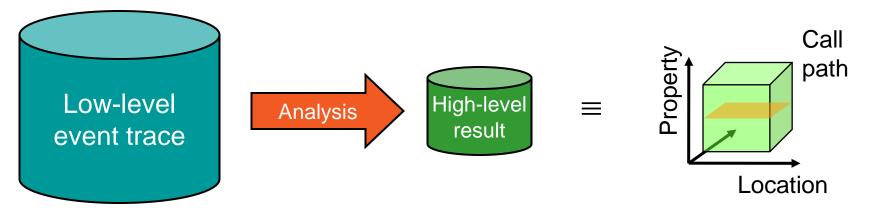


Automatic trace analysis with Scalasca

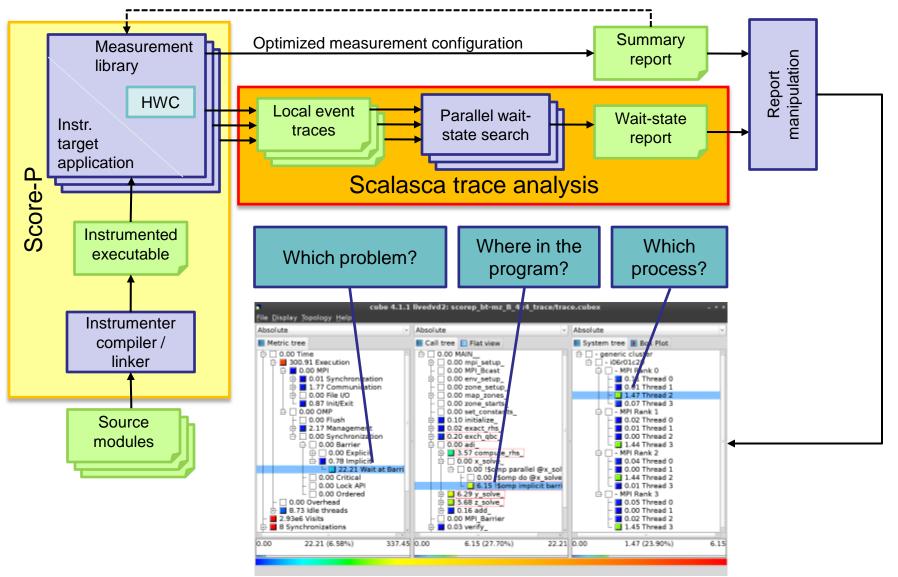
Markus Geimer, Brian Wylie, David Böhme Jülich Supercomputing Centre



- Idea
 - Automatic search for patterns of inefficient behavior
 - Classification of behavior & quantification of significance

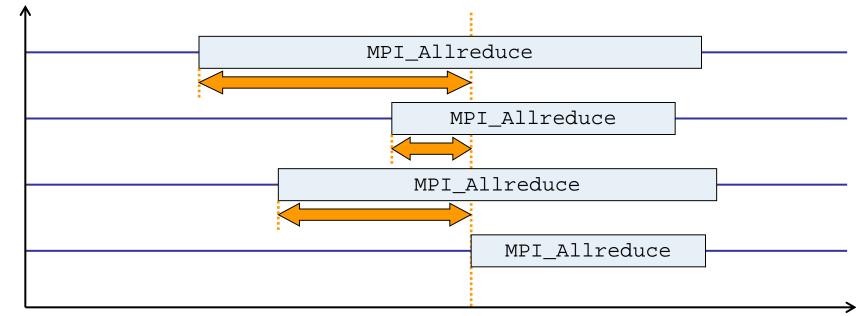
- Guaranteed to cover the entire event trace
- Quicker than manual/visual trace analysis
- Parallel replay analysis exploits available memory & processors to deliver scalability

- Project started in 2006
 - Initial funding by Helmholtz Initiative & Networking Fund
 - Many follow-up projects
- Follow-up to pioneering KOJAK project (started 1998)
 - Automatic pattern-based trace analysis
- Now joint development of
 - Jülich Supercomputing Centre
 - German Research School for Simulation Sciences



- Development of a scalable performance analysis toolset for most popular parallel programming paradigms
- Specifically targeting large-scale parallel applications
 - such as those running on IBM BlueGene or Cray systems with one million or more processes/threads
- Latest release:
 - Scalasca v2.0 with initial Score-P support (August 2013)
 - Scalasca v2.1 coordinated with Score-P v1.3 (planned 2014Q1)
 - initial support for Fujitsu FX10 & K computer
 - improved support for Scalasca v1 (EPIK/ELG) trace analysis
 - additional trace analysis of critical path
 - robustness and performance improvements

