
Performance Analysis with CrayPat

Part 2

Aniello Esposito

(esposito@cray.com)

Outline

.

● Loop work estimates with CrayPat
● How to prepare the code for collection of loop statistics.

● Reveal
● Generate the program library.

● Use the GUI.

● Profiling OpenMP

● Load balancing Analysis
● Using Apprentice2

● Monitoring Power

● Craypat-lite

Loop Work Estimates

3

• Makes the default version of CrayPAT available

> module load perftools

• Recompile your program for gathering loop statistics.

• It is recommended to turn off OpenMP and OpenACC for the loop
work estimates via –h noomp –h noacc

• Instrument the application for tracing (APA also possible)

> ftn -c -h profile_generate himeno.f90

> ftn -o himeno.exe himeno.o

> pat_build –w[-u] himeno.exe

● Assess suitability of loop nests for optimization
● Gives information on inclusive time spent in the loop nests and

typical trip count of the loops.

● Only available with CCE. CrayPAT can generate this information via
a special kind of tracing experiment. Just like adding automatic
tracing at the function level, we can add tracing to individual loops

Loop Work Estimates

4

• Execute the instrumented program.

• This generates one or more raw data files(s) in .xf format.

aprun –n 24 ./himeno.exe+pat

• Process the raw data files(s) for use with Reveal.

• This generates a performance data file *.ap2 and text
report report.txt.

• Even without the –u option to pat_build in the previous
step you will see user functions listed in the first table.
These are routines containing loops.

• Consider the -O profile_loops option to pat_report to
show the time spent in loops compared to other routines.

• Reveal can use the *.ap2 to visualize time expensive loops.

> pat_report -o report.txt himeno.exe+pat*.xf

Subroutine

 Loop | Loop Incl | Time | Loop | Loop | Loop | Loop |Function=/.LOOP[.]
 Incl | Time | (Loop | Hit | Trips | Trips | Trips | PE=HIDE
 Time% | | Adj.) | | Avg | Min | Max |
|---
| 93.0% | 19.232051 | 0.000849 | 2 | 26.5 | 3 | 50 |jacobi.LOOP.1.li.236
| 77.8% | 16.092021 | 0.001350 | 53 | 255.0 | 255 | 255 |jacobi.LOOP.2.li.240
| 77.8% | 16.090671 | 0.110827 | 13515 | 255.0 | 255 | 255 |jacobi.LOOP.3.li.241
| 77.3% | 15.979844 | 15.979844 | 3446325 | 511.0 | 511 | 511 |jacobi.LOOP.4.li.242
| 14.1% | 2.906115 | 0.001238 | 53 | 255.0 | 255 | 255 |jacobi.LOOP.5.li.263
| 14.0% | 2.904878 | 0.688611 | 13515 | 255.0 | 255 | 255 |jacobi.LOOP.6.li.264
| 10.7% | 2.216267 | 2.216267 | 3446325 | 511.0 | 511 | 511 |jacobi.LOOP.7.li.265
| 4.3% | 0.881573 | 0.000010 | 1 | 259.0 | 259 | 259 |initmt.LOOP.1.li.191
| 4.3% | 0.881563 | 0.000645 | 259 | 259.0 | 259 | 259 |initmt.LOOP.2.li.192
| 4.3% | 0.880918 | 0.880918 | 67081 | 515.0 | 515 | 515 |initmt.LOOP.3.li.193
| 2.7% | 0.560499 | 0.000055 | 1 | 257.0 | 257 | 257 |initmt.LOOP.4.li.210
| 2.7% | 0.560444 | 0.006603 | 257 | 257.0 | 257 | 257 |initmt.LOOP.5.li.211
| 2.7% | 0.553842 | 0.553842 | 66049 | 513.0 | 513 | 513 |initmt.LOOP.6.li.212

Table 2: Loop Stats by function

.

