | Loop Incl |
Incl |
Time% |

Time |

19.232051
16.092021
16.090671
15.979844
2.906115
2.904878
2.216267
0.881573
0.881563
0.880918
0.560499
0.560444
0.553842

Time |

(Loop |
Adj.) |

0.000849
0.001350
0.110827

15.979844

0.001238
0.688611
2.216267
0.000010
0.000645
0.880918
0.000055
0.006603
0.553842

Loop | Loop op |
Hit | Trips | Tri

Avg | Min |

2 | 26.5 | 3

53 | 255.0 | 255
13515 | 255.0 | 255
3446325 | 511.0 | 511
53 | 255.0 | 255
13515 | 255.0 | 255
3446325 | 511.0 | 511
1| 259.0 | 259

259 | 259.0 | 259
67081 | 515.0 | 515
1| 257.0 | 257

257 | 257.0 | 257
66049 | 513.0 | 513

Loop

Trips | P

nction=/.LOOP[.]
DE

| jacobi.LOOP.1.1i.236
| jacobi.LOOP.2.1i.240
| jacobi.LOOP.3.1i.241
| jacobi.LOOP.4.1i.242
| jacobi.LOOP.5.1i.263
| jacobi.LOOP.6.1i.264
| jacobi.LOOP.7.1i.265
|initmt.LOOP.1.1i.191
|initmt.LOOP.2.1i.192
|initmt.LOOP.3.1i.193
|initmt.LOOP.4.1i.210
|initmt.LOOP.5.1i.211
|initmt.LOOP.6.1i.212

Reveal

Compiler Feedack and Variable scoping

Reveal ‘

e For an OpenMP port a developper has to understand the
scoping of the variables, i.e. whether variables are shared

or private.

e Reveal is Cray’s next-generation integrated performance
analysis and code optimization tool.

e Source code navigation using whole program analysis (data provided
by the Cray compilation environment.)

e Coupling with performance data collected during execution by
CrayPAT. Understand which high level serial loops could benefit from

parallelism.

e Enhanced loop mark listing functionality.

e Dependency information for targeted loops

e Assist users optimize code by providing
variable scoping feedback and suggested
compile directives.

Input to Reveal

—{ > module load perftools |

» Makes the default version of CrayPAT available

> ftn -03 -hpl=my program.pl -c my program file2.f90 |

» Recompile only sources to generate program library my program.pl
» The program library is most useful when generated from fully optimized code.
» Use absolute paths to specify the program library if necessary.

> ftn -03 -hpl=my program.pl -c my_program_filel.f90 ‘

> reveal my program.pl my program.ap2 & }

« After the collection of performance data in a separate experiment and generation of
a program libary you can launch Reveal.

e The *.ap2is from aloop work estimate of my_program
e You can omit the *.ap2 and inspect only compiler feedback.

e Note that the profile generate option disables most automatic
compiler optimizations, which is why Cray recommends generating
this data separately from generating the program_library file.

Reveal with Loop Work Estimates

CScADS 2012

w vhone.pl)

File Edit “iew Help

~Navigation
4 TopLoops

=

06046

28351

65767
65766

67272
67271

3.2847
3.2846

3.2690

e

parabola fa0 [~]
FARABOLA
Loop@7s
riemann.fa0
RIEMARNM
Loop@E3
sweepzf@0
SWEEPZ
Loopi@4s
Loop@4a
sweepy. 0
SWEEPY
Loop@32
Loop@33
sWeepx2 130
SWEEPX2
Loop@z8
Loop@23a
sweepx] B0
SWEEP
Loop@28

[)

~Source.
2|
New to Reveal?
Try "Getting Started"”
in the "Help" Menu
~InTo

vhone pl loaded. vhone loops.ap2 loaded.

Cray Inc.

Visualize CCE’s Loopmark with Performance Profile o
* -\ ‘
Sz) Performance Loopmark and optimization :
w vhone.aid) feedback annotations

-Navigafio
& |FmILmt

3! arabola.f20
- 3352% PARABOLA
Loop@24
Loop@30
Loop@36
Loop@hdd
Loop@s3
Loop@e7
Loop@7s
Loop@a4
4 £.19% PARASET
11.92% riemann.fa0
11.21% remap.fa0
6.71% forces.f30
£.39% volume fa0
S.234% evolve 20
- 5.34% EVOLVE
Loop@2>
Loop@36
Loop@sa
Loop@70

] v v v v

[493% ppmirfa0 —

- amae e I

=)=}

#a) @2 (2=

ol M/parabola.foo

1687500 V rd

1687500, Vrd 30

IEB?EGBI- Vrd 36

K

do n = nmin-2, nmax+l
diffa(n) = aln+l)
enddo

- aln)

Equation 1.7
da(j) = DL * (a(j+1) - a(j)) + D2 * (a(j) - a(j-1))
do n = nmin-1, nmax+l
da(n) = paraf(n,4) * diffa(n) + parain,5) * diffain-1)
daln) = sign(min(abs(da(n)). 2. 0%abs(diffa(n-1)), 2.0*%absidiffalr
enddo

zero out daln) if ai(n) is a local max/min
do n = nmin-1, nmax+l
if(diffa(n-1)*diffain) = 0.0) dain) = 0.0

[>)

-Info - Line 24

O Aloop starting atline 24 was unrolled 4 times.