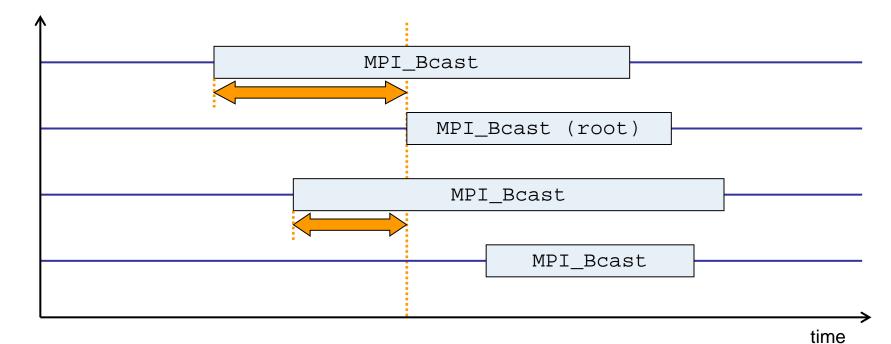
- Open source, New BSD license
- Fairly portable
 - IBM Blue Gene, IBM SP & blade clusters, Cray XT/XE, SGI Altix, Fujitsu FX10 & K computer, Solaris & Linux clusters, ...
- Uses Score-P instrumenter & measurement libraries
 - Scalasca 2 core package focuses on trace-based analyses
 - Supports common data formats
 - Reads event traces in OTF2 format
 - Writes analysis reports in CUBE4 format
- Current limitations:
 - Unable to handle traces containing CUDA or Pthreads events, or OpenMP nested parallelism and tasks
 - PAPI/rusage metrics for trace events are ignored



16th VI-HPS Tuning Workshop (29 Apr - 1 May 2014, EPCC, Edinburgh, Scotland)

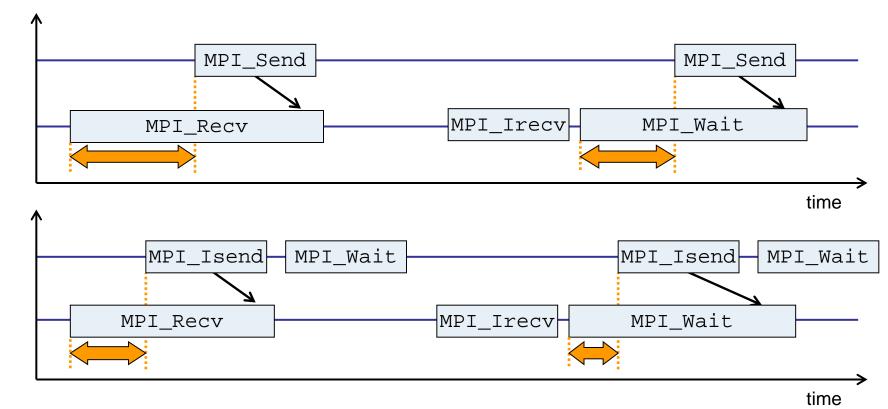
Example: Wait at NxN

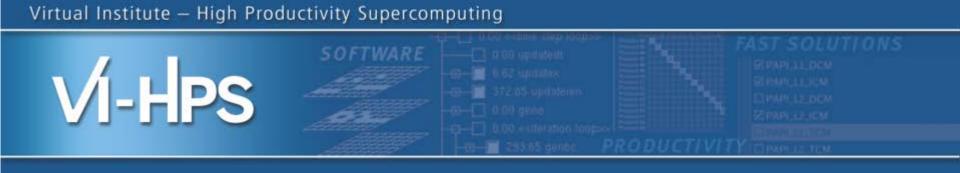
locatior



time

- Time spent waiting in front of synchronizing collective operation until the last process reaches the operation
- Applies to: MPI_Allgather, MPI_Allgatherv, MPI_Alltoall, MPI_Reduce_scatter, MPI_Reduce_scatter_block, MPI_Allreduce


Example: Late Broadcast


- Waiting times if the destination processes of a collective 1-to-N operation enter the operation earlier than the source process (root)
- Applies to: MPI_Bcast, MPI_Scatter, MPI_Scatterv

Example: Late Sender

- Waiting time caused by a blocking receive operation posted earlier than the corresponding send
- Applies to blocking as well as non-blocking communication

