Allinea Tools Workshop

Performance and Reporting Tools

23 February 2015
VI-HPS Workshop
HLRS, Stuttgart

Florent Lebeau
flebeau@allinea.com

Agenda

11:15 - 11:30: Introduction to Allinea tools and latest changes
11:30 — 11:45: Getting started with Allinea Forge

11:45 - 12:30: Profile and Optimise with Allinea MAP

12:30 — 12:45: Allinea Performance Reports

12:45 — 13:45 : Lunch break

13:45 - 17:00: Hands-on session
17:00 — 17:30: Wrap-Up and questions

And now...

Let's talk about us!

WE NEED TO TALK.

SIS

Introduction to Allinea Tools and
latest changes

Use Allinea Performance Report to increase
cluster efficiency

Focus support teams’ expertise

Optimising each application would spend ages

Need to focus on the ones that are flawed

Find candidates for optimisation

Generate effortless one-touch reports with allinea

How to retrieve relevant metrics?
How to minimize the number of benchmarks?

How to automate benchmarks on several applications?

Explicit and readable reports with metrics and explanations

Understand optimized HPC applications effortlessly

Available to you

Allinea performance report — 3072 tokens

AN

Performance
Reports

Ige:
o Nov & 12:27:50 2013
il

16 processes, 1 node
andybridgeZ

tes) L

mi

el h2 L
-core server ! HOID /16 readers + writers el

Summary: MADbench2 is |/O-bound in this configuration

The total wallclack ime was spantas folows:

CPU 4a% ||
WPl s [
10 53 -

Tris application run was [0-bou

CPU

A breakdown of how the 55 9% total 110 time: was spen

“Time spentin flesystem 0. High values are usually bad.
Thi g for. o ac)

Titne spent running agplication code. High vaues are usualy good,
‘This is low; i may be worlh improving LD performane fire

. A breakdown of this time and acvice for investigating furtrer s in the 110 section below.

MPI

Ofthe 41 3% tatal ime spent in WP calls:

Time ineolecive alls t0ox NN
Time in paint-o-point calls 00%

Esimated tolectiverate 407 bytess [N
Estimaled pointda-pontrals 0 bylss's

synchranizaion averhead. You can investigate Uis futher with an
F profier.

Memory

Designed for better runs, quickly

MADbench2 cPu
16 processes, 1 node \
sandybridge2

Mon Nov 4 12:27:50 2013

Performance 109 seconds (2 minutes)
ftmp/MADbench2

*"@i“l;_

.
=

Reports 12-core server/ HDD / 16 readers + writers MP 0

No instrumentation needed

Summary: MADbench2 is |/O-bound in this configuration

The total wallclock ime was spent as follows:
Time spent running application code. High values are usually good. N O S O u rce C 0 d e n e e d e d

=11 o
C U 48% I This is low; it may be worth improving 1/O performance first

M P‘ 413% - Time spent in MPI calls. High values are usually bad.

e This is average; check the MPI breakdown for advice on reducing it.
Time spent in filesystem 1/O. High values are usually bad. N 1 I t. d d
0 U l I l

/0 53.9% - This is high; check the /O breakdown section for optimization advice. 0 re CO p I a I O n n e e e

This application run was |/O-bound. A breakdown of this time and advice for investigating furtheris in the |/O section below.
CPU i Less than 5% runtime overhead
A breakdown of how the 4.8% total CPU time was spent: Ofthe 41.3% total time spentin MPI calls
Scalar numericops 4.9% | Time in collective calls 100.0% |]
Vector numeric ops 0.1% Time in point-to-point calls 0.0%
Memory accesses ~ 95.0% [N Estimated collective rate 407 bytes/s [N F u I I S Cal ab | e
Other 0.0 Estimated point-to-point rate 0 bytes/s | y
The per-core performance is memory-bound. Use a profiler to All of the time is spent in ¢ s with a very low transfer rate.
identify ime-consuming loops and check their cache performance. This suggests a significant load imbalance is causing
No time was spent in vectorized instructions. Check the compiler's a’;ﬁ;iﬁ:éﬁmn overhead. You can investigate this further with an
vectorization advice to see why key loops could not be vectorized. . Run regularly Or in regression teStS

O Memory

A breakdown of how the 53.9% total I/O ime was spent: Per-process memory usage may also affect scaling: | 1§
Time in reads 3.7% | Mean process memory usage 160 Mb [..
Twivis &0 W ok s oy vge 173 D Explicit and usable output
Estimated readrate 272 Mb/s I Peak node memory usage 172% W
Estimated write rate 7.06 Mb/s |

The peak node memory usage is low. You may be able to reduce
the total number of CPU hours used by running with fewer MPI

Most of the time is spent in write operations, which have a very low processes and more data on each process.

transfer rate. This may be caused by contention for the filesystem or
inefficient access patterns. Use an /O profiler to investigate which
write calls are affected.

Need to dive into the code ?

Allinea Forge: a modern integrated environment for HPC developers
— Rebranding of Allinea Unified (Allinea DDT + Allinea MAP)

Supporting the lifecycle of application development and improvement
— Productively debug code with Allinea DDT A
— Enhance application performance with Allinea MAP *
Designed for productivity

— Consistent easy to use tools a I I i n Ea
— Fewer failed jobs I:O RG E

Available to you

— Allinea forge — 3072 tokens

Allinea Forge

One Unified Solution

s
X

allinea
FORGE

Use Allinea MAP to find a bottleneck

V

Increasing memory usage ? Memory leak !
Workload imbalance ? Possible partitioner bug !