O A loop starting atline 24 was vectorized.

Compiler feedback

vhone. aid loaded. vhone. ap2 loaded

® e
Visualize CCE’s Loopmark with Performance c/Reas
Profile (2) SosH

®nn (XliExplain Y}

g Q g [2] I | n I iOPT_INFO: A loop starting at line %s was unrolled.

The compiler unrolled the loop. Unrolling creates a number of copies of the
F”E loop body. When unrolling an outer loop. the compiler attempts to fuse

— replicated inner loops - a transformation known as unroll-and-jam. The
compiler will always employ the unroll-and-jam mode when unrolling an outer

i loop: literal outer loop unrolling may occur when unrolling to satisify a
w About Reveal ﬂ| ¥ vhone.aid ﬂ| P p unrolling may o y

user directive (pragma).

This message indicates that unroll-and-jam was performed with respect to the

A ~] identited loop. A different message is issued when literal outer loop
4 [Full List = l L+ I SWeePXT. I 1010 i< vertormed, 05 this tanstomation i far les s hkely to be
beneficial.

31 | Putstate variables into 10 array,

¥oORRIIr For sake of illustration, the following contrasts unroll-and-jam with literal
b prlanD doi=1.imax outer loop unrolling.
[) rEmap_fQD 33 n= | + 5 # 434 "ptmp/pdges/pdges.ths 81/bld.dirbuild 84 .ndb/pdgesipdges_finmsg.c”
DoJ=1.10
i 34 r{ny = Zroii.k DOI=1.100
P riemann.fa0 (n (.J.) OIS0 e
P states 190 35 p (n=zpriiik) e
= aweepx] 120 36 U i) = zux(i k) DOJ=1.102
. DOl=1,100
- SWEEP¥1 37 V(N = 2UyiiLL KD AlLJ Y= Bil. J) +42.0 | unroll-and-jam
. AlLJ+1)=BilLJ+1) + 420
Loop@28 38w)=k ENDDO
Loop@22 33 iy = zl(i.L.k) DoJ=1.1032
—" DOl=1,100
Loop@32 40 AQD = B(.J) +420 literal outer unroll
. ENDDO
Loop@s3 41 ¥ali(n) = zaii) DO 1= 1,100
. AlLJ+1I=Bi(lLJ+1) + 420
b osweem2 20 42 dudin) = zdx(i) [ENDDO
P sweepy.fo0 43 xa(n)= zal)
_ : The literal outer unroll code performs the same sequence of memory operations
. 44 dx ':n:l = def_l:‘ as the original nest, while the unroll-and-jam transformation interleaves
- operations from outer loop iterations. The compiler employs literal
Info - Line 32
. . 45 4] [:r'l:l = Maxl outerloop unrolling only when the data dependencies in the loop. or a control
. A |ﬂﬂp sta rtlng atline 32 w flow impediment, prevent fusion of the replicated inner loops. Literal outer
i i }*gamm} +|:|_5*|:u loop u_nrolllng is generally n_ot desirable. Itis provided to ensure e_xpected)
. A ||:|Dp sta |"t|r‘|g atline 32 w :a:::::fz;:ld for those rare instances where the user has determined that it

Integrated
message
‘explain support’

Explain other message. l [3€ Close

update using PPML

vhone. aid loaded

haimem imdn mmmel e e Fnr marmmmis slesmmime sl s s -

. . . cRAY
View Pseudo Code for Inlined Functions .
)
=200 N F 0
Eile Help
v AboutReveai € | v vhone.aid © |
4 | Full List z l{.’t e init 0 & v @
)) G NUyoLe = u
vhimods.o [~} 8l ncycp =0
zonemod.o B2 ncycd =0
B boundary.f20 83 ncyecm = 0
b dtcon.f30 84 nfile = 1000 Expand to
b dump.120 85 see pseudo
b evalve 150 B& ! Set up grid coordinates code
B flatten fa0
a7
P forcesfa0 - —rr : l
) 22 call grid(imax,xmin,xmax,z%a,zxc, 2dx
[images.fa0 -
88 1326 = 100
= init.fa0
b GRID 28 t$27 = 100
b INIT Inlined call 55 I e
b parabola 90 sites marked 88 ldirg ivdep
L b e e SO 28 do
Info - Line 88 88 zxa(l + $I_L88 100) = 9.9999998e-3 * $I_L88 |
O A divide was turned into a multiply by a recipro 28 zdx(l + $I LB8 100) = 9,9999998:-3
O A loop starting at line B8 was unrolled 4 times. 88 zxc(l + $I LBS 100) = 4,9995998%-3 + (9, 999
O A loop starting at line B8 was vectorized. 28 $I L88 100 = 1 + $I L88 100
O The call to grid was textually inlined. B8 if ($I_L88 100 >= 100) exit
88 enddo
1] B9 call grid({jmax,ymin,ymax,zya,zyc,zdy)
(1] 80 call grid(kmax,zmin,zmax,zza,zzc, zdz) ©

vhone. aid loaded

B
L'y

Scoping Assistance — Review Scoping Results S R

- - Parallelization inhibitor
File Help messages are provided_to
assist user with analysis \

