

PRI

- Presenters
 - Marc-André Hermanns (German Research School for Sim. Sci.)
 - Emmanuel Oseret & Andres Charif-Rubial (UVSQ)
 - Sameer Shende (University of Oregon PRL)
 - Alexandre Strube (Jülich Supercomputing Centre)
 - Ronny Tschüter & Matthias Weber (TU Dresden)
- Thanks
 - Local arrangements & facilities (MdS)
 - Michel Kern, Aurélie Monteiro
 - ► Julien Derouillat, Pierre Kestener
 - Systems: MdS, IDRIS
 - Sponsors: CEA, GENCI, PRACE

Outline

Monday 7 April

- 09:00 (early registration & set-up, individual preparation)
- 12:00-13:00 (lunch)
- 13:00-13:30 (setup)
- Welcome & introduction to VI-HPS
- Introduction to parallel performance engineering
- 15:00-15:30 (break)
- Lab setup: computer systems & software environment
- Building & running NPB-MZ-MPI/BT-MZ example code
- 17:30 (adjourn)

VI-HPS

Tuesday 8 April

- 09:00-10:30 Score-P & CUBE
- 11:00-12:30 Score-P & ParaProf/PerfExplorer

Wednesday 9 April

- 09:00-10:30 Scalasca & Vampir
- 11:00-12:30 MAQAO

Thursday 10 April

- 09:00-10:30 **TAU**
- 11:00-12:30 Conclusion:

Using accelerators Engineering workflow

- Hands-on exercises part of each tool presentation every morning session
- Hands-on coaching to apply tools to analyse & tune your own codes each afternoon to 17:30

- We'd like to know a little about you, your application(s), and your expectations and desires from this tutorial
- What programming paradigms do you use in your app(s)?
 - only MPI, only OpenMP, mixed-mode/hybrid OpenMP/MPI, ...
 - Fortran, C, C++, multi-language, ...
- What platforms/systems *must* your app(s) run well on?
 - Cray XT/XE/XK, IBM BlueGene, SGI Altix, Linux cluster™, ...
- Who's already familiar with *serial* performance analysis?
 - Which tools have you used?
 - time, print/printf, prof/gprof, VTune, ...
- Who's already familiar with *parallel* performance analysis?
 - Which tools have you used?
 - ► time, print/printf, prof/gprof, Periscope, Scalasca, TAU, Vampir, ...

• Ensure your application codes build and run to completion with appropriate datasets

- initial configuration should ideally run in less than 15 minutes with 1-4 compute nodes (up to 64 processes/threads)
 - ► to facilitate rapid turnaround and quick experimentation
- Iarger/longer scalability configurations are also interesting
 - turnaround may be limited due to busyness of batch queues
- Compare your application performance on other systems
 - VI-HPS tools already installed on a number of HPC systems
 - if not, ask your system administrator to install them (or install a personal copy yourself)

Tools will *not* automatically make you, your applications or computer systems more *productive*.

However, they can help you understand how your parallel code executes and when / where it's necessary to work on correctness and performance issues.

DON'T PANIC!

The workshop presenters are here to assist you.

NB: On the assumption that nothing terrible is going to happen and everything's suddenly going to be alright really, all advice may be safely ignored.

15th VI-HPS Tuning Workshop (7-10 April 2014) MdS, Saclay, France

Workshop system (hardware)

System Domain	<i>poincare</i> mds.cea.fr	<i>curie</i> ccc.cea.fr	
Vendor Network	Intel	Bull Infiniband	
Processors Frequency	Intel E5-2670 2.6 GHz	(fat nodes) Intel X7560 2.26 GHz	(thin nodes) Intel E5-2680 2.7 GHz
Compute nodes	92	360	5040
Chips per node	2	4	2
Cores per chip	8	8	8
Threads per core	2	2	2
Memory per node	32 GB	128 GB	64 GB

System	<i>poincare</i>	<i>curie</i>
domain	mds.cea.fr	ccc.cea.fr
Filesystem Parallel filesys	GPFS	<i>Lustre</i> \$WORKDIR
Compiler	<i>Intel</i>	<i>Intel</i>
OpenMP flag	-openmp	-openmp
MPI	<i>Intel</i>	<i>Bullx</i>
C compiler	mpiicc	mpicc
C++ compiler	mpiicpc	mpicxx
F77 compiler	mpiifort	mpif77
F90 compiler	mpiifort	mpif90
Queue	<i>LoadLeveler</i>	<i>SLURM</i>
job submit	Ilsubmit job	ccc_msub job
list jobs	Ilq	qstat

15th VI-HPS Tuning Workshop (7-10 April 2014) MdS, Saclay, France