
VI-HPS Workshop, HLRS 2015

.

Tuesday, February 24th

10:00 – 10:30 Performance Analysis with CrayPat (part 1)

10:30 – 11:00 CrayPat Walk Through

11:00 – 11:30 Performance Analysis with CrayPat (part 2)

11:30 – 11:45 Reveal Walk Through

Afternoon Apply the tools to your own application

Performance Analysis with CrayPat

Part 1

Aniello Esposito

(esposito@cray.com)

Outline

.

● Introduction to performance analysis with CrayPat

● Different approaches to profiling: Sampling vs. Tracing

● How to recompile and run your code for CrayPat.

● Combining Sampling and Tracing: Automatic Performance Analysis

● Collecting Hardware Performance counters.

● Compiler Feedback

● CrayPat API

● Short Introduction to Hands-on Exercises

The Optimization Cycle

4

Profile

Inspect Diagnose

Optimize

Major code
change

Process
Results

Debug
& Run

Loop while

time and

resources

permit

CrayPAT Overview

.

● Assist the user with application performance analysis

 and optimization
● Provides concrete suggestions instead of just reporting data.

● Work on user codes at realistic core counts with thousands of
processes/threads

● Integrate into large codes with millions of lines of code

● Is an universal tool
● Basic functionality available to all compilers on the system

● Additional functionality available for the Cray compiler (loop profiling)

● Requires no source code or Makefile modification
● Automatic instrumentation at group (function) level such as mpi, io, …

● Requires object files and archives for instrumentation and to be
compiled with the wrapper scripts while the perftools module was
loaded.

● Able to generate instrumentation on optimized code.

● Creates a new stand-alone instrumented program while preserving the
original binary.

Components of CrayPat

.

● Available through the perftools module:

● pat_build - Instruments the program to be analyzed (command line)

● pat_report - Generates text reports from the performance data
captured during program execution and exports data for use in other
programs. (command line)

● Cray Apprentice2 - A graphical analysis tool

 that can be used to visualize and explore the

 performance data captured during program

 execution.

● Reveal - A graphical source code analysis tool

 that can be used to correlate performance analysis

 data with annotated source code listings, to identify

 key opportunities for optimization.

Components of CrayPat (not discussed)

.

● grid_order - Generates MPI rank order information that can be used
with the MPICH_RANK_REORDER environment variable to override
the default MPI rank placement scheme and specify a custom rank
placement. (For more information, see the intro_mpi(3) man page.)

● pat_help - Help system, which contains extensive usage information

and examples. This help system can be accessed by entering
pat_help at the command line.

● The individual components of CrayPat are documented in the
following man pages (info on hardware counters will follow):
● intro_craypat(1)
● pat_build(1)
● pat_report(1)
● pat_help(1)
● grid_order(1)
● app2(1)
● reveal(1)

● craypat-lite – Light weight profiling tool. (More details later on.)

Sampling and Event Tracing

.

● CrayPAT provides two fundamental ways of profiling:

1. Sampling
● By taking regular snapshots of the applications call stack we can

create a statistical profile of where the application spends most time.

● Snapshots can be taken at regular intervals in time or when some
other external event occurs, like a hardware counter overflowing

2. Event Tracing
● Alternatively we can record performance information every time a

specific program event occurs, e.g. entering or exiting a function.

● We can get accurate information about specific areas of the code
every time the event occurs

● Event tracing code can be added automatically or included manually
through API calls.

● Automatic Performance Analysis (APA) combines the two
approaches.

● Loop profiling is a special flavor of event tracing.

Sampling

Advantages

• Only need to instrument

main routine

• Low Overhead – depends

only on sampling frequency

• Smaller volumes of data

produced

Disadvantages

• Only statistical averages

available

• Limited information from

performance counters

Event Tracing

Advantages

• More accurate and more detailed

information

• Data collected from every traced

function call not statistical averages

Disadvantages

• Increased overheads as number of

function calls increases

• Huge volumes of data generated

The best approach is guided tracing.

e.g. Only tracing functions that are not small (i.e. very few

lines of code) and contribute a lot to application’s run time.

APA is an automated way to do this.

Exercise 1: Generate a Sampling Profile

10

• Makes the default version of CrayPAT available

• Subsequent compiler invocations will automatically insert necessary
hooks for profiling (not always up-to-date with latest third-party
compilers)

• Binaries are not automatically instrumented

> module load perftools

• Builds code with profiling hooks, then instruments the binary

• Result named himeno.exe+pat

> make clean; make
> pat_build –S himeno.exe

• Running the “+pat” binary creates a data file *.xf or directory

• pat_report reads that data file and prints lots of human-readable
performance data. Creates an *.ap2 file.