w vhone.aid € |

~Navigation | &
- |Fu|l List > |-3}

epx2 fa0: lines 28 -= 69

Scope Infa

~Sowurce - home/usersheidi/demolLM/sweepy.fo0-

- = Array FAILAL ast defining iteration not known for variable that is live on exit.:W
d uieui. =y subroutine Sweepy flat Array FAILEL ast defining iteration not known for variable that is live on exit. W
_ 2 q Array FAIL-Last defining iteration not known for variable that is live on exit. W
~ SWEEPY . . isy Scalar Shared
Loop@32 3 ! This subroutine cesiar Shared
4 | After call to ks Scalar Shared
LDUFI@33 : 5 1 If unl]r 1wo d ngeomx Scalar Shared
LUDFJ@E? LOOpS W|th 6 | After h]rd o U nleftx Scalar Shared User addresses
Luup@BS Scoping npey Scalar Shared : .
L 43 . . F T nrightc Scalar Shared parallellzatlon
oop@E |nf0rmat|0n are 3 recv? Array Shared issues for
Lﬂﬂlp@63 h| h“ hted o red 3 zdx Array Shared
Loo ghig | GLOBALS unresolved
p@?? needs user Full Array Shared ‘
- SWEEFI}(E.'E'O) ¢ use glnbal zpr Array Shared Var|ab|es
assistance A Shared
- s nom o
Loop@28 LUSe Sweeps auy Amay Shared
LUUD@EQ use |'|1pl uz Array Shared
T
Loop@32 B
-First/Last Private -Reduction
LUUD@BB IMPLICIT MOMNE [Enable First Private | i = |
Loop@44 | | Enable Last Private ' '
Loop@sa i
b sweepx] 20 rinfo search |]
b valume fa0 l Insert Directive l l Show Directive l l 3¢ Close l
b states 180
f riemann.f30 & [

loading /homefusers/heidi/demolLivhone. aidivhone 22T

: : C=RANY
Scoping Assistance — User Resolves Issues ol

e

OpenhP Tips

* Reduction in an inlined function

P Scoping conflict with inlined variable i
sweepx2.30: lines 28 -> 69
= Scoping conflict with locally visible array iame 7l Type Scope Info
An a"ay requires conﬂicting SCUPEE at different locations. fs“eepxz_fgu— f Array FAILLast defining iteration not known for variable thatis live on exit. W
It may he pﬂssible to declare and use a different array for the pri\fate flat Array FAILALast defining iteration not known for variable thatis live on exit. W
q Alray FAIL-Last defining iteration not known for variable that is live on exit. W
array’ Uses. LDUP over each row..
isy Scalar Shared
is Scalar Shared
ks Scalar Shared
x glos? = 1 s]'5 ngeomx Scalar Shared
nlefb Scalar Shared
npey Scalar Shared
. 3 ightx Scalar Shared
Loop@37 31 | Put state variables 1o oo
Lﬂﬂp@3 zdx Array Shared
LDDp 32 dz m._ 11 npe"" bl Array Shared
31250 33 o01=1, 1s or Array Shared
Lo)) y Zo Amay Shared =
125333 34 n=1+ lE]I'*I:m-l:l + UK Array Shared O A ab O
_ . uy Array Shared a a
N Ao eg 35 r{n} - -{llk‘l‘ uz Array Shared
36 p(n) - FEEV2(2,k,1, occurrences in loop
Ope . . rFirst/Last Private
0 e O D < u {n} = - {3‘ k + 1. [Enable First Private None <
= = 38 vin) = -{.I'.].J k,1, 7 |0 Enabie Last Prvate) |
39 win} = -{SJkJiJ Search'l]
LUUD@33 4ﬂ f {n} = - {5‘ k . 1 . Insert Directive Show Directive xguse \
Loop@44 41 enddo
Lunp@58] oLl
~info - Line 28
[sweepx] 120 - " .
B A loop starting at line 28 was notvectorized because it contains a call to subroutine "ppmir' on line 55. [~]
P volume. f20
b ates 60 Loop has been flattened.
Slates.
i Loop has been flattened.
B riemann.fa0 '
S L |)]
loading /homefusers/heidi/demolLivhone. aidivhone 22T

)
< 8%
Eile Hel
= =EP Reveal generates
w 3
vhone.aid @ | example OpenMP
Navigation directive _
o f Up ’ Down Save
2 [Full List z l —
i I-Snlrrce - home/users olLM/'sweepx1.7f90
2 & Xhe T e ot meert ITﬂl
ISOMP parallel do default(none) & 28 do k =1, ks XIC
I$OMP& shared (gamm,send1,zdx,zfl,zpr.zro.zux, zuy,zuz, zxa) g] . sweepx1.120; lines 29 -= 63
I5OMP& lastprivate (dx,dx0,e,fp.r.uvw, xa,xal) 29 do] = 1,]
Info
30 [sF8 Array Privas LastPrivate of array may be very expensive.
31 ! Put stat dx0 Array Private LastPrivate of array may be very expensive.
-0V rZ 32 do 1 =1,1 = Array Private LastPrivate of array may be very expensive.
13 n o= 1 + f :rray Erfua:e stirf\fa:e 0: array may ie very expensT\.‘e.
B rray rivate rivate of array may be very expensive.
34 I {n} =| r Private WARN- . ‘ivate of array may be very expensive.
Copy Directive l l 3¢ Close l 35 P (n) = u Private WARN-La e of array may be very expensive.
Z 36 uofn) 4 v Array Private WARN:-LastP of array may be very expensive.
sSweepdd =50 37 v (n) & w Array Private WARNEL astPriva Jrray may be very expensive.
- . — [R T Y S S b’
SWEERES 38 w (n) 40 B
Loop@28 39 f (n) < First/Last Private -F. o
Loop@23 40 [Tl Enable First Private | Nond A
Loop@32 | Enable Last Private
41 xalln) =
Loop@33 . dx0
Loop@44 X0n) 3 searen: | N\ l
A2 wva (nl — 2
Loop@s8 o o
. Insert Directive Show Directive x Close ‘
- sweepx] 20 -Info - Line 29 Y
- SWEEP1 B A loop starting at line 29 was notvectorized b
Loop@28 Loop has been flattened.
D oo e been fatened
| nonm3? |