Hands-on: NPB-MZ-MPI / BT

scalasca 🗖

• One command for (almost) everything...

```
% scalasca
Scalasca 2.1
Toolset for scalable performance analysis of large-scale applications
usage: scalasca [-v][-n][c] {action}
1. prepare application objects and executable for measurement:
    scalasca -instrument <compile-or-link-command> # skin (using scorep)
2. run application under control of measurement system:
    scalasca -analyze <application-launch-command> # scan
3. interactively explore measurement analysis report:
    scalasca -examine <experiment-archive|report> # square
-v, --verbose enable verbose commentary
-n, --dry-run show actions without taking them
-c, --show-config show configuration and exit
```

- The 'scalasca -instrument' command is deprecated and only provided for backwards compatibility with Scalasca 1.x.
- Recommended: use Score-P instrumenter directly


```
% skin
Scalasca 2.1: application instrumenter using scorep
usage: skin [-v] [-comp] [-pdt] [-pomp] [-user] <compile-or-link-cmd>
-comp={all|none|...}: routines to be instrumented by compiler
        (... custom instrumentation specification for compiler)
        -pdt: process source files with PDT instrumenter
        -pomp: process source files for POMP directives
        -user: enable EPIK user instrumentation API macros in source code
        -v: enable verbose commentary when instrumenting
        --*: options to pass to Score-P instrumenter
```

- Provides compatibility with Scalasca 1.x
- Recommended: use Score-P instrumenter directly

• Scalasca measurement collection & analysis nexus

% scan
Scalasca 2.1: measurement collection & analysis nexus
usage: scan {options} [launchcmd [launchargs]] target [targetargs]
where {options} may include:
-h Help: show this brief usage message and exit.
-v Verbose: increase verbosity.
-n Preview: show command(s) to be launched but don't execute.
-q Quiescent: execution with neither summarization nor tracing.
-s Summary: enable runtime summarization. [Default]
-t Tracing: enable trace collection and analysis.
-a Analyze: skip measurement to (re-)analyze an existing trace.
-e exptdir : Experiment archive to generate and/or analyze.
(overrides default experiment archive title)
-f filtfile : File specifying measurement filter.
-l lockfile : File that blocks start of measurement.


```
% mpiexec -np 1 scout.hyb --help
       Copyright (c) 1998-2014 Forschungszentrum Juelich GmbH
SCOUT
       Copyright (c) 2009-2014 German Research School for Simulation
                                Sciences GmbH
Usage: <launchcmd> scout.hyb [OPTION]... <ANCHORFILE | EPIK_DIRECTORY>
Options:
  --statistics
                    Enables instance tracking and statistics [default]
 --no-statistics
                    Disables instance tracking and statistics
 --critical-path
                     Enables critical-path analysis [default]
 --no-critical-path Disables critical-path analysis
 --single-pass
                     Single-pass forward analysis only
  --time-correct
                    Enables enhanced timestamp correction
 --no-time-correct
                    Disables enhanced timestamp correction [default]
 --verbose, -v
                     Increase verbosity
  --help
                    Display this information and exit
```

 Provided in serial (.ser), OpenMP (.omp), MPI (.mpi) and MPI+OpenMP (.hyb) variants

Usage: <launchcmd> clc_synchronize.hyb <ANCHORFILE | EPIK_DIRECTORY>

- Provided in MPI (.mpi) and MPI+OpenMP (.hyb) variants
- Takes as input a trace experiment archive where the events may have timestamp inconsistencies
 - e.g., multi-node measurements on systems without adequately synchronized clocks on each compute node
- Generates a new experiment archive (always called ./clc_sync) containing a trace with event timestamp inconsistencies resolved
 - e.g., suitable for detailed examination with a time-line visualizer

- **scan** configures Score-P measurement by automatically setting some environment variables and exporting them
 - e.g., experiment title, profiling/tracing mode, filter file, ...
 - Precedence order:
 - Command-line arguments
 - Environment variables already set
 - Automatically determined values
- Also, scan includes consistency checks and prevents corrupting existing experiment directories
- For tracing experiments, after trace collection completes then automatic parallel trace analysis is initiated
 - uses identical launch configuration to that used for measurement (i.e., the same allocated compute resources)

Load modules

```
% module use /work/y14/shared/modules
% module load scalasca/2.1
UNITE loaded
cube/4.2.3 loaded
scorep/1.3 loaded
scalasca/2.1 loaded
% module list
1) UNITE/1.1 2) cube/4.2.3 3) scorep/1.3 4) scalasca/2.1
```

- Change to directory containing NPB BT-MZ sources
- Existing instrumented binary in bin.scorep/ can be reused

Change to directory with executable and edit job script

```
% cd bin.scorep
% cp ../jobscript/archer/scalasca2.sh .
% vi scalasca2.sh
[...]
module load scalasca/2.1
# Scalasca2/Score-P configuration
export SCOREP_FILTERING_FILE=../config/scorep.filt
#export SCOREP_TOTAL_MEMORY=50M
#export SCOREP_METRIC_PAPI=PAPI_FP_OPS
NEXUS="scalasca -analyze -s"
$NEXUS aprun -n $NPROCS -d $OMP_NUM_THREADS $EXE
```

