
Using CrayPAT, Apprentice2, and Reveal

© Cray Inc. (2015)

Abstract
This tutorial introduces Cray XE/XC users to the Cray Performance Analysis Tool and its Graphical User
Interface, Apprentice2. The examples are based on the code supplied in the Himeno tutorial, however,
the techniques can easily be applied to any application that is compiled and executed on a Cray
supercomputer.

Introduction
The Cray Performance Analysis Tool (CrayPAT) is a powerful framework for analysing a parallel
application's performance on Cray supercomputers. It can provide very detailed information on the
timing and performance of individual application procedures, directly incorporating information from
the raw hardware performance counters. In the present examples the Intel Haswell counters are
shown but other architectures are also supported.

Sampling vs. Tracing
CrayPAT has two modes of operation, sampling and tracing. Sampling takes regular snapshots of the
application, recording which routine the application was executing at that time. This can provide a
good overview of the important routines in an application without interfering with the run time,
however it has the potential to miss smaller functions and cannot provide the more detailed
information like MPI messaging statistics or information from hardware performance counters.

Tracing requires instrumenting each subroutine with additional instructions that can record this extra
information whenever they enter and exit. This approach ensures full capture of information, but can
result in large overheads, especially where individual functions and subroutines are very small (as is
typical in Objected Oriented languages like C++). It can also generate very large amounts of data which
become difficult to process and visualise.

CrayPAT's Automatic Program Analysis combines sampling and tracing and aims to capture the most
important performance information without distorting the results by over instrumentation or
generating large volumes of data. APA uses two steps, the first uses sampling to identify important
functions in the application. It then uses this data, along with information about the size and number
of calls to generate a modified binary with tracing included. This approach aims to cover the vast
majority of application runtime with the minimum of overhead and provides a quick and
straightforward method of analysing an application's performance on Cray supercomputers. However,
it is not mandatory to run the APA for each application. The user can also do a sampling or tracing
separately. For small applications it is more convenient for instance to run directly a tracing
experiment.

This tutorial contains a step-by-step guide to APA followed by instructions how do run only a sampling
or tracing experiment. In addition, the loop profiling experiment with CrayPat will be illustrated.

A step-by-step guide to using APA
This step-by-step guide demonstrates how to profile an application using CrayPAT's Automatic
Program Analysis. Prior to analysis copy all the files of interest to a subdirectory of the lustre file
system. The behaviour of CrayPAT can differ, i.e. the way how raw data is stored, depending on the file
system. First, users should load the perftools module, which provides all the CrayPAT tools as well as
Apprentice2 (and Reveal)

> module load perftools

The perftools module has to be loaded while all source files are compiled and linked. For example, the
Himeno example can be built1 with a simple call to:

> make

To instrument the binary, just run the pat_build command2. This will generate a new binary with +pat
appended to the end.

> pat_build himeno.exe

You should now run the new binary on the back end using the job.pbs script. For the Himeno example
edit the submission script job.pbs and change the name of the executable to himeno.exe+pat. You
should then submit this executable to run on the Cray backend.

> qsub job.apa.samp.pbs

Once finished, you will see that the run has generated an extra file, himeno.exe+pat+<number>.xf (the
precise name of this file is given in the standard output). This file contains the raw sampling data from
the run and needs to be post processed to produce useful results. This is done using the pat_report
tool which converts all the raw data into a summarised and readable form.

> pat_report –o myrep.txt himeno.exe+pat+<number>.xf

This tool can generate a large amount of data, so the –o <file> option is used to capture the
information in a file (in this case myrep.txt). Conversely, you can use a shell redirect like >.

Table 1 shows the results from sampling the application. Program functions are separated into

different groups, USER functions are those defined by the application, MPI functions contain the time

spent in MPI library functions, ETC functions are generally library or miscellaneous functions included.

ETC function can include a variety of external functions, from mathematical functions called in by the

library, Cray specific calls (as is this case) to system calls. Note that the MPI group has been pruned in

this table due to thresholds.

1
 The Makefile for Himeno preserves the *.o file which is needed by CrayPat. In case that a program is linked and

compiled in one step, the *.o file is usually deleted. In this case CrayPat stores the *.o file in a temporary
directory showed in a warning. To prevent this behavior you can use the –hkeepfiles option to CCE.
2
 In the meanwhile the APA is the default experiment and the -O apa option is no longer needed.