loading /home/users/heidi/demoliMMvhone. aid/ivhone_22.T. .

e
cRAY
o

))
\

OpenMP data collection and reporting

e For programs that use the OpenMP

e CrayPat can measure the averhead incurred by entering and leaving
parallel regions and work-sharing constructs within parallel regions

e Show per-thread timings and other data.
e Calculate the load balance across threads for such constructs.

e For programs that use both MPI and OpenMP

e Profiles by default show the load balance over PEs of the average time in
the threads for each PE

e But you can also see load balances for each programming model
separately.

e Options for pat_report

e profile pe_ th (default view)
e Imbalance based on the set of all threads in the program

e profile pe.th
e Highlights imbalance across MPI ranks
e Uses max for thread aggregation to avoid showing under-performers
e Aggregated thread data merged into MPI rank data

e profile th pe
e For each thread, show imbalance over MPI ranks

e Example: Load imbalance shown where thread 4 in each MPI rank didn’t get
much work

OpenMP data collection and reporting

OpenMP support enabled by default with CCE
OpenMP tracing calls inserted by default when

perftools is loaded.

Table 1: Profile by Function Group and Function

Time% | Time | Imb. | Imb. | Calls |Group
| | Time | Time% | | Function
| | | | | PE=HIDE
| | | | | Thread=HIDE
100.0% | 2.452453 | - -- | 1426.8 |Total
g
96.9% | 2.377154 | - -- | 3@9.8 |USER
| ...
| 82.1% | 2.013394 | 0.027282 | 1.8% | 100.0 |work.LOOP@li.533
| 10.6% | 0.259470 | 0.000282 | 0.1% | 1.0 |exit
| 2.4% | 0.057711 | ©.000562 | 1.3% | 1.0 |initializeMatrix
| 1.0% | 0.024130 | 0.000313 | 1.7% | 1.0 |setPEsParams.SINGLE@Li.355
1.6% | ©.039963 | - -- | 9e9.0 |MPI

®e
C=RANY
U

Table 2: Load Imbalance by Thread

Max. | Imb. | Imb. |Thread
Time | Time | Time% | PE=HIDE

2.452470 | ©.316486 | 17.2% |Total

2.453287 | 0.000817 | ©.0% |thread.e
2.078727 | 0.036293 | 2.3% |thread.2
2.074969 | 0.048712 | 3.1% |thread.1
2.066243 | 0.043468 | 2.8% |thread.3

Load Imbalance Analysis

e Imbalance time is a metric based on execution time and Is
dependent on the type of activity:

e User functions

Imbalance time = Maximum time — Average time
e Synchronization (Collective communication and barriers)
Imbalance time = Average time — Minimum time

/

e ldentifies computational code regions and synchronization
calls that could benefit most from load balance optimization
e Estimates how much overall program time could be saved

If corresponding section
of code had a perfect
balance.

e Represents upper bound
on “potential savings”

e Assumes other processes
are waiting, not doing
useful work while slowest
member finishes.

Time% | Imb. |

Time | Time% |

Time | Imb. |

| Function

I I | PE=HIDE
100.0% | 20.643909 | 49.0 |Total
| __
98.8% | 20.395989 | | 219.0 |USER

| 91.1% | 18.797060 |
| 7.7% | 1.597866 |
1.2% | ©.239306 | -- | 871.0 |MPI

| 44.4% | 159.0 |MPI_Waitall
| 24.7% | 318.0 |MPI_Isend

| ©.7% | ©.148981 |
| % | ©.085824 |

Load Imbalance Analysis

e Imbalance time percentage represents the percentage of
resources available for parallelism that is “wasted”.

Imbalance time N
Imbalance% =100 X _ —
Max Time N-1
e Corresponds to percentage of time
that rest of team is not Time% II Time II nb. II Inb. II Calls llGr;:?JLr'::tion
engaged in useful work | | | | | PE=HIDE

on the given function.
Perfectly balanced code
segment has imbalance
of zero percentage.

Serial code segment has
Imbalance of 100 percent.