• Submit the job

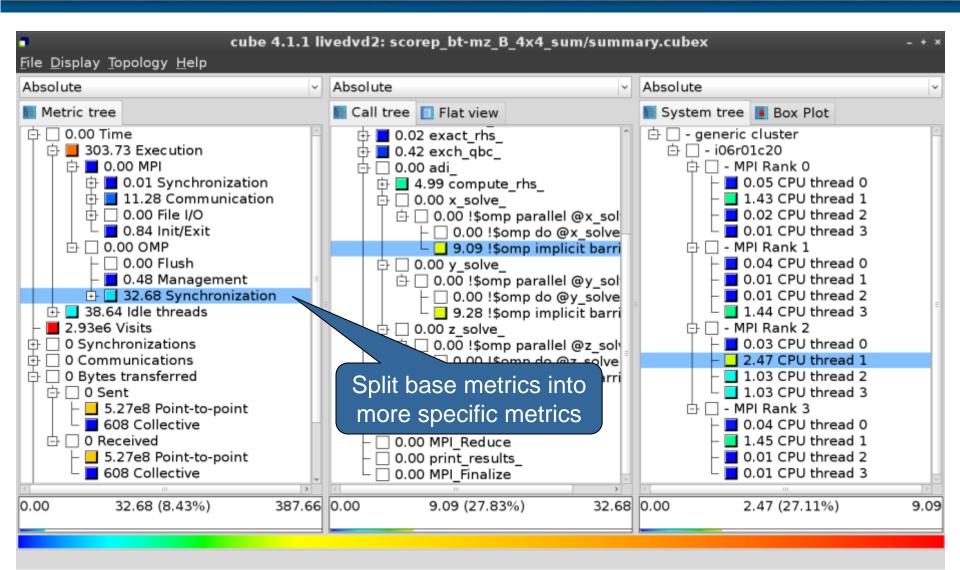
% qsub scalasca2.sh

- VI-HPS
- Run the application using the Scalasca measurement collection & analysis nexus prefixed to launch command

```
% OMP NUM THREADS=6
% scan -f .../config/scorep.filt mpiexec -np 8 ./bt-mz_C.8
S=C=A=N: Scalasca 2.1 runtime summarization
S=C=A=N: ./scorep_bt-mz_C_8x6_sum experiment archive
S=C=A=N: Thu Sep 13 18:05:17 2012: Collect start
mpiexec -np 8 ./bt-mz_C.8
NAS Parallel Benchmarks (NPB3.3-MZ-MPI) - BT-MZ MPI+OpenMP Benchmark
Number of zones: 8 x 8
Iterations: 200 dt: 0.000300
Number of active processes:
                                 8
 [... More application output ...]
S=C=A=N: Thu Sep 13 18:05:39 2012: Collect done (status=0) 22s
S=C=A=N: ./scorep bt-mz C 8x6 sum complete.
```

• Creates experiment directory ./scorep_bt-mz_C_8x6_sum


```
% square -s scorep_bt-mz_C_8x6_sum
INFO: Post-processing runtime summarization result...
INFO: Score report written to ./scorep_bt-mz_B_Cx6_sum/scorep.score
```


Post-processing and interactive exploration with CUBE

```
% square scorep_bt-mz_C_8x6_sum
INFO: Displaying ./scorep_bt-mz_C_8x6_sum/summary.cubex...
```

[GUI showing summary analysis report]

 The post-processing derives additional metrics and generates a structured metric hierarchy

Post-processed summary analysis report

VI-HPS

0.0 Reference preparation for validation

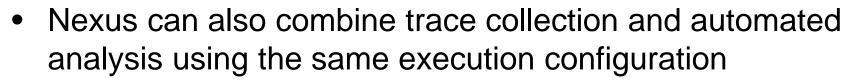
- 1.0 Program instrumentation
- 1.1 Summary measurement collection
- 1.2 Summary analysis report examination
- 2.0 Summary experiment scoring2.1 Summary measurement collection with filtering2.2 Filtered summary analysis report examination
- 3.0 Event trace collection
- 3.1 Event trace examination & analysis