 Samp% | Samp | Imb. | Imb. |Group
 | | Samp | Samp% | Function
 | | | | PE=HIDE

 100.0% | 3915.0 | -- | -- |Total
|--
| 89.7% | 3510.8 | -- | -- |USER
||---
|| 86.3% | 3379.4 | 14.6 | 0.5% |jacobi
|| 3.4% | 131.4 | 4.6 | 3.9% |initmt
||===
| 9.5% | 371.6 | -- | -- |ETC
||---
|| 8.0% | 311.4 | 5.6 | 2.0% |__cray_scopy_HSW
|| 1.5% | 60.2 | 2.8 | 5.0% |__cray_sset_HSW
|==

Table 1: User functions profiled by samples. Data obtained on the Hornet system at HLRS featuring Intel Haswell
processors. Numbers may vary.

The absolute percentage of the total samples for each code section is shown in the first column and
the raw number of samples in the second column . The third column is a measure of the imbalance
between individual processors being sampled in this routine and is calculated as the difference
between the average number of samples over all processors and the maximum samples an individual
processor was in this routine. The MPI portion is very small, since the ratio between computation and
communication is very high and it is very likely that for some of your runs this group does not appear in
the report at all. The pat_report utility prunes the groups which contribute percentages of total time
less than a given threshold (0.5% in this case). If you want to see the full report you have to add the -T
option or increase the communication to computation ratio. This will automatically happen in a strong
scaling analysis.

Independent on the -T option, the pat_report will generate two more files with the same stem as the
.xf file, one with extension .ap2, which holds the same data as the .xf but in the post processed form.
The other file has an .apa extension and is a text file with a suggested configuration for generating a
tracing experiment. You are welcome and encouraged to review this file and modify its contents in
subsequent steps, however in this first case we will continue with the defaults.

The apa file acts as the input to the pat_build command and is supplied as the argument to the -O flag.

> pat_build -O himeno.exe+<number>.apa

This will produce a third binary with extension himeno.exe+apa. This binary should once again be run
on the back end, so the input job.pbs script should be modified and the name of the executable
changed to himeno.exe+apa. The script is then submitted to the back end.

> qsub job.apa.trace.pbs

Again, a new .xf file will be generated by the application, which should be processed by the pat_report
tool. As this is now a tracing experiment it will provide more information than before.

> pat_report himeno.exe+<number2>.xf

Time% | Time | Imb. | Imb. | Calls |Group
 | | Time | Time% | | Function
 | | | | | PE=HIDE

 100.0% | 39.330470 | -- | -- | 935.0 |Total
|--
| 99.2% | 39.017306 | -- | -- | 5.0 |USER
||---
|| 94.3% | 37.107192 | 0.092340 | 0.3% | 2.0 |jacobi
|| 4.9% | 1.909905 | 0.004930 | 0.3% | 1.0 |initmt
|==

Table 2: User functions profiled using tracing. Data obtained on the Hornet system at HLRS featuring Intel Haswell
processors. Numbers may vary.

Table 2 is the version generated from tracing data instead of the previous sampling data table (Table
1). This version makes true timing information available (averages per processor) and the number of
times each function is called. Table 3 shows the information available for individual functions.
Timings are more accurate and features like the number of calls are also available. Information from
the CPU’s hardware performance counters is also available, in this case details relating to the number
of floating point operations, cache references and TLB buffer. The collection of the hardware counters
has been enabled by the -Drtenv=PAT_RT_PERFCTR=default option in the .apa file. There are a large
number of performance counters available (run papi_avail on the back end) for the Haswell CPU,
however only a few of them may be run concurrently.

==
 USER / jacobi
--
 Time% 94.3%
 Time 37.107192 secs
 Imb. Time 0.092340 secs
 Imb. Time% 0.3%
 Calls 0.054 /sec 2.0 calls
 CPU_CLK_THREAD_UNHALTED:REF_XCLK 3691869744
 CPU_CLK_THREAD_UNHALTED:THREAD_P 104182792444
 DTLB_LOAD_MISSES:MISS_CAUSES_A_WALK 29018416
 DTLB_STORE_MISSES:MISS_CAUSES_A_WALK 6669417
 L1D:REPLACEMENT 2854645539
 L2_RQSTS:ALL_DEMAND_DATA_RD 1971612771
 L2_RQSTS:DEMAND_DATA_RD_HIT 599543135
 MEM_UOPS_RETIRED:ALL_LOADS 7680113595
 User time (approx) 37.107 secs 92803909494 cycles 100.0% Time
 CPU_CLK 2.822GHz
 TLB utilization 215.20 refs/miss 0.420 avg uses
 D1 cache hit,miss ratios 62.8% hits 37.2% misses
 D1 cache utilization (misses) 2.69 refs/miss 0.336 avg hits
 D2 cache hit,miss ratio 51.9% hits 48.1% misses
 D1+D2 cache hit,miss ratio 82.1% hits 17.9% misses
 D1+D2 cache utilization 5.60 refs/miss 0.700 avg hits
 D2 to D1 bandwidth 3243.016MiB/sec 126183217368 bytes
 Average Time per Call 18.553596 secs
 CrayPat Overhead : Time 0.0%
==

Table 3: Per function hardware performance counter information. Data obtained on the Hornet system at HLRS featuring
Intel Haswell processors. Numbers may vary.