100.0% | 20.643909 | -- | 1149.0 |Total

98.8% | 20.395989 | - | -- | 219.0 |USER
| ___
| 91.1% | 18.797060 | ©.115535 | ©.7% | 2.0 |jacobi
| 7.7% | 1.597866 | ©.006647 | ©.5% | 1.0 |initmt
I S S S S S oS ===s
1.2% | ©.239306 | - | -- | 871.0 |MPI

.148981 | ©.094595 | 44.4% | 159.0 |MPI_Waitall
.085824 | 0.023669 | 24.7% | 318.0 |MPI_Isend

[OIN)

Load Imbalance Analysis

e MPI Sync time measures load imbalance in programs
Instrumented to trace MPI functions to determine if MPI

ranks arrive at collectives together

e Separates potential load imbalance from data transfer
e Sync times reported by default if MPI functions traced
e If desired, PAT _RT_MPI _SYNC=0 deactivates this feature

e Only reported for tracing experiments.

| 0.0% | ©.006696 | 0.006627 | 99.0% | 2
| 0.0% | ©.001802 | 0.001399 | 77.6% | 55.
| 0.0% | ©.000061 | ©.000052 | 86.3% | 1
| 0.0% | ©.000056 | @©.000051 | 91.7% | 1

MPI_Init(sync)

OO0

Time% | Time | Imb. | Imb. | Calls |Group
| | Time | Time% | | Function
| | | | | PE=HIDE
100.0% | 20.643909 | - -- | 1149.0 |Total
gy
0.0% | ©.008614 | | | 59.0 |MPI_SYNC

MPI_Barrier(sync)
MPI_Allreduce(sync)

MPI_Finalize(sync)

Causes and hints

e What is causing the load imbalance?
e Need profiler reports like CrayPAT gives for the ‘where’
e Need application expertise for the ‘why’

e Computation
e Is decomposition appropriate?
e Would reordering ranks help?

e Communication
e Is decomposition appropriate?
e Would reordering ranks help?
e Are receives pre-posted?
e Any All-to-1 communication?
e |/O

e synchronous single-writer 1/0O will cause significant load imbalance already
with a couple of MPI tasks (More on 10 tomorrow)

CRANY |
Rank placement o,

e The default ordering can be changed using the following
environment variable:
export MPICH_RANK_REORDER_METHOD=N

e These are the different values (N) that you can set it to:

e N=0: Round-robin placement — Sequential ranks are placed on the
next node in the list.
0,12, 30,1, 2, 3(8tasks on 4 nodes, 2 tasks per node)

e N=1: (DEFAULT) SMP-style- (block-) placement
0,0,1,1, 2, 2,3, 3(8tasks on 4 nodes, 2 tasks per node)

e N=2: Folded rank placement
0,1, 2,3,3,2,1, 0(8tasks on 4 nodes, 2 tasks per node)

e N=3: Custom ordering. The ordering is specified in a file named
MPICH_RANK_ ORDER.

Rank placement with CrayPat

e When is rank placement a priori useful?

e Point-to-point communication consumes a significant fraction of
program time and a load imbalance detected

e Also shown to help for collectives (alltoall) on subcommunicators

e Spread out I/O servers across nodes

e CrayPat can provide the following feedback

MPI Grid Detecti

Observations and suggestions ========================

on:

There appears to be point-to-point MPI communication in a 4 X 2 X 8 grid
pattern. The execution time spent in MPI functions might be reduced
with a rank order that maximizes communication between ranks on the
same node. The effect of several rank orders is estimated below.

A file named MPICH_RANK_ORDER.Grid was generated along with this
report and contains usage instructions and the Hilbert rank order
from the following table.

Rank
Order

Hilbert
Fold

SMP
RoundRobin

On-Node
Bytes/PE

5.533e+10
4.907e+10
4.883e+10
3.740e+10

On-Node
Bytes/PE%
of Total
Bytes/PE

90.66%
80.42%
80.02%
61.28%

MPICH_RANK_REORDER_METHOD

O FrLr NN W

\
®
\
The 'Custom' rank order in this file targets nodes with
multi-core
processors, based on Sent Msg Total Bytes collected for:
Program: /1lus/nideee30/heidi/sweep3d/mod/sweep3d.mpi

Ap2 File: sweep3d.mpi+pat+27054-89t.ap2
Number PEs: 48
Max PEs/Node: 4

HOH H OH OH HH

To use this file, make a copy named MPICH_RANK_ORDER, and
set the

environment variable MPICH_RANK_REORDER_METHOD to 3 prior
to

executing the program.

#

The following table lists rank order alternatives and the
grid_order

command-line options that can be used to generate a new
order.

9,532,64,564,32,572,96,540,8,596,72,524,40,604,24,588
104,556,16,628,80,636,56,620,48,516,112,580, 88,548,120,612
1,403,65,435,33,411,97,443,9,467,25,499,105,507,41,475
73,395,81,427,57,459,17,419,113,491,49,387,89,451,121,483

Hybrid MPI + OpenMP?

e OpenMP may help ¥
e Able to spread workload with less overhead
e Large amount of work to go from all-MPI to (better performing) hybrid -
must accept challenge to hybridize large amount of code
e When does it pay to add OpenMP to my MPI code?
e Add OpenMP when code is network bound

e Adding OpenMP to memory bound codes may aggravate memory
bandwidth issues, but you have more control when optimizing for
cache

e Look at collective time, excluding sync time: this goes up as network
becomes a problem

e Look at point-to-point wait times: if these go up, network may be a
problem

e If an all-to-all communication pattern becomes a bottleneck,
hybridization often overcomes this

e Hybridization can be used to avoid replicated data

®e
CRANyY
it

°)
\

Cray Apprentice?

e Cray Apprentice2 is a post-processing performance data .
visualization tool. Takes *.ap2 files as input.

e Main features are e Cray Apprentice? helps

e Call graph profile identify:

e Communication statistics e Load imbalance

e Time-line view for Communication e EXxcessive communication
and 10. e Network contention

e Activity view e EXcessive serialization

e Pair-wise communication statistics ¢ 1/O Problems

e Textreports

e Source code mapping
> module load perftools

[> app2 my_program.ap2 & J

Cray Apprentice?