Change to directory with executable and edit job script

```
% cd bin.scorep
% cp ../jobscript/archer/scalasca2.sh .
% vi scalasca2.sh
[...]
module load scalasca/2.1
# Scalasca2/Score-P configuration
export SCOREP_FILTERING_FILE=../config/scorep.filt
export SCOREP_TOTAL_MEMORY=50M
export SCOREP_METRIC_PAPI=PAPI_FP_OPS
NEXUS="scalasca -analyze -t"
$NEXUS aprun -n $NPROCS -d $OMP_NUM_THREADS $EXE
```

• Submit the job

% qsub scalasca2.sh



• Automatic trace analysis of existing experiment archives

```
% OMP_NUM_THREADS=6 scan -a mpiexec -np 8 ./bt-mz C.8
S=C=A=N: Scalasca 2.1 trace analysis
S=C=A=N: Fri Sep 20 15:09:59 2013: Analyze start
mpiexec -np 8 scout.hyb ./scorep_bt-mz_C_8x6_trace/traces.otf2
Analyzing experiment archive ./scorep_bt-mz_C_8x6_trace/traces.otf2
Opening experiment archive ... done (0.019s).
Reading definition data ... done (0.178s).
Reading event trace data ... done (2.068s).
Preprocessing ... done (3.789s).
Analyzing trace data
                          . . .
 Wait-state detection (fwd) (1/5) ... done (2.889s).
 Wait-state detection (bwd) (2/5) ... done (1.136s).
  Synchpoint exchange (fws) (3/5) ... done (0.813s).
 Critical-path & delay analysis (4/5) ... done (0.568s).
done (5.413s).
Writing analysis report ... done (1.994s).
Total processing time: 34.812s
S=C=A=N: Fri Sep 20 15:10:16 2013: Analyze done (status=0) 39s
```


• Starts measurement with collection of trace files ...

```
% SCOREP_FILTERING_FILE=../config/scorep.filt
% OMP_NUM_THREADS=6 scan -t mpiexec -np 8 ./bt-mz_C.8
S=C=A=N: Scalasca 2.1 trace collection and analysis
S=C=A=N: Fri Sep 20 15:09:59 2013: Collect start
mpiexec -np 8 ./bt-mz_C.8
NAS Parallel Benchmarks (NPB3.3-MZ-MPI) - BT-MZ MPI+OpenMP Benchmark
Number of zones: 8 x 8
Iterations: 200 dt: 0.000300
Number of active processes: 8
[... More application output ...]
S=C=A=N: Fri Sep 20 15:10:16 2013: Collect done (status=0) 28s
```

• Continues with automatic (parallel) analysis of trace files

```
S=C=A=N: Fri Sep 20 15:09:59 2013: Analyze start
mpiexec -np 8 scout.hyb ./scorep_bt-mz_C_8x6_trace/traces.otf2
Analyzing experiment archive ./scorep_bt-mz_C_8x6_trace/traces.otf2
Opening experiment archive ... done (0.019s).
Reading definition data ... done (0.178s).
Reading event trace data ... done (2.068s).
Preprocessing
              ... done (3.789s).
Analyzing trace data ...
  Wait-state detection (fwd) (1/5) ... done (2.889s).
 Wait-state detection (bwd) (2/5) ... done (1.136s).
 Synchpoint exchange (fws) (3/5) ... done (0.813s).
 Critical-path & delay analysis (4/5) ... done (0.568s).
done (5.413s).
Writing analysis report ... done (1.994s).
*** WARNING ***: 916 clock condition violations detected:
This usually leads to inconsistent analysis results.
Total processing time: 34.812s
S=C=A=N: Fri Sep 20 15:10:16 2013: Analyze done (status=0) 39s
```