Additional documention is available for CrayPAT and can be accessed either through the man pages for
individual commands intro_craypat, pat_build, and pat_report OR through the interactive
CrayPAT command (requires perftools to be loaded): pat_help

Apprentice2

Apprentice2 is the Graphic User Interface and visualisation suite for CrayPAT's performance data. It
reads the .ap2 files generated by pat_report's processing of .xf files. It is launched from the command
line with:

> app2 <file>.ap2

One can visualize the call tree information available from CrayPAT. It shows how time is spent along
the call tree, inclusive time corresponds to the width of boxes, exclusive time to the height. Yellow
represents the load imbalance time between processors. Extra information is provided by holding the
mouse over areas of the screen, the “?” box will provide hints on how to interpret the information
displayed.

Accessing Temporal Information

Tracing an application can potentially generate very large amounts of data, to reduce this volume the
CrayPAT will, by default, summarise the data over the entire application run. To see more detailed
information about the timing of individual events (like the sequencing of MPI messages between
processors or the number of hardware counter events in a time interval) CrayPAT has to be instructed
to store all data from throughout the run. This is controlled by the PAT_RT_SUMMARY environment
variable, setting it to 0 in batch.pbs will prevent summarising and allow access to even more data.

export PAT_RT_SUMMARY=0

Warning! Running tracing experiment with this option on a large number of processors for a long
period of time will generate VERY large files! Most tracing experiments should be conducted on a small
number of processors (<= 256) and over a short wall clock time period (< 5 minutes).

Bypassing the APA: Direct Tracing or Sampling
The APA procedure described above is well suited to get familiar with large applications that are
approached for the first time. If tracing overhead does not represent a problem one can directly
instrument the application for the tracing experiment with

> pat_build -u -g <groups> himeno.exe

or

> pat_build -w -g <groups> himeno.exe

The -w option enables the tracing experiment, where all functions in the <groups> list are traced, and
with -u all the user defined functions are traced in addition. Tracing small, frequently called functions
can result in a notable overhead. The pat_build utility allows to set different thresholds.
After instrumentation the new application himeno.exe+pat is run on the back end (use job.trace.pbs)
and the resulting .xf files can be processed with pat_report as explained above. The resulting reports
will contain tables with timings as in Table 2. Similarly, the user can perform only a sampling
experiment. This is useful to get a rough overview of your application but without instructions for
further tracing as in the APA.

The pure sampling experiment requires the -S option to pat_build

> pat_build -S himeno.exe

After instrumentation run the new application himeno.exe+pat on the back end (use job.samp.pbs)
and post-process the resulting .xf files with pat_report as explained above. The resulting reports will
contain tables with samples as in Table 4. You can still see an *.apa file containing information on
how to proceed with a tracing experiment, but the current sampling experiment differs from the
sampling within the automatic performance analysis explained at the beginning.

Getting Loop Profile information with CrayPat.
As mentioned during the course there is a further experiment related to CrayPat which aims at

profiling especially the loops in the considered code. Identifying the time expensive loops in an

application is a good basis for the introduction or improvement of OpenMP. And this is also a key

ingredient for the reveal tool which will also be presented during this workshop. The loop profiling with

CrayPat is only supported within the Cray compilation environment (PrgEnv-cray) and requires an

additional compiler flag -h profile_generate. You also have to turn off OpenMP with -h noomp and

general optimizations3. After a successful build of the Himeno code the procedure is the same as in the

tracing experiment, i.e.

pat_build -w himeno.exe

and when the execution of himeno.exe+pat has finished the *.xf files can be processed with
pat_report. The resulting text profile will contain tables as shown below highlighting the time spent in
the loops. Am more complex example of loop profiling is given in the first part of the Reveal tutorial.