> aprun –n 24 ./himeno.exe+pat
> pat_report –o myrep.txt himeno+pat+*

Top function

Table 2: Profile by Group, Function, and Line

11

Communication not

relevant. Threshold

of 0.5% can be

cancelled with –T

option.

 Samp% | Samp | Imb. | Imb. |Group
 | | Samp | Samp% | Function
 | | | | Source
 | | | | Line
 | | | | PE=HIDE

 100.0% | 2063.0 | -- | -- |Total
|---
| 82.3% | 1698.0 | -- | -- |USER
||--
|| 77.2% | 1592.2 | -- | -- |jacobi
3| | | | | Himeno/test.samp/himeno.c
||||--
4||| 61.1% | 1260.6 | 32.4 | 2.9% |line.243
4||| 7.2% | 147.8 | 19.2 | 13.2% |line.257
4||| 4.3% | 89.5 | 17.5 | 18.7% |line.258
4||| 4.2% | 86.5 | 8.5 | 10.2% |line.260
||||==
|| 5.1% | 105.8 | -- | -- |initmt
3| | | | | Himeno/test.samp/himeno.c
||==
| 16.4% | 338.2 | -- | -- |ETC
||--
|| 13.8% | 284.8 | 5.2 | 2.1% |__cray_scopy_HSW
|| 2.6% | 53.5 | 4.5 | 8.9% |__cray_sset_HSW
||==
| 1.3% | 26.6 | -- | -- |MPI
|===

Exercise 2: Generate a Tracing Profile

12

• Makes the default version of CrayPAT available.

> module load perftools

• If your application is already built with perftools loaded you
do not have to rebuild when switching the experiment.

• Traces MPI functions calls and functions defined in the
program source files

> pat_build –u –g mpi himeno.exe

• Running the “+pat” binary creates a data file or directory

• pat_report reads that data file and prints lots of human-
readable performance data. Creates an *.ap2 file.

> aprun –n 24 ./himeno.exe+pat
> pat_report –o myrep.txt himeno+pat+*

User functions

Table 1: Profile by Function Group and Function

13

Synchronisation

Communication

 Time% | Time | Imb. | Imb. | Calls |Group
 | | Time | Time% | | Function
 | | | | | PE=HIDE

 100.0% | 20.643909 | -- | -- | 1149.0 |Total
|---
| 98.8% | 20.395989 | -- | -- | 219.0 |USER
||--
|| 91.1% | 18.797060 | 0.115535 | 0.7% | 2.0 |jacobi
|| 7.7% | 1.597866 | 0.006647 | 0.5% | 1.0 |initmt
|| 0.0% | 0.000402 | 0.000167 | 33.5% | 53.0 |sendp3
||==
| 1.2% | 0.239306 | -- | -- | 871.0 |MPI
||--
|| 0.7% | 0.148981 | 0.094595 | 44.4% | 159.0 |MPI_Waitall
|| 0.4% | 0.085824 | 0.023669 | 24.7% | 318.0 |MPI_Isend
|| 0.0% | 0.004125 | 0.004316 | 58.4% | 318.0 |MPI_Irecv
|| 0.0% | 0.000298 | 0.000013 | 4.8% | 55.0 |MPI_Allreduce
|| 0.0% | 0.000033 | 0.000013 | 32.8% | 1.0 |MPI_Cart_create
||==
| 0.0% | 0.008614 | -- | -- | 59.0 |MPI_SYNC
||--
|| 0.0% | 0.006696 | 0.006627 | 99.0% | 2.0 |MPI_Barrier(sync)
|| 0.0% | 0.001802 | 0.001399 | 77.6% | 55.0 |MPI_Allreduce(sync)
|| 0.0% | 0.000061 | 0.000052 | 86.3% | 1.0 |MPI_Init(sync)
|| 0.0% | 0.000056 | 0.000051 | 91.7% | 1.0 |MPI_Finalize(sync)
|===

Options for Tracing

.

● More information is given in the pat_build man page

● -u Create new trace intercept routines for those functions that are defined
in the respective source file owned by the user.