Line number

Nested Loops

Reveal

Compiler Feedack and Variable scoping

● For an OpenMP port a developper has to understand the

scoping of the variables, i.e. whether variables are shared

or private.

● Reveal is Cray’s next-generation integrated performance

analysis and code optimization tool.

● Source code navigation using whole program analysis (data provided

by the Cray compilation environment.)

● Coupling with performance data collected during execution by

CrayPAT. Understand which high level serial loops could benefit from

parallelism.

● Enhanced loop mark listing functionality.

● Dependency information for targeted loops

● Assist users optimize code by providing

 variable scoping feedback and suggested

 compile directives.

7

Reveal

Input to Reveal

8

• Makes the default version of CrayPAT available

> module load perftools

• Recompile only sources to generate program library my_program.pl

• The program library is most useful when generated from fully optimized code.

• Use absolute paths to specify the program library if necessary.

> ftn -O3 -hpl=my_program.pl -c my_program_file1.f90

> ftn -O3 -hpl=my_program.pl -c my_program_file2.f90

• After the collection of performance data in a separate experiment and generation of
a program libary you can launch Reveal.

> reveal my_program.pl my_program.ap2 &

● The *.ap2 is from a loop work estimate of my_program
● You can omit the *.ap2 and inspect only compiler feedback.

● Note that the profile_generate option disables most automatic
compiler optimizations, which is why Cray recommends generating
this data separately from generating the program_library file.

Reveal with Loop Work Estimates

CScADS 2012 Cray Inc.
9

Visualize CCE’s Loopmark with Performance Profile

Performance

feedback

Loopmark and optimization

annotations

Compiler feedback

10

11

Visualize CCE’s Loopmark with Performance
Profile (2)

Integrated

message

‘explain support’

Integrated

message

‘explain support’

View Pseudo Code for Inlined Functions

12

Inlined call

sites marked

Expand to

see pseudo

code

Scoping Assistance – Review Scoping Results

User addresses

parallelization

issues for

unresolved

variables

Loops with

scoping

information are

highlighted – red

needs user

assistance

Parallelization inhibitor

messages are provided to

assist user with analysis

13

Scoping Assistance – User Resolves Issues

Click on variable to

view all

occurrences in loop Use Reveal’s

OpenMP

parallelization tips

14

Scoping Assistance – Generate Directive

Automatically

generate

OpenMP

directive

Reveal generates

example OpenMP

directive

15

OpenMP data collection and reporting

● For programs that use the OpenMP
● CrayPat can measure the overhead incurred by entering and leaving

parallel regions and work-sharing constructs within parallel regions
● Show per-thread timings and other data.
● Calculate the load balance across threads for such constructs.

● For programs that use both MPI and OpenMP
● Profiles by default show the load balance over PEs of the average time in

the threads for each PE
● But you can also see load balances for each programming model

separately.

● Options for pat_report
● profile_pe_th (default view)

● Imbalance based on the set of all threads in the program
● profile_pe.th

● Highlights imbalance across MPI ranks
● Uses max for thread aggregation to avoid showing under-performers
● Aggregated thread data merged into MPI rank data

● profile_th_pe
● For each thread, show imbalance over MPI ranks
● Example: Load imbalance shown where thread 4 in each MPI rank didn’t get

much work

16

OpenMP data collection and reporting

Table 1: Profile by Function Group and Function

 Time% | Time | Imb. | Imb. | Calls |Group
 | | Time | Time% | | Function
 | | | | | PE=HIDE
 | | | | | Thread=HIDE