™ Apprentice2 (on eslogin006)
File Help

LMl E

w About Apprentice2 g W Espresso+pai+47254-3184Lap2 ﬂl

¥ Overview ﬂ |

Function/Region Profile

40.7% = MPI Waitall
18.9% = calc_ ... orce_parts
6.1% = MPI Recv

Load Imbalance

4.495 = MPI_Waitall
2.63s = calc ... orce parts
1.46s = MPI Recv

Profile

CPU

Programming_Model
54.93%

Memory Utilization

Process HiMem (MBytes) 34.779

10011 ___ (10011
10101 10101

Data Movement
MPI Msg MBytes 944.003

Wallclock time: 60,000000s

Espresso+pat+47254-3184t.ap2 (54,192 events in 0,255s)

4]

Call Tree View

File

-

ey R uE

ot B

wOverview X ¥ Call Graph X]

ﬁoad balance overview: \
Height <& Max time
Middle bar <> Average time
Lower bar <& Min time

Yellow represents

mealance time

Function

__—

calc2
(c=0,3803 e=0.5031)

calc3
0.0221 e=0.4705)

C=RANY
\
@ \
\
N\ Help
| Width < inclusive time \
/
h =
Height < exclusive time
J

mpi_wai

)
o

Ic1
(c=0.3901 €=0.2933)

DUH Button:
Provides hints

iLwaitall [7
mplgialL 71

tuning

for performance

Filtered
nodes or
sub tree

) Zoom
List
£l y/a o
£| Search:l gl Qw_l Q
0.00 0.56 1.12 1.68 2.2‘4

Call Tree View — Function List

File Help

i

@ ey = 5 A Right mouse click:

Node menu
wOverview X ¥ Call Graph xl o o
nfo-— ~ e.g., hide/unhide
ImlemeIName .

children

0.3702 mpi_waitall_[7]
0.3103 mpi_waitall_[4]

0.1586 mpi_waitall_[10] R|ght mouse CI'Ck =

0.1226 mpi_waitall_[6]

0.1108 mpi_waitall_[1] V|eW menu:
0.1017 mpi_waitall_[3] . _—
00917 calcl_ e_g_’ Fllter mpi_w |t-J|‘5101
0.0673 calc3_
0.0649 calc2_
0.0249 mpi_waitall_[9]

0.0161 mpi_isend_[13] calc3_ calc2
= = (€=0.0221 €=0.4705) (c=0.,3803 e=0.5031)
0.0129 mpi_irecv_[10]

0.0117 mpi_isend_[10] ——
0.0090 mpi_waitall_[0] 7/1
0.0084 mpi_isend_[7] (
0.0072 mpi_irecv_[13]
0.0070 mpi_isend_[4]
0.0065 mpi_irecv_[4]
0.0048 mpi_irecv_[7]
0.0031 mpi_waitall_[2]
0.0029 mpi_reduce_(sync)
0.0025 mpi_waitall_[5]
0.0001 mpi_reduce_
0.0000 mpi_waitall_[8]
0.0000 mpi_irecv_[18]
0.0000 mpi_isend_[16]
0.0000 mpi_finalize_
0.0000 mpi_comm_rank_
0.0000 mpi_init_
0.0000 mpi_comm_size,

]]

ﬂm’ Imb%/llmbTime
= s

»

Sort options |
% Time, "Re=d.028{")
Time,

Imbalance % m.zi:wulnu [4] F—
Imbalance time

Function
—_ Listoff]

Apprentice? Call Tree View of Sampled Data RS

ApprenticeZ 5.0 (o guppy L)

File Help
 sweep3d.mpi+samp.rts.ap2 XI
~Overview ¥ ~Callgraph X |
[«]
glob
glob
mpi
R
[« [*]
>:=| Search:l L =
[sweep3d.mpi+samp.rts.ap2 (4,551 events in 0.126s) <~ I

Load Balance View (from Call Tree) \

e N
e Min, Avg, and Max Help

W sweepJod+tr-u+mpidsp ap2 | w syim+tr1 Bp.ap2 I V
alues
_

@e Y)H . \ A

w Overview I W Call Graph ¥ Load Balance |
Load Balance: MPf_Bcast
PE Calls & {in secs) N =

FE #33
FE #37
PE #43
FE #41
FE #61
FE #57
FE #35
PE #63
PE #51
FE #45
FE #67
FE #41
FE #47
PE #55
FE #35
FE #21
FE #34
FE #35
PE #4943
FE #25
FE #23
FE #42
FE #45
PE #57
PE #63
FE #38
FE #73
FE #75
PE #53
PE #77
FE #71
FE #62

A

0.00

Time Line View

®°
C=RANY
U

\

Full trace (sequence of events) enabled by setting

PAT_RT_SUMMARY=0

Helpful to see communication bottlenecks.

Use it only for small experiments !

File

Help

W swim+iompi+1566td.ap2 W T+hw1+swhp+io+mpi+d8p ap2 |

PRYLETE uE S

@

m & .