● -w Make tracing the default experiment and create new trace intercept
routines for those functions for which no trace intercept routine already
exists. If -t, -T, or the trace build directive are not specified, only those
functions necessary to support the CrayPat runtime library are traced. If -
t, -T, or the trace build directive are specified, and -w is not specified, only
those function points that have pre-existing trace intercept routines are
traced.

● -T tracefunc Instrument program to trace the function references to
tracefunc. This option applies to all user-defined entry points as well as to
those that appear in the predefined function groups listed under the -g
option. Use the nm or readelf command to determine function names to
specify for tracing. The name of the function is the name used when the
program is linked. For Fortran 90 and C++ programs, this is the mangled
form of the name. If tracefunc begins with an exclamation point (!)
character, references to tracefunc are not traced.

● -t tracefile Instrument program to trace all function references listed in
tracefile.

● Only true function calls can be traced. Functions that are
inlined by the compiler or that have local scope in a compilation
unit cannot be traced.

Options for Tracing

.

● More information is given in the pat_build man page

● -g tracegroup Instrument the program to trace all function references
belonging to the trace function group tracegroup. Only those functions
actually executed by the program at runtime are traced. A selection of
tracegroup values is:

● blas Basic Linear Algebra subprograms
● netcdf Network Common Data Form
● HDF5 HDF5 I/O library
● heap dynamic heap
● io includes stdio and sysio groups
● lapack Linear Algebra Package
● mpi MPI
● omp OpenMP API
● sysio I/O system calls
● system system calls

● More information on the various tracegroup values is given in
$CRAYPAT_ROOT/share/traces after loading the perftools
module.

Files generated during regular Profiling

.

● a.out+pat+PID-node[s|t].xf: raw data files
● Depending on the nature of the program and the environmental conditions

in effect at the time of program execution, when executed, the
instrumented executable generates one or more data files with the suffix
.xf, where:
● a.out is the name of the original program.
● PID is the process ID assigned to the instrumented program at runtime.
● node is the physical node ID upon which the rank zero process executed.
● s|t is a one-letter code indicating the type of experiment performed,

 either s for sampling or t for tracing.
● Use the pat_report command to view or dump the .xf file or export it to

another file format for use with other applications, i.e. *.ap2 files.

● *.ap2 files: self contained compressed performance files.
● Normally about 5 times smaller than the corresponding set of *.xf files.
● Only one *.ap2 per experiment compared to potentially multiple *.xf files.
● Contains the information needed from the application binary and can be

reused, even if the application binary is no longer available or if it was
rebuilt.

● Is independent on the version used to generate the ap2 file while the xf
files are very version dependent.

● It is the only input format accepted by Cray Apprentice2 and Reveal.
● => Delete the xf files after you have the ap2 file.

Using pat_report

.

● Always need to run pat_report at least once to perform
data conversion
● Combines information from xf output (optimized for writing to disk)

and binary with raw performance data to produce ap2 file (optimized
for visualization analysis)

● Instrumented binary must still exist when data is converted!

● Resulting ap2 file is the input for subsequent pat_report calls and
Reveal or Apprentice2

● xf files and instrumented binary files can be removed once ap2 file
is generated.

● Generates a text report of performance results
● Data laid out in tables

● Many options for sorting, slicing or dicing data in the tables.
 > pat_report –O <table option> *.ap2
 > pat_report –O help (list of available profiles)

● Volume and type of information depends upon sampling vs tracing.

Using pat_report

● The performance numbers reported are in general an

average over all tasks (also explains non-integer values)

● Not always meaningful

● Master-slave schemes

● MPMD

● To solve this you can filter the *.ap2 file

 > pat_report –sfilter_input=‘condition’ …
● The ‘condition’ should be an expression involving 'pe' such as 'pe<1024' or 'pe%2==0'.

● This option is also useful when the size of the full data file makes a report incorporating

data from all PEs take too long or exceed the available memory

 .
18

 Time% | Time | Imb. | Imb. | Calls |Group
 | | Time | Time% | | Function
 | | | | | PE=HIDE

 100.0% | 20.643909 | -- | -- | 1149.0 |Total
|--
| 98.8% | 20.395989 | -- | -- | 219.0 |USER
||---
|| 91.1% | 18.797060 | 0.115535 | 0.7% | 2.0 |jacobi
|| 7.7% | 1.597866 | 0.006647 | 0.5% | 1.0 |initmt
|| 0.0% | 0.000402 | 0.000167 | 33.5% | 53.0 |sendp3

Combining Sampling and Tracing: APA

.