 100.0% | 2.452453 | -- | -- | 1426.8 |Total
|---
| 96.9% | 2.377154 | -- | -- | 309.8 |USER
||--
|| 82.1% | 2.013394 | 0.027282 | 1.8% | 100.0 |work.LOOP@li.533
|| 10.6% | 0.259470 | 0.000282 | 0.1% | 1.0 |exit
|| 2.4% | 0.057711 | 0.000562 | 1.3% | 1.0 |initializeMatrix
|| 1.0% | 0.024130 | 0.000313 | 1.7% | 1.0 |setPEsParams.SINGLE@li.355
||==
| 1.6% | 0.039963 | -- | -- | 909.0 |MPI
||--
|| 1.6% | 0.039247 | 0.079519 | 89.3% | 301.5 |MPI_Wait
||==
| 1.2% | 0.029108 | -- | -- | 101.0 |OMP
||--
|| 1.2% | 0.029058 | 0.012000 | 39.0% | 100.0 |work.REGION@li.492(ovhd)
|===

Table 2: Load Imbalance by Thread

 Max. | Imb. | Imb. |Thread
 Time | Time | Time% | PE=HIDE

 2.452470 | 0.316486 | 17.2% |Total
|-------------------------------------
| 2.453287 | 0.000817 | 0.0% |thread.0
| 2.078727 | 0.036293 | 2.3% |thread.2
| 2.074969 | 0.048712 | 3.1% |thread.1
| 2.066243 | 0.043468 | 2.8% |thread.3
|=====================================

Work sharing

construct

Overhead

Region

● OpenMP support enabled by default with CCE

● OpenMP tracing calls inserted by default when
perftools is loaded.

● Imbalance time is a metric based on execution time and is
dependent on the type of activity:

● User functions
 Imbalance time = Maximum time – Average time
● Synchronization (Collective communication and barriers)
 Imbalance time = Average time – Minimum time

● Identifies computational code regions and synchronization
 calls that could benefit most from load balance optimization
● Estimates how much overall program time could be saved
 if corresponding section
 of code had a perfect
 balance.
● Represents upper bound
 on “potential savings”
● Assumes other processes
 are waiting, not doing
 useful work while slowest
 member finishes.

 Time% | Time | Imb. | Imb. | Calls |Group
 | | Time | Time% | | Function
 | | | | | PE=HIDE

 100.0% | 20.643909 | -- | -- | 1149.0 |Total
|--
| 98.8% | 20.395989 | -- | -- | 219.0 |USER
||---
|| 91.1% | 18.797060 | 0.115535 | 0.7% | 2.0 |jacobi
|| 7.7% | 1.597866 | 0.006647 | 0.5% | 1.0 |initmt
||===
| 1.2% | 0.239306 | -- | -- | 871.0 |MPI
||---
|| 0.7% | 0.148981 | 0.094595 | 44.4% | 159.0 |MPI_Waitall
|| 0.4% | 0.085824 | 0.023669 | 24.7% | 318.0 |MPI_Isend

Load Imbalance Analysis

 Time% | Time | Imb. | Imb. | Calls |Group
 | | Time | Time% | | Function
 | | | | | PE=HIDE

 100.0% | 20.643909 | -- | -- | 1149.0 |Total
|--
| 98.8% | 20.395989 | -- | -- | 219.0 |USER
||---
|| 91.1% | 18.797060 | 0.115535 | 0.7% | 2.0 |jacobi
|| 7.7% | 1.597866 | 0.006647 | 0.5% | 1.0 |initmt
||===
| 1.2% | 0.239306 | -- | -- | 871.0 |MPI
||---
|| 0.7% | 0.148981 | 0.094595 | 44.4% | 159.0 |MPI_Waitall
|| 0.4% | 0.085824 | 0.023669 | 24.7% | 318.0 |MPI_Isend

● Imbalance time percentage represents the percentage of
resources available for parallelism that is “wasted”.

● Corresponds to percentage of time

 that rest of team is not

 engaged in useful work

 on the given function.

● Perfectly balanced code

 segment has imbalance

 of zero percentage.

● Serial code segment has

 imbalance of 100 percent.