0,
PE #0
PE #1
PE #2

Q00

0,462

0,924

1,948

W Overview | w Function | W Environment % Traffic Report I w Text Report | ¥ Mosaic | w Activity]
1,386

2,310
|

2,772

]
]
]
]
]
1
]
]
]
]
]
]
I
I
I
I
|
1
1
|
I
I
I
|
I
I
|

3.,
]
]
]
]
]
1
I
I
I
I
i
I
1
|
|
|
!
1
1
|
|
|
|
1
|
I
I

4,158

]
]
]
]
]
1
I
1
1
I
[
1
I
|
|
1
1
1
1
1
]
|
|
1
|
| ¢
|

|

|
|
|
I

¢

4,620

oA

[>]

Murite " Read M Barrier I Beast M Send MReceive

Housekeeping " Reduce " Al1ToR1l

scale = 137.7%

Comm File Other MM Barrier IMParallel Region Housekeeping

Q Zoom In Q Zoom Out

€3 Best Fit |

2.30

461

\

Time Line View (Zoom)

®°
C=RANY
U

\
User Functions, MPT | °
b
il 1
& SHMEM Line
W swim+iompi+1566td.ap2 % T+hw1+swp+io+mpi+48p.ap2 I k \
@R YEIHE ME ' OF
W Overview | W Function ¥ Traffic Report | W Text Report | ¥ Mosaic | w Activity | w Counters Plot | W HW Counters Overvi ales
3,564 3,608 3,652 3.695 3,739 3,783 o826 3,870 3,914 3,958 4,001
PE 40 e - s b T]
PE #1 bbby 2 — u
PE #2 " — R n Ll s—
PE 43 LLLLLL e L IR
_P_E _“_4_ ') ¥ — R u
PE #5 i | x —IL o
PE #6 e = I/O Line
'P—E -*—8- — AN — ra——tal
PE #9 Wi A —— _.‘
PE #10| ¥ | 22 AN P — Ih
PE #11] =, X AN ——0L IH
-PE-#-lér Wi — lh
PE #13 T — 4 lh
PE #14 fa—— 2 X — Ih (J
PE #15 b | ¥ S—" IH {
-P-E -“-1-8 2 ¥ — Ih
PE #17 bl S "
PE “18 223 e li
_P_E_“_l? CPRaase— l‘ ¥
PE #20) "I
PE #21 oo "\
PE #22 e "
PE_#23 "
-P-E _“-2:1 e sanary Ih
PE #25 3% faes 1 I‘
PE #26 e LIII o
PE #07 REax . o ll. o Ll
il ——— 5
Murite " Read M Barrier M Bcast MiSend MlReceive Housekeeping ™ Reduce [A11ToALl ©iComm File Other M Barrier MlParallel Region Housekeeping
scale = 1454.7% & zoom In| (& Zoom out | € Best it |
A | | I A
0.00 1.15 2.30 3.45 461

Time Line View (Fine Grain Zoom)

File

w swimsiompi+1566tdap2 ¥ Tshw 1 +swp+iosmpis48p.ap2 |

Ge,RAYYEDREMEENX

i

W Overview | W Function ¥ Traffic Report | W Text Report l W Mosaic | w Activity I w Counters Plot l = HW Counters Overview I |0 Rates |
3,886 3.586 3.§87 3,887 3,988 3.588 3,888 3.589
'} (]

3.989

o
m
I*
(o=l
o
-

PE #46
PE _#47) A

3,830 3,830

A

scale = 152198.2% Q Zoom [h

Murite " Read M Barrier I Beast Mlsend MReceive Housekeeping ¥ Reduce M A11ToALL Comm File Other M@ Barrier IMParallel Region Housekeeping

Q Zoom Out

Q Best Fit |

A

0.00 1.15 2.30 3.45

461

<~

Monitoring Power

(Courtesy of Heidi Poxon)

Monitoring Power on Intel \

e Feedback to the user on performance and power
consumption will be key to understanding the behavior of
an applications on future systems.

e To see a list of events, execute the following on compute
node:

> aprun papi native avail -i crayrapl
> aprun papi_native avail -i craypm

e See rapl(5) and pmpc(5) man pages for more
Information

Intel’s RAPL (Running Average Power Level)

CcCRANyY

e Provides mechanism to enforce power consumption limit. Also

facilitates the ability to measure energy consumption on SNB and IVB

Processors

e 32-bit counter measurements available on a per socket basis with
update frequency of approximately 1 millisecond

e 7 monitoring counter events available
e Provides dynamic readings from various components of the socket

e Constant values are available for thermal specifications, max and min power

caps, and time windows

PACKAGE_ENERGY

Total amount of energy consumed by socket

PPO_ENERGY

Total amount of energy consumed by the cores

DRAM_ENERGY

Total amount of energy consumed by the DRAM

\

\
\

Cray Power and Energy Management Counters

e Support CLE Intel power and energy management
performance counters

e Provides compute node-level access to additional power
management counters at the application level

e Enables user to monitor and report energy usage during
program execution for both CPU and GPU

Event Description
PM_POWER_CAP:NODE Compute node power cap
PM_POWER:NODE Compute node point in time power
PM_ENERGY:NODE Compute node accumulated energy
PM_POWER_CAP:ACC Accelerator power cap
PM_POWER:ACC Accelerator point in time power
PM_ENERGY:ACC Accelerator accumulated energy