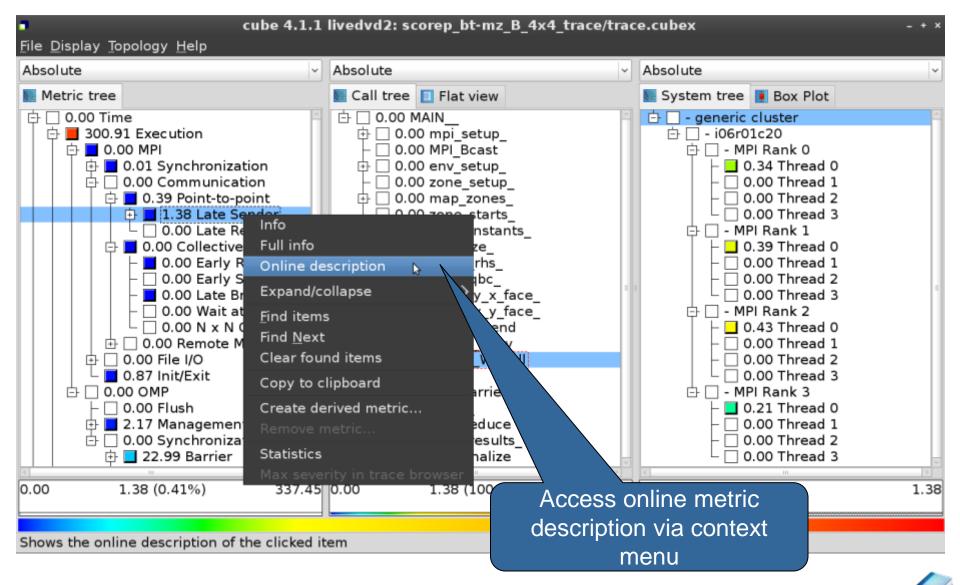

• Generating a time-corrected trace and its analysis

```
% SCAN_TRACE_ANALYZER=none scan -t mpiexec -np 8 ./bt-mz_C.8
S=C=A=N: Scalasca 2.1 trace collection and analysis
Info: Automatic trace analysis will be skipped!
. . .
S=C=A=N: Fri Mar 21: 18:00:56 2014: Collect done (status=0) 28s
S=C=A=N: ./scorep_bt-mz_C_8x6_trace complete.
% cd scorep bt-mz C 8x6 trace
% mpiexec -np 8 clc synchronize.hyb ./traces.otf2
      # passes : 1
      # violated : 3362
      # corrected : 1610977
      # reversed-p2p : 233
      # reversed-coll : 0
      # reversed-omp : 3129
      # events : 6287852
      max. error : 0.000112 [s]
      error at final. : 0.000118 [%]
      Max slope : 0.01000000
% scan -a -e ./clc sync mpiexec -np 8 ../bt-mz C.8
S=C=A=N: Scalasca 2.1 trace analysis
. . .
S=C=A=N: Fri Mar 21 18:29:29 2014: Analyze done (status=0) 39s
S=C=A=N: ./clc_sync complete
```


• Produces trace analysis report in experiment directory containing trace-based wait-state metrics

```
% square scorep_bt-mz_C_8x6_trace
INFO: Post-processing runtime summarization result...
INFO: Post-processing trace analysis report...
INFO: Displaying ./scorep_bt-mz_C_8x6_trace/trace.cubex...
```

[GUI showing trace analysis report]

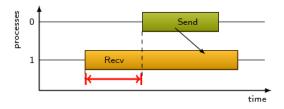


Post-processed trace analysis report

30 🧷

16th VI-HPS Tuning Workshop (29 Apr – 1 May 2014, EPCC, Edinburgh, Scotland)

Online metric description



Performance properties

Late Sender Time

Description:

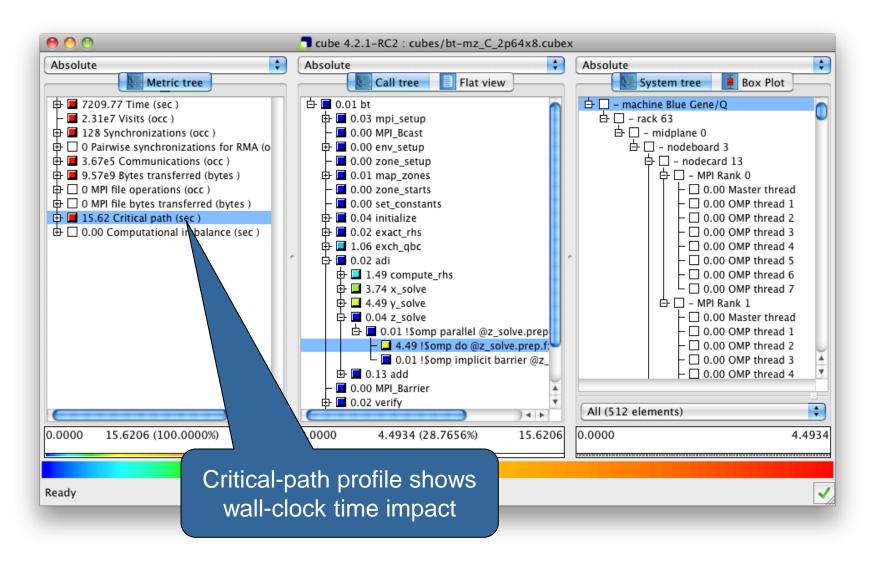
Refers to the time lost waiting caused by a blocking receive operation (e.g., MPI_Recv or MPI_Wait) that is posted earlier than the corresponding send operation.

If the receiving process is waiting for multiple messages to arrive (e.g., in an call to MPI_Waitall), the maximum waiting time is accounted, i.e., the waiting time due to the latest sender.