Load Imbalance Analysis

Imbalance% =
Imbalance time

Max Time
X

N - 1

N
100 X

Load Imbalance Analysis

● MPI Sync time measures load imbalance in programs
instrumented to trace MPI functions to determine if MPI
ranks arrive at collectives together
● Separates potential load imbalance from data transfer

● Sync times reported by default if MPI functions traced

● If desired, PAT_RT_MPI_SYNC=0 deactivates this feature

● Only reported for tracing experiments.

 Time% | Time | Imb. | Imb. | Calls |Group
 | | Time | Time% | | Function
 | | | | | PE=HIDE

 100.0% | 20.643909 | -- | -- | 1149.0 |Total
|---
...
| 0.0% | 0.008614 | -- | -- | 59.0 |MPI_SYNC
||--
|| 0.0% | 0.006696 | 0.006627 | 99.0% | 2.0 |MPI_Barrier(sync)
|| 0.0% | 0.001802 | 0.001399 | 77.6% | 55.0 |MPI_Allreduce(sync)
|| 0.0% | 0.000061 | 0.000052 | 86.3% | 1.0 |MPI_Init(sync)
|| 0.0% | 0.000056 | 0.000051 | 91.7% | 1.0 |MPI_Finalize(sync)
|===

Causes and hints

● What is causing the load imbalance?
● Need profiler reports like CrayPAT gives for the ‘where’

● Need application expertise for the ‘why’

● Computation
● Is decomposition appropriate?

● Would reordering ranks help?

● Communication
● Is decomposition appropriate?

● Would reordering ranks help?

● Are receives pre-posted?

● Any All-to-1 communication?

● I/O
● synchronous single-writer I/O will cause significant load imbalance already

with a couple of MPI tasks (More on IO tomorrow)

Rank placement

● The default ordering can be changed using the following
environment variable:
export MPICH_RANK_REORDER_METHOD=N

● These are the different values (N) that you can set it to:

● N=0: Round-robin placement – Sequential ranks are placed on the
next node in the list.
0, 1, 2, 3, 0, 1, 2, 3 (8 tasks on 4 nodes, 2 tasks per node)

● N=1: (DEFAULT) SMP-style- (block-) placement
0, 0, 1, 1, 2, 2, 3, 3 (8 tasks on 4 nodes, 2 tasks per node)

● N=2: Folded rank placement
0, 1, 2, 3, 3, 2, 1, 0 (8 tasks on 4 nodes, 2 tasks per node)

● N=3: Custom ordering. The ordering is specified in a file named
MPICH_RANK_ORDER.

Rank placement with CrayPat

● When is rank placement a priori useful?
● Point-to-point communication consumes a significant fraction of

program time and a load imbalance detected

● Also shown to help for collectives (alltoall) on subcommunicators

● Spread out I/O servers across nodes

● CrayPat can provide the following feedback

 ================ Observations and suggestions ========================

MPI Grid Detection:

There appears to be point-to-point MPI communication in a 4 X 2 X 8 grid
 pattern. The execution time spent in MPI functions might be reduced
 with a rank order that maximizes communication between ranks on the
 same node. The effect of several rank orders is estimated below.

 A file named MPICH_RANK_ORDER.Grid was generated along with this
 report and contains usage instructions and the Hilbert rank order
 from the following table.

 Rank On-Node On-Node MPICH_RANK_REORDER_METHOD
 Order Bytes/PE Bytes/PE%
 of Total
 Bytes/PE

 Hilbert 5.533e+10 90.66% 3
 Fold 4.907e+10 80.42% 2
 SMP 4.883e+10 80.02% 1
 RoundRobin 3.740e+10 61.28% 0

The 'Custom' rank order in this file targets nodes with
multi-core
processors, based on Sent Msg Total Bytes collected for:

Program: /lus/nid00030/heidi/sweep3d/mod/sweep3d.mpi
Ap2 File: sweep3d.mpi+pat+27054-89t.ap2
Number PEs: 48
Max PEs/Node: 4

To use this file, make a copy named MPICH_RANK_ORDER, and
set the
environment variable MPICH_RANK_REORDER_METHOD to 3 prior
to
executing the program.