 Time% | Time | Imb. | Imb. | Calls |Group
 | | Time | Time% | | Function
 | | | | | PE=HIDE

 100.0% | 34.798622 | -- | -- | 10.0 |Total
|--
| 100.0% | 34.798569 | -- | -- | 6.0 |USER
||---
|| 94.7% | 32.939101 | 0.000002 | 0.0% | 2.0 |jacobi
|| 5.3% | 1.844985 | 0.014246 | 0.9% | 1.0 |initmt
|==
Table 4: Profile by Function Group and Function

 Loop | Loop Incl | Time | Loop | Loop | Loop | Loop |Function=/.LOOP[.]
 Incl | Time | (Loop | Hit | Trips | Trips | Trips | PE=HIDE
 Time% | | Adj.) | | Avg | Min | Max |
|---
| 24.2% | 32.939088 | 0.338033 | 2 | 26.5 | 3 | 50 |jacobi.LOOP.1.li.235
| 21.7% | 29.469804 | 0.000944 | 53 | 255.0 | 255 | 255 |jacobi.LOOP.2.li.239
| 21.7% | 29.468860 | 0.131651 | 13515 | 255.0 | 255 | 255 |jacobi.LOOP.3.li.240
| 21.6% | 29.337209 | 29.337209 | 3446325 | 511.0 | 511 | 511 |jacobi.LOOP.4.li.241
| 2.3% | 3.131252 | 0.001347 | 53 | 255.0 | 255 | 255 |jacobi.LOOP.5.li.262
| 2.3% | 3.129905 | 0.279740 | 13515 | 255.0 | 255 | 255 |jacobi.LOOP.6.li.263
| 2.1% | 2.850165 | 2.850165 | 3446325 | 511.0 | 511 | 511 |jacobi.LOOP.7.li.264
|===
Table 5: Loop Stats by Function (from -hprofile_generate)

3
 The environment variable PAT_RT_SUMMARY=0 is not allowed with this experiment.

Reveal
The purpose of Reveal is to assist the user with parallelizing more complicated loops such as those that
contain calls to functions. It does not remove dependencies to make loops parallel, but rather calls out
issues with parallelization and automates tedious and error-prone tasks for the user. The user will most
likely need to perform code restructuring before such loops can successfully run with multiple threads,
but reveal provides the first steps for introducing multiple levels of parallelism to a program.

The utilization of Reveal is illustrated by means of the Program VH1 which is contained in the example
directory. This exercise4 will show how Reveal can assist the user in creating a hybrid program when
adding OpenMP to a pure MPI program. It explains how to identify loop candidates for parallelization,
navigate to these relevant loop candidates, view compiler optimization information, scope variables,
view dependency information, and create example OpenMP directives which can then be inserted in
the code.

Steps
1) Identify loops that are potential candidates for parallelization because of their trip counts and an
estimate the amount of work in the loops.

 a) Load modules needed for application, performance data collection and reveal

> module load cray-netcdf
> module load perftools

 b) Collect loop work estimates using perftools software

> make -f makefile.hprof clean
> make -f makefile.hprof
> qsub vh1.pbs

NOTE: In makefile.hprof you can see the usage of the -h profile_generate flag

ftn -h profile_generate -h keepfiles -h noomp [files].f

which is necessary for loop profiling. The -h noomp is necessary to turn off OpenMP and no
optimization flags are used. The makefile does the instrumentation for you, you can see the command

> pat_build -w ./vhone

which yields the file vhone+pat. The batch script vh1.hornet.pbs runs the program on 16 MPI ranks,
with the following command. aprun -n 16 ./vhone+pat > my_output 2>&1

One can monitor the progress of the job with qstat and by looking at the ouput file my_output.
Once the simulation has successfully finished one can process the performance data:

> pat_report vhone_loops.xf > vhone_loops.rpt

The output file vhone_loops.rpt contains the loop statistics which is shown inTable 6.

4
 This exercise is derived from a live demonstration which is a courtesy of Heidi Poxon (Cray US).

 Loop | Loop | Loop | Loop | Loop |Function=/.LOOP[.]
 Incl | Hit | Trips | Trips | Trips | PE=HIDE
 Time | | Avg | Min | Max |
 Total | | | | |
|--
| 2.400214 | 100 | 25 | 0 | 25 |sweepy_.LOOP.1.li.32
| 2.400103 | 2500 | 25 | 0 | 25 |sweepy_.LOOP.2.li.33
| 2.331944 | 50 | 25 | 0 | 25 |sweepz_.LOOP.05.li.48
| 2.331883 | 1250 | 25 | 0 | 25 |sweepz_.LOOP.06.li.49
| 1.266740 | 187500 | 107 | 0 | 107 |riemann_.LOOP.2.li.63
| 1.172848 | 50 | 25 | 0 | 25 |sweepx2_.LOOP.1.li.28
| 1.172771 | 1250 | 25 | 0 | 25 |sweepx2_.LOOP.2.li.29
| 1.164904 | 50 | 25 | 0 | 25 |sweepx1_.LOOP.1.li.28
| 1.164849 | 1250 | 25 | 0 | 25 |sweepx1_.LOOP.2.li.29
| 0.388353 | 20062500 | 12 | 0 | 12 |riemann_.LOOP.3.li.64
| 0.250488 | 1687500 | 104 | 0 | 108 |parabola_.LOOP.6.li.67
Table 6: Loop Stats by Function (from -hprofile_generate)