● Motivation for Automatic Profiling Analysis:

● For programs that run for only a few seconds, there is no problem with
using pat_build with the -u and -g mpi options to trace all user
functions.

● However with a large, long-running program such a trace will inject
considerable overhead. It is better to limit tracing to those functions
that consume the most time.

● One can use a preliminary sampling experiment to determine and
instrument those functions, referred to as automatic profiling analysis.

● APA provides a simple procedure to instrument and collect
performance data as a first step for novice and expert users.

● Identifies top time consuming routines through sampling and provides
instructions to trace only those routines.

● Automatically creates instrumentation template customized to
application for future in-depth measurement and analysis

Automatic Profiling Analysis (1/2)

20

• Makes the default version of CrayPAT available.

> module load perftools

• The APA is the default experiment. No option needed.

• The pat_build generates a binary instrumented for
sampling (different from the pure sampling shown before.)

> make clean; make
> pat_build himeno.exe

• Running the “+pat” binary creates a data file or directory.

• Applying pat_report to the *.xf generates an *.apa file in
addition to the *.ap2 file.

> aprun –n 24 ./himeno.exe+pat
> pat_report –o myrep.txt himeno+pat+*

Automatic Profiling Analysis (2/2)

21

• The *.apa file contains instructions for the next step, i.e.
tracing. Modify it according to your needs.

> vi *.apa

• Generates an instrumented binary himeno.exe+apa for
tracing according to the instructions in the *.apa file.

> pat_build –O *.apa

• Running the “+apa” binary creates a new data file or
directory.

• Applying pat_report to the *.xf generates a new*.ap2 file.

> aprun –n 24 ./himeno.exe+apa
> pat_report –o myrep.txt himeno+apa+*

Suggestion to collect Performance counters

*.apa File after Sampling Experiment

22

Create the binary for tracing

Add or remove

functions as needed.

Augment this list if needed, i.e. –g mpi,io

--
Collect the default PERFCTR group.

 -Drtenv=PAT_RT_PERFCTR=default

...
--

Libraries to trace.

 -g mpi
--

User-defined functions to trace, sorted by % of samples.

 -w # Enable tracing of user-defined functions.
 # Note: -u should NOT be specified as an additional option.

77.44% 3751 bytes
 -T jacobi

5.04% 2467 bytes
 -T initmt
--

-o himeno.exe+apa # New instrumented program.

General Remarks

● Always check that the instrumenting binary has not
affected the run time notably compared to the original

● Collecting event traces on large numbers of frequently
called functions, or setting the sampling interval very low
can introduce a lot of overhead (check trace-text-size
option to pat_build)

● MUST run on Lustre
● Avoid running on the home directory. Use a workspace.

● The runtime analysis can be modified through the use of
environment variables of the form PAT_RT_*
● Number of files used to store raw data:

● 1 file created for program with 1 – 256 processes

● √n files created for program with 257 – n processes

● Ability to customize with PAT_RT_EXPFILE_MAX

● Check the PAT_LD_OBJECT_TMPDIR variable if you cannot preserve
the original build tree.

Hardware Performance Counters

● CrayPat supports the use of hardware counters to collect

hardware events

● Most counters accessed through the PAPI interface.

● Predefined sets of hardware counters are specified that can be

instrumented for performance analysis experiment.

● Number of simultaneous counters limited by hardware.

● CrayPat provides information at the function call level on

hardware features like caches, vectorization and memory

bandwidth. Very useful feature for understanding

application performance bottlenecks.

● HWPC collection can slow down the execution notably.

● Should be used within a tracing experiment only for a small set of

functions or ideally through an automatic performance analysis.

.
24

Hardware Counters Selection

● HW counter collection enabled with PAT_RT_PERFCTR
environment variable (not set by default)

 export PAT_RT_PERFCTR=<event list> | <group>

● Counter events are specified in a comma-separated list. Event names
and groups from any and all components may be mixed as needed. To list
the names of the individual events on your system, use the papi_avail
and papi_native_avail commands which are explained in the
papi_counters man page.

● Alternatively, counter group numbers can be used in addition to or in
place of individual event names, to specify one or more predefined
performance counter groups. A set number can be used to select a group
of predefined hardware counters events (recommended). The groups are
given in the hwpc man page (contents in
$CRAYPAT_ROOT/share/counters/)

● An overview of events is given in pat_help->counters->haswell
● Aries network performance counters is found in the nwpc(5) man page.
● Intel Running Average Power Limit and Cray Power Management in

rapl(5), and info on Performance API (PAPI) in intro_papi(5).