The following table lists rank order alternatives and the
grid_order
command-line options that can be used to generate a new
order.
…
0,532,64,564,32,572,96,540,8,596,72,524,40,604,24,588
104,556,16,628,80,636,56,620,48,516,112,580,88,548,120,612
1,403,65,435,33,411,97,443,9,467,25,499,105,507,41,475
73,395,81,427,57,459,17,419,113,491,49,387,89,451,121,483
…

Hybrid MPI + OpenMP?

● OpenMP may help
● Able to spread workload with less overhead

● Large amount of work to go from all-MPI to (better performing) hybrid -
must accept challenge to hybridize large amount of code

● When does it pay to add OpenMP to my MPI code?
● Add OpenMP when code is network bound

● Adding OpenMP to memory bound codes may aggravate memory
bandwidth issues, but you have more control when optimizing for
cache

● Look at collective time, excluding sync time: this goes up as network
becomes a problem

● Look at point-to-point wait times: if these go up, network may be a
problem

● If an all-to-all communication pattern becomes a bottleneck,
hybridization often overcomes this

● Hybridization can be used to avoid replicated data

Cray Apprentice2

.
27

● Cray Apprentice2 is a post-processing performance data
visualization tool. Takes *.ap2 files as input.

● Main features are
● Call graph profile

● Communication statistics

● Time-line view for Communication

 and IO.
● Activity view

● Pair-wise communication statistics

● Text reports

● Source code mapping

● Cray Apprentice2 helps
identify:
● Load imbalance

● Excessive communication

● Network contention

● Excessive serialization

● I/O Problems

> module load perftools

> app2 my_program.ap2 &

Cray Apprentice2

.
28

.

Call Tree View

.
29

Function

List

Load balance overview:

Height  Max time

Middle bar  Average time

Lower bar  Min time

Yellow represents

imbalance time

Zoom

Height  exclusive time

Width  inclusive time

DUH Button:

Provides hints

for performance

tuning

Filtered

nodes or

sub tree

Call Tree View – Function List

.
30

Function

List off

Right mouse click:

Node menu

e.g., hide/unhide

children

Sort options

% Time,

Time,

Imbalance %

Imbalance time

Right mouse click:

View menu:

e.g., Filter

Apprentice2 Call Tree View of Sampled Data

.
31

Load Balance View (from Call Tree)

.
32

-1, +1

Std Dev

marks

Min, Avg, and Max

Values

Time Line View

.
33

● Full trace (sequence of events) enabled by setting
PAT_RT_SUMMARY=0

● Helpful to see communication bottlenecks.
● Use it only for small experiments !

Time Line View (Zoom)

.
34

User Functions, MPI

& SHMEM Line

I/O Line

Time Line View (Fine Grain Zoom)

.
35

 (Courtesy of Heidi Poxon)

Monitoring Power on Intel

37

● Feedback to the user on performance and power
consumption will be key to understanding the behavior of
an applications on future systems.

● To see a list of events, execute the following on compute
node:

 > aprun papi_native_avail -i crayrapl

 > aprun papi_native_avail -i craypm

● See rapl(5) and pmpc(5) man pages for more

information

Intel’s RAPL (Running Average Power Level)

38

● Provides mechanism to enforce power consumption limit. Also
facilitates the ability to measure energy consumption on SNB and IVB
processors

● 32-bit counter measurements available on a per socket basis with
update frequency of approximately 1 millisecond

● 7 monitoring counter events available
● Provides dynamic readings from various components of the socket

● Constant values are available for thermal specifications, max and min power
caps, and time windows