VA

Flick to Allinea DDT
Common interface and settings files

V

Observe and debug your code step by step

Allinea MAP to find bottlenecks

Low overhead measurement

» Accurate, non-intrusive application performance profiling
« Seamless — no recompilation or relinking required

Easy to use

* Source code viewer pinpoints bottleneck locations
« Zoom in to explore iterations, functions and loops

Deep

* Measures CPU, communication, I/O and memory to identify problem causes
* Identifies vectorization and cache performance

Allinea MAP and tracers: a great synergy

Characterize performance at-scale with a lightweight tool
See which lines of code are hotspots
Identify common problems at once

Simple
optimization
with
Allinea MAP

Identify loop(s) to instrument
e |dentify performance counter(s) to record
optimization Document performance issues to communicate to optimisation experts

strategy with
Allinea MAP

Retrieve low-level details with tracer
Fix up CPU usage to make the code fly

Fine tune the
code
with tracer

Debug your code with Allinea DDT

« Who had a rogue behavior? Run
with Allinea tools
— Merges stacks from processes and threads
Identify
o a problem
 Where did it happen?
Gather info
— Allinea DDT leaps to source automatically Who, Where,
How, Why
« How did it happen? Fix
— Detailed error message given to the user
— Some faults evident instantly from source
Locals Current Line(s) l Current Sbckl |
. . & | |Current Line(s) g x| |
° Why dld It happen’) J Variable Name Value »
— Unique “Smart Highlighting” W -
nique “Smart Highlighting o T 272 |
— Sparklines comparing data across processes ™\
150119 [- §~cr_eate_ocn_oommunicator (communicate f90:300)

Allinea Forge 5.0 released

« New features: Debug Fix

— CODE EDITOR: Profile
= Debug
= Fix the code
= Compile and run
= Profile
= Optimise the code
= Compile and run

— OPENMP PROFILING

Getting Started with Allinea Forge

Get started

1- Connect to HLRS

2- Configure your environment
$. /zhome/academic/HLRS/xhp/xhpfl/env.sh

$ map
“Submit through queue” =» Configure

Select /zhome/academic/HLRS/xhp/xhpfl/qtf/hornet.qtf in
“Submission Template File”

3- Retrieve labs
$ cp -r /zhome/academic/HLRS/xhp/xhpfl/allinea_workshop.gz ~

$ tar xzvf allinea_workshop.tar.gz

When this is done, please wait for the others

Profile and Optimise with Allinea MAP

TiME CO3T

OTRATEGY A
GTRATEGY B

ANALYZING \JHETHER
STRATEGY A OR B
1S MORE EFFICIENT

THE REASON L A 50 INEFFICIENT

Code optimisation Is
time-consuming.

Relevant metrics help
you focus on your
application bottleneck.

Start Allinea MAP

Compile MPI wrapper

$ make-profile-libraries --platform=cray --lib-type=static

Prepare the code

$ cc -03 -g map.c -0 myapp.exe -W1l,@$(PWD)/allinea-profiler.1ld

Start Allinea MAP in interactive mode

$ map -n 16 ./myapp.exe argl arg2

Start Allinea MAP in profile mode

$ map -profile -n 16 ./myapp.exe argl arg2

Exercise 1: slow

Objectives

Compile Allinea MAP MPI wrapper libraries
Compile the code in order to use Allinea MAP
Submit the job through the queue

Discover Allinea MAP interface and features

Content

handout_slow.pdf: instructions

slow.f90: the example code

Makefile

slow.sub: queue submission file without Allinea MAP

slow.map: a profile example of the application

Key commands

$ make
$ gqsub slow.sub

$ checkjob $J0B_ID

Exercise 2: sgrtmax

Objectives
« Find the application bottleneck using Allinea MAP

* Optimise and improve application speedup

Content

* handout_sqgrtmax.pdf: instructions

« problem/
— sgrtmax.c: the example code
— Makefile
— sgrtmax.sub: queue submission file without Allinea MAP
— sqgrtmax_4p.map: a profile example of the application
* solution/

Key commands
$ make
$ qsub sqrtmax.sub

$ checkjob $3JOB_ID

Allinea Performance Reports

One example with a
CFD application

Allinea Performance-Reports and OpenFOAM

 How to make sure OpenFOAM is using the best
of a system?

« Example from the OpenFOAM tutorial

= http://www.openfoam.org/docs/user/damBreak.php

http://www.openfoam.org/docs/user/damBreak.php

Agenda

11:15 - 11:30: Introduction to Allinea tools and latest changes
11:30 — 11:45: Getting started with Allinea Forge

11:45 - 12:30: Profile and Optimise with Allinea MAP

12:30 — 12:45: Allinea Performance Reports

12:45 — 13:45 : Lunch break

13:45 - 17:00: Hands-on session
17:00 — 17:30: Wrap-Up and questions

Hands-on Session
On your own codes

Conclusion

« Enhance application development with Allinea
Forge
— PROFILING WITH ALLINEA MAP
— DEBUGGING WITHALLINEA DDT

* Improve resource usage with Allinea
Performance Reports

Thank you

Your contacts :
— Technical Support team : support@allinea.com
— Sales team : sales@allinea.com

allinea

mailto:support@allinea.com
mailto:sales@allinea.com