.
25

Table 5. Intel Haswell Event Sets

 --

 Group Description

 --

 0 D1 with instruction counts

 1 Summary with cache and TLB metrics (default)

 2 D1, D2, and L3 metrics

 3-5 Not used

 6 Micro-op queue stalls

 7 Back-end stalls

 8 Instructions and branches

 9 Instruction cache

 10 Cache hierarchy

 19 Prefetches

 23 Summary with cache and TLB metrics (same as 1)

 --

 Cray XC40 and Cray XC40-AC systems only: Hardware performance counters

 do not support floating-point operations.

Haswell HW counter groups (hwpc man page)

.
26

Most useful for measuring cache

efficiency. List of events is given in

$CRAYPAT_ROOT/share/counters

Raw counters

Example: HW counter data and derived metrics

.

derived

==
 USER / jacobi
--
 Time% 91.0%
 Time 18.783816 secs
 Imb. Time 0.131366 secs
 Imb. Time% 0.8%
 Calls 0.106 /sec 2.0 calls
 CPU_CLK_THREAD_UNHALTED:REF_XCLK 1874027894
 CPU_CLK_THREAD_UNHALTED:THREAD_P 52330735798
 DTLB_LOAD_MISSES:MISS_CAUSES_A_WALK 15309079
 DTLB_STORE_MISSES:MISS_CAUSES_A_WALK 9590363
 L1D:REPLACEMENT 2490612461
 L2_RQSTS:ALL_DEMAND_DATA_RD 1255673984
 L2_RQSTS:DEMAND_DATA_RD_HIT 495319777
 MEM_UOPS_RETIRED:ALL_LOADS 7905309689
 User time (approx) 18.783 secs 46977527366 cycles 100.0% Time
 CPU_CLK 2.792GHz
 TLB utilization 317.49 refs/miss 0.620 avg uses
 D1 cache hit,miss ratios 68.5% hits 31.5% misses
 D1 cache utilization (misses) 3.17 refs/miss 0.397 avg hits
 D2 cache hit,miss ratio 69.5% hits 30.5% misses
 D1+D2 cache hit,miss ratio 90.4% hits 9.6% misses
 D1+D2 cache utilization 10.40 refs/miss 1.300 avg hits
 D2 to D1 bandwidth 4080.191MiB/sec 80363134952 bytes
 Average Time per Call 9.391908 secs
 CrayPat Overhead : Time 0.0%

D1 + D2 cache utilization:

 7.7% of total execution time was spent in 1 functions with combined
 D1 and D2 cache hit ratios below the desirable minimum of 80.0%.
 Cache utilization might be improved by modifying the alignment or
 stride of references to data arrays in these functions.

 D1+D2 cache hit ratio Time% Function

 58.9% 7.7% initmt

TLB utilization:

 7.7% of total execution time was spent in 1 functions with fewer
 than the desirable minimum of 200 data references per TLB miss. TLB
 utilization might be improved by modifying the alignment or stride
 of references to data arrays in these functions.

 LS per TLB DM Time% Function

 5.21 7.7% initmt

Example: Observations and suggestions

.
28

Compiler Feedback (CCE)

.

%%% L o o p m a r k L e g e n d %%%

 Primary Loop Type Modifiers

 ------- ---- ---- ---------

 A - Pattern matched a - atomic memory operation

 b - blocked

 C - Collapsed c - conditional and/or computed

 D - Deleted

 E - Cloned

 F - Flat - No calls f - fused

 G - Accelerated g - partitioned

 I - Inlined i - interchanged

 M - Multithreaded m - partitioned

 n - non-blocking remote transf.

 p - partial

 r - unrolled

 s - shortloop

 V - Vectorized w - unwound

 191. C-------------< for(i=0 ; i<MIMAX ; ++i)

 192. C C-----------< for(j=0 ; j<MJMAX ; ++j)

 193. C C VCr2------< for(k=0 ; k<MKMAX ; ++k){

 194. C C VCr2 a[0][i][j][k]=0.0;

 195. C C VCr2 a[1][i][j][k]=0.0;

 196. C C VCr2 a[2][i][j][k]=0.0;

 197. C C VCr2 a[3][i][j][k]=0.0;

202. C C VCr2 c[1][i][j][k]=0.0;

 203. C C VCr2 c[2][i][j][k]=0.0;

 204. C C VCr2 A---<> p[i][j][k]=0.0;

CC-6005 CC: SCALAR File = himeno.c, Line = 193

 A loop was unrolled 2 times.