Event Description

PACKAGE_ENERGY Total amount of energy consumed by socket

PP0_ENERGY Total amount of energy consumed by the cores

DRAM_ENERGY Total amount of energy consumed by the DRAM

Cray Power and Energy Management Counters

39

● Support CLE Intel power and energy management
performance counters

● Provides compute node-level access to additional power
management counters at the application level

● Enables user to monitor and report energy usage during
program execution for both CPU and GPU

Event Description

PM_POWER_CAP:NODE Compute node power cap

PM_POWER:NODE Compute node point in time power

PM_ENERGY:NODE Compute node accumulated energy

PM_POWER_CAP:ACC Accelerator power cap

PM_POWER:ACC Accelerator point in time power

PM_ENERGY:ACC Accelerator accumulated energy

Accessing Power Information

40

 > export PAT_RT_PERFCTR=PM_ENERGY:NODE
 > export PAT_RT_PERFCTR=PACKAGE_ENERGY

● RAPL counters
● Launch application with aprun -cc cpu to bind MPI ranks to sockets

● Counters collected by processor 0 on each socket (assuming the
application is running on processor 0)

● 32-bit RAPL counters have a wraparound time of approximately 60
seconds when power consumption is high

● Cray PM counters
● Collected by processor 0 on each node (assuming the application is

running on processor 0)

● Counter collection has high overhead (RAPL higher than
Cray PM). It’s best not to collect performance information
at the same time

PM Counters for CP2K MPI+OpenMP on IVB

41

 USER / process_mm_stack$dbcsr_mm_stack_
--
 Time% 2.0%
 Time 15.642021 secs
 Imb. Time 7.142276 secs
 Imb. Time% 32.7%
 Calls 0.005M/sec 72311.2 calls
 PM_ENERGY:NODE 51.384 /sec 803.750 J

==
 USER / build_core_hamiltonian_matrix$qs_core_hamiltonian_
--
 Time% 1.5%
 Time 11.564295 secs
 Imb. Time 2.392148 secs
 Imb. Time% 17.9%
 Calls 1.902 /sec 22.0 calls
 PM_ENERGY:NODE 42.847 /sec 495.500 J

Light-weight application profiling

CrayPat-lite Overview

43

● Provide automatic application performance statistics at the end
of a job. Focus is to offer a simplified interface to basic
application performance information for users not familiar with
the Cray performance tools and perhaps new to application
performance analysis.

● The tool is enabled by loading a module and rebuild
 > module load perftools-lite
 > make clean && make

● Program is automatically relinked to add instrumentation in
a.out (pat_build step done for the user)
● .o files are automatically preserved
● No modifications are needed to a batch script to run instrumented binary,

since original binary is replaced with instrumented version
● pat_report is automatically run before job exits.
● Performance statistics are issued to stdout
● User can use “classic” CrayPat for more in-depth performance

investigation

Steps to Using CrayPat-lite

44

Access light version of performance tools software

Build program

Run program (no modification to batch script)

a.out (instrumented program)

Condensed report to stdout

a.out*.rpt (same as stdout)

a.out*.ap2

MPICH_RANK_XXX files

> make

aprun a.out

> module load perftools-lite

Predefined Set of Performance Experiments

45

● Set of predefined experiments, enabled with the
CRAYPAT_LITE environment variable (before compilation)
● sample_profile
● event_profile

● The sample_profile is equivalent to
 > pat_build –O apa a.out
● Includes collection of summary CPU performance counters around

MAIN

● Includes Imbalance information.

● The event_profile is equivalent to
 > pat_build –u –gmpi a.out
● Provides profile based on summarization of events.

● Includes OpenMP if these models are used within program.

● Collection of summary CPU performance counters

● Filter to only trace functions above 1200 bytes
● In most cases, omits tiny repetitive functions that can perturb results.

Performance Statistics Available

46

● Job information
● Number of MPI ranks, …

● Wallclock

● Memory high water mark

● Performance counters (CPU only)

● Profile of top time consuming routines with load balance

● Observations and Instructions on how to get more info.