Accessing Power Information

> export PAT_RT_PERFCTR=PM_ENERGY :NODE
> export PAT_RT_PERFCTR=PACKAGE_ENERGY

e RAPL counters
e Launch application with aprun -cc cpu to bind MPI ranks to sockets

e Counters collected by processor 0 on each socket (assuming the
application is running on processor 0)

e 32-bit RAPL counters have a wraparound time of approximately 60
seconds when power consumption is high
e Cray PM counters

e Collected by processor 0 on each node (assuming the application is
running on processor 0)

e Counter collection has high overhead (RAPL higher than
Cray PM). It’s best not to collect performance information
at the same time

PM Counters for CP2K MPI+OpenMP on VB

USER / process _mm_stack$dbcsr mm_stack_

Time% 2.0%

Time 15.642021 secs
Imb. Time 7.142276 secs
Imb. Time% 32.7%

Calls 0.005M/sec 72311.2 calls
PM_ENERGY : NODE 51.384 /sec 803.750 J

Time’% 1.5%

Time 11.564295 secs
Imb. Time 2.392148 secs
Imb. Time% 17.9%

Calls 1.902 /sec 22.0 calls
PM_ENERGY :NODE 42.847 /sec 495.500 J

CrayPat-lite

Light-weight application profiling

CrayPat-lite Overview

e Provide automatic application performance statistics at the end
of ajob. Focus is to offer a simplified interface to basic _
application performance information for users not familiar with
the Cray performance tools and perhaps new to application
performance analysis.

e Thetool is enabled by loading a module and rebuild
> module load perftools-lite
> make clean && make

e Program is automatically relinked to add instrumentation in
a.out (pat_build step done for the user)
e .0 files are automatically preserved

e No modifications are needed to a batch script to run instrumented binary,
since original binary is replaced with instrumented version

e pat_report is automatically run before job exits.
e Performance statistics are issued to stdout

e User can use “classic” CrayPat for more in-depth performance
investigation

CRANY
o

\
\

\

Steps to Using CrayPat-lite

Access light version of performance tools software

> module load perftools-lite

Build program

> make

—

a.out (instrumented program)

Run program (no modification to batch script)

aprun a.out

—

Condensed report to stdout
a.out*.rpt (same as stdout)
a.out*.ap2
MPICH_RANK_ XXX files

~N

L N)
cCRANY
o

°)
\

Predefined Set of Performance Experiments

e Set of predefined experiments, enabled with the \
CRAYPAT _LITE environment variable (before compilation)
e sample profile
e event profile

e The sample profile is equivalent to
> pat _build -0 apa a.out

e Includes collection of summary CPU performance counters around
MAIN

e Includes Imbalance information.

e The event_profile is equivalent to

> pat _build -u -gmpi a.out
Provides profile based on summarization of events.
Includes OpenMP if these models are used within program.
Collection of summary CPU performance counters

Filter to only trace functions above 1200 bytes
e In most cases, omits tiny repetitive functions that can perturb results.

Performance Statistics Available \
A \
\

. . Number of PEs (MPI ranks): 64
[JOb InfOrmatIOn Numbers of PEs per Node: 32 PEs on each of 2 Nodes
MNumbers of Threads per PE: 1 \
e Number of MPI ranks, ... Number of Cores per Socket: 16

Execution start ime: Fri Feb 15 14:42:24 2013
e Wallclock

Wall Clock Time: 122.608994 secs

e Memory high water mark High Memory: 45.70 MBytes
e Performance counters (CPU only)

e Profile of top time consuming routines with load balance

Samp | Samp | Imb. | Imb. [Group Time% | Time| Imb. | Imb. | Calls |Group
s | | Time | Time% | | Function
| | | | PE=HDE | I | PE=HIDE
1000% 142725 | -] ~[Total 100.0%] 101.961423] =| ~-|5315211.9(Total
1 1.
1
| 460%] 65614 —| -[USER | 925%| 94.267451] ~—| ~-|52722459|USER
L 1l
||
H :ﬁ": il ::::‘: : o :mg""am“-x-;- | 758%| 77.248585] 2.356249| 3.0%| 1001.0[LAMMPS_NS::PairLJCut::compute
| 35% | 540 1240 | 199% ol core 2. | 65%| 6.644545|0.105246] 1.6%| 51.0 [LAMMPS_NS::Neighbor::half_bin_newton
s e e Iimg"m“a*;mq- | 41%]| 4131842]0.634032| 135%| 1.0 LAMMPS_NS::Veriet::run
. e o | 3.8%]| 3.841349|1.241434| 24.8% | 5262868.9 LAMMPS_NS::Pair::ev_tally
R | 13%]| 1.288463]0.181268] 125%| 1000.0 [LAMMPS_NS::FixNVE::final_integrate
| 93% | 13283 [1987 | 13.2% |mpi_altcallv R
| 42%| 5985 | 71.5| 10.8% |mpi_waitall I
| 29% | 4138 | 1072 | 208% IMPLWATANY | 48%| 4.851309|3.371003| 41.6% | 12267.0 MP|_Send
| 29%| 4094 | 669 | 143% [MP| Comm,_create | 15%| 1.536106]2.502504| 63.8% | 12267.0 [MPL_Wait
IF f

e Observations and Instructions on how to get more info.