CC-6204 CC: VECTOR File = himeno.c, Line = 193

 A loop was vectorized.

CC-6231 CC: VECTOR File = himeno.c, Line = 204

 A statement was replaced by a library call.

● With CCE use –rm for Fortran or –hlist=a for C/C++

● For each source file a corresponding *.lst file is created.

API for adding User Instrumentation

● The CrayPat API calls enable you to insert functions into your
source code that write special tracing records into the
experiment data file at runtime

● API calls are supported in both Fortran and C. After the perftools module
is loaded, the include files that define the CrayPat API can be found in the
$CRAYPAT_ROOT/include directory and consist of the C header file,
pat_api.h, and the Fortran and Fortran 77 header files, pat_apif.h and
pat_apif77.h, respectively.

● int PAT_region_begin (int id, char *label)
● id is a unique identifier for the region,
● Label is the description that will appear in profiling output.

● int PAT_region_end (int id)
● id must match begin call.

● Fortran equivalents, like MPI, are subroutines with extra final
integer argument for return value

● More information is given in the pat_build man page. For
further examples of using CrayPat API calls in source code, see
the topic "API" in the pat_help system.

PAT Regions example

 include "pat_apif.h“
 ...
 call PAT_region_begin(1, "step 1", istat)
 ! the execution of this code segment will appear in
 ! CrayPAT output as “step 1”
 ...
 call PAT_region_end(1, istat)
 ...
 call PAT_region_begin(2, "step 2", istat)
 ! the execution of this code segment will appear in
 ! CrayPAT output as “step 2”
 ...
 call PAT_region_end(2, istat)
 ...

-DCRAYPAT defined by CCE compilers

PAT_region example

32

• But calc_force is 494 lines and Calc_P 334 lines long.

• Introduce 4 PAT regions to the code, two for Calc_Force and two for Calc_P,

 according to the steps annotated in the code.

 100.0% | 58225.2 | -- | -- |Total
|--
| 91.2% | 53072.9 | -- | -- |USER
||---
|| 43.9% | 25571.3 | 388.7 | 1.5% |calc_force_
|| 29.7% | 17292.9 | 289.1 | 1.6% |calc_p_
|| 14.3% | 8305.5 | 75.5 | 0.9% |pair_table_
|| 1.4% | 844.2 | 74.8 | 8.2% |predict_
||===
| 7.5% | 4363.8 | -- | -- |MPI
||---
|| 3.8% | 2229.9 | 905.1 | 28.9% |MPI_SENDRECV
|| 2.1% | 1208.5 | 1050.5 | 46.6% |MPI_BARRIER
|| 1.4% | 829.7 | 487.3 | 37.1% |MPI_ALLREDUCE
||===
| 1.4% | 788.1 | -- | -- |ETC
|==

PAT_region example

33

 100.0% | 58359.5 | -- | -- |Total
|--
| 90.9% | 53023.8 | -- | -- |USER
||---
|| 43.1% | 25131.3 | 510.7 | 2.0% |#3.force_step1
|| 28.9% | 16879.8 | 345.2 | 2.0% |#1.p_step1
|| 14.3% | 8317.4 | 66.6 | 0.8% |pair_table_
|| 1.4% | 834.7 | 79.3 | 8.7% |predict_
||===
| 7.8% | 4551.9 | -- | -- |MPI
||---
|| 3.9% | 2249.3 | 941.7 | 29.6% |MPI_SENDRECV
|| 2.3% | 1330.7 | 1269.3 | 48.9% |MPI_BARRIER
|| 1.5% | 878.0 | 496.0 | 36.2% |MPI_ALLREDUCE
||===
| 1.3% | 783.5 | -- | -- |ETC
|==

Narrowed down to

some ½ of the lines

of code – could

refine further

● Simple codes are provided for the workshop but users are
highly encouraged to experiment with their own
applications.
● Himeno Benchmark: Iterative solution of the Poisson equation by

means of an iterative Jacobi method. MPI versions for C and Fortran.
Make copies of the startfiles/ directories.

● VH1: The code used for the Reveal walk through.

● Copy the codes from:
/zhome/academic/HLRS/hlrs/hpcaespo/VI-HPS_Tuning_Workshop

● The CrayPAT and Reveal step-by-step guides are
described in a PDF document.

● Remember: Do not run any computational job on the
home file system.

34

Hands-On Sessions