2) Reveal improves the visibility of compiler optimization feedback by summarizing existing
information from loopmark, decompiled code, compiler messages, etc.

 a) Rebuild the program with optimization and create program library5 vhone.pl

> make -f makefile.pl clean
> make -f makefile.pl

 b) The makefile.pl includes the -rm compiler flag which generates listing (.lst) files and
decompilation (*.cg and *.opt) files. Please have a look at these files to see readability improvement
with reveal later on over searching in large text files. For instance in riemann.lst one can see a
loopmark legend at the top of the file as well as loopmarks at various loops such as the one at source
code line 63. The plus sign points to an additional compiler messages given at bottom of the function.
Note that this loop has no OMP directive in front.

 c) The makefile.pl also includes the -rd compiler flag (summarized in -rmd) which generates
decompilation (*.cg and *.opt) files. The file init.opt contains inlined code in init from the
subroutine grid. Even though this subroutine is given in init.opt one cannot easily see where it's called
from. Reveal shows grid call site and expanded code from inlining and makes it much easier to see how
inlined code fits into source code.

 d) Launch reveal with program library

> reveal vhone.pl &

In order to review loopmark information and get explanations for a compiler message you can go to
loop@63 in subroutine RIEMANN in riemann.f90. With a right-click on compiler message you get
explanations to ‘not vectorized for unspecified reason’ directly without the need to look at the end of
the routine in another window or shell output. In addition, one can directly see decompiled code and
loopmark information and can benefit from improved search capability. Click on init.f90 in
navigation panel and then in source panel. With Ctrl-F one can search for grid (see occurrence in
orange) until reaching an inlined call. There you can see loopmark information and pseudo code for
grid. The compiler messages are categorized in green and red representing positive and negative
feedback, respectively.

5
 The perftools module is need for launching Reveal but not necessarily for the generation of a program library.

3) The loop statistics from step 1) shown in Table 6 can be loaded into Reveal in order to highlight
the most time consuming loops. Under File->Attach Perf Data you can choose vhone_loops.ap2
and then click ok. Note that you can also add the performance statistics when first launching Reveal.
From the shell you can do a > reveal vhone.pl vhone_loops.ap2. Now you Change navigation
view to "Loop Performance"

4) General information on scoping loops can be found in Help->Getting Started->Scoping
Loop Selection. Right click over a loop in navigation panel to bring up the "Scope Loop" option.
Select "Scope Loop" for the riemann: loop@63 in the navigation panel. This will open the “Reveal
OpenMP Scoping” window. You can choose more loops to scope like loop@28 in sweepx1.f90 in the
same way. They are all listed in the “Scope Loops” tab of the “Reveal OpenMP Scoping” window. Now
click on "Start Scoping" and let Reveal come back with the appropriate information.

5) The scoping information can now be reviewed. Note that loops with scoping information are
colored red or green in the navigation panel. After clicking on a scoped loop in the navigation panel the
scoping information appears in the “Reveal OpenMP Scoping” window under the “Scoping Results”
tab. The “Scoping Loops” tab should be empty by now.

 a) On riemann, loop@63 you can click on variables in the “Scoping Results” tab and see them
highlighted in the source panel. You can change the scope of a variable by clicking for instance on 'l'
and change scope to "unresolved". Several variables in loop@28 in sweepx1.f90 are unresolved. You
can review OpenMP tips under Help->OpenMP Tips and try to understand why the variables are
preventing Reveal to scope them.

 b) In the “Scoping Results” tab you have the choice of “Insert Directive” or “Show Directive”. If you
chose to insert the directive you can see it in the source panel afterwards. Note that the directive will
not be saved to your original source unless you click the “Save” button in the upper right corner of the
source panel or if you choose to save your work when you exit Reveal. Insert all directives and save
them.

 e) Note that modifying source is optional and directives inserted by Reveal are intended to be used
as placeholders as they may not be complete. The intent is that the user can then move to their
favourite editor for code restructuring work with scoping information available from Reveal. Click on
File->Quit. Select files you wish to update in the "Save Changes" window and then click OK.