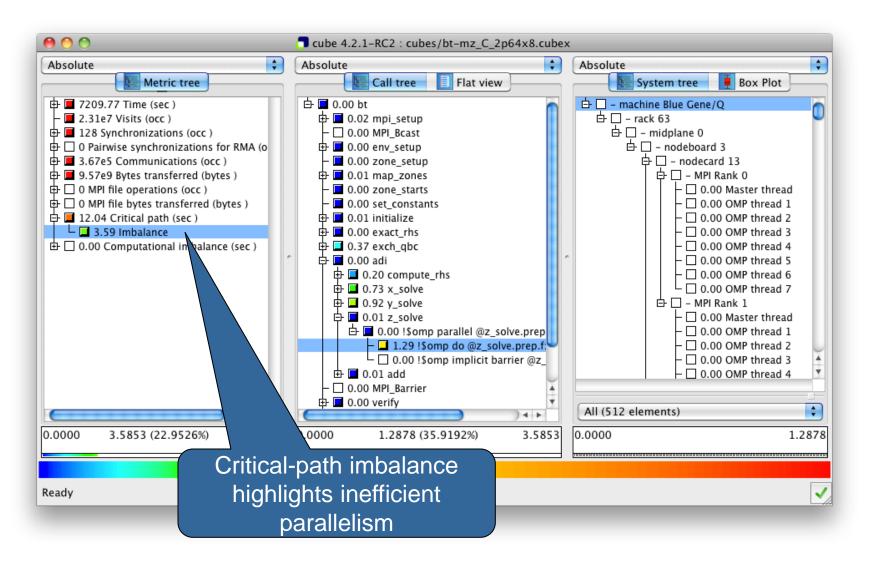
Unit:

Seconds

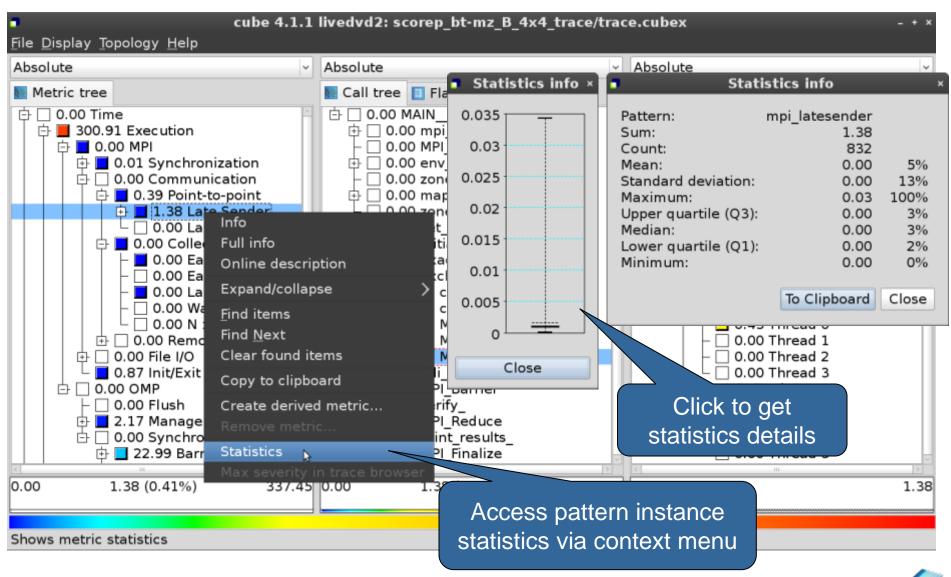
Diagnosis:

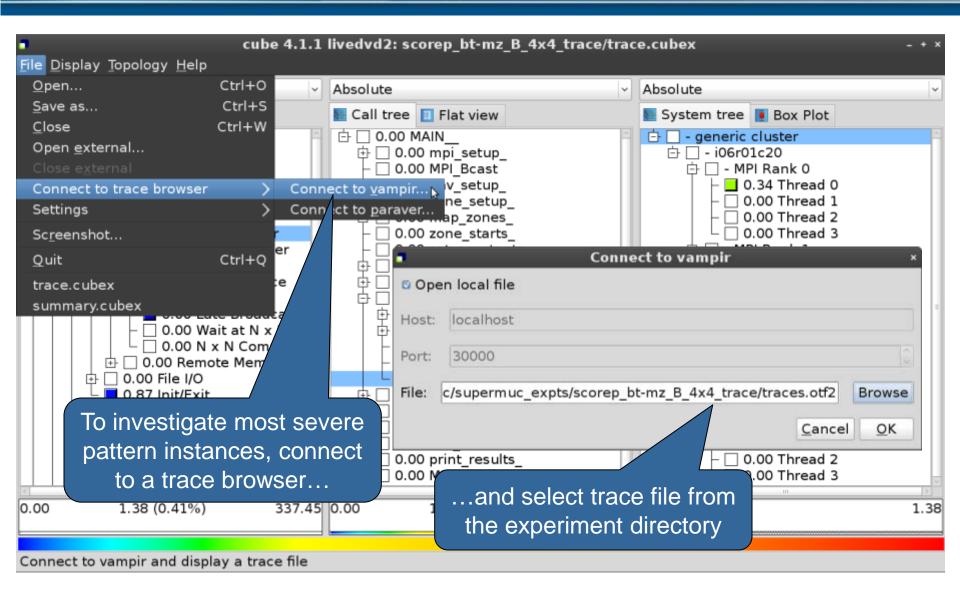

Try to replace MPI_Recv with a non-blocking receive MPI_Irecv that can be posted earlier, proceed concurrently with computation, and complete with a wait operation after the message is expected to have been sent. Try to post sends earlier, such that they are available when receivers need them. Note that outstanding messages (i.e., sent before the receiver is ready) will occupy internal message buffers, and that large numbers of posted receive buffers will also introduce message management overhead, therefore moderation is advisable.

Parent:

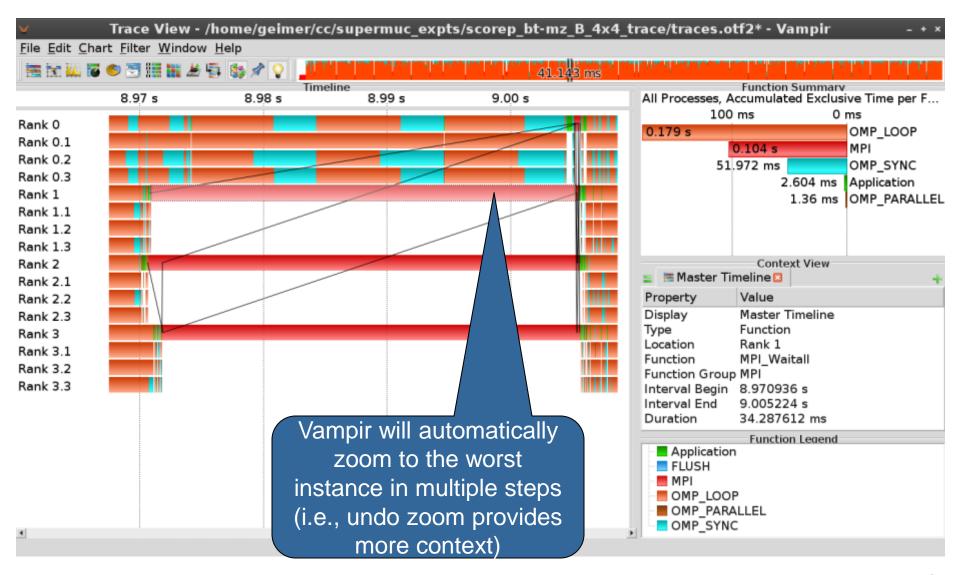

MPI Point-to-point Communication Time

<u>C</u>lose





Connect to Vampir trace browser



37 (

Metric tree	Call tree Flat view	System tree 🚺 Box Plot
300.91 Execution □ □ □ 0.00 MPI		
	 0.00 mpi_set 0.00 MPI_Bca 0.00 env_seti 0.00 zone_se 0.00 zone_sta 0.00 zone_sta 0.00 set_cons 0.00 set_cons 0.00 exact_rf 0.00 exact_rf 0.00 exact_rf 0.00 exact_rf 0.00 exch_qb 0.00 copy 0.00 copy 0.00 copy 0.00 copy 0.00 MPI_I Min/max values Max severity in t 1.38 MPI_Ventant 0.00 MPI_Barrier 0.00 MPI_Reduce 	ace browser - 0.00 Thread 3 - MPI Rank 2 - 0.43 Thread 0 - 0.00 Thread 1 - 0.00 Thread 2 - 0.00 Thread 3 - MPI Rank 3 - 0.21 Thread 0 - 0.00 Thread 1 - 0.00 Thread 3

16th VI-HPS Tuning Workshop (29 Apr – 1 May 2014, EPCC, Edinburgh, Scotland)

Scalable performance analysis of large-scale parallel applications

- toolset for scalable performance measurement & analysis of MPI, OpenMP & hybrid parallel applications
- supporting most popular HPC computer systems
- available under New BSD open-source license
- sources, documentation & publications:
 - http://www.scalasca.org
 - mailto: scalasca@fz-juelich.de

