

Performance Analysis and Optimization Tool

Andres S. CHARIF-RUBIAL

andres.charif@uvsq.fr Performance Analysis Team, University of Versailles http://www.maqao.org

Develop performance analysis and optimization tools: MAQAO Framework and Toolsuite

Establish partnerships

> Optimize industrial applications

- > Understand the performance of an application
 - How well it behaves on a given machine
- What are the issues ?

- Generally a multifaceted problem
 - Maximizing the number of views = better understand
- > Use techniques and tools to understand issues

- Compiler remains your best friend
 - Be sure to select proper flags (e.g., -xavx)

> Pragmas: Unrolling, Vector alignment

> 02 V.S. 03

Vectorisation/optimisation report

- > Open source (LGPL 3.0)
 - Currently binary release

Available for x86-64 and Xeon Phi

Looking forward in porting MAQAO on BlueGene

Easy install

- Packaging : ONE (static) standalone binary
 - Easy to embeed

Audience

- > User/Tool developer: analysis and optimisation tool
- Performance tool developer: framework services
 - TAU: tau_rewrite (MIL)
 - ScoreP: on-going effort (MIL)

MA(10110)

Scripting language

Lua language : simplicity and productivity

Fast prototyping

MAQAO Lua API : Access to services

Built on top of the Framework

Loop-centric approach

- Produce reports
 - We deal with low level details
 - You get high level reports

- > A lot of tools ! Which one to use ? When
- > Our approach/experience: decision tree
 - Currently working on HPC
 - Multi-node > Node > Socket > Core
 - Classify IO/Memory/MPI/OpenMP/Application
- PAMDA methodology
 - to be published: 7th Parallel Tools Workshop
 - https://tools.zih.tu-dresden.de/2013/

Introduction

- > Pinpointing hotspots
 - Functions, loops
 - MPI characterization

Code quality analysis

MAQAO Profiling

- Instrumentation
 - Through binary rewriting
 - > High overhead / More precision
- Sampling
 - Hardware counter through perf_event_open system call
 - » Very low overhead / less details

By default MAQAO only considers system processes and threads

- Display functions and their exclusive time
 - Associated callchains and their contribution
 - Loops

Innermost loops can then be analyzed by the code quality analyzer module (CQA)

Command line and GUI (HTML) outputs

Pinpointing hotspots GUI snapshot (1/4)

Performance Evaluation - Profiling results

Hotspots - Functions

Name	Median Excl %Time	Deviation
matmul_sub 56@solve_subs.f	17.16	0.26
compute_rhs 4@rhs.f	10	0.03
y_solve_cell 385@y_solve.f	9.32	0.54
z_solve_cell 385@z_solve.f	8.96	0.14
x_solve_cell 391@x_solve.f	8.68	0.17
MPIDI_CH3I_Progress	5.22	3.66
matvec_sub 5@solve_subs.f	3.92	0.11
x_backsubstitute 330@x_solve.f	3.09	0.14
y_backsubstitute 329@y_solve.f	2.05	0.03
z_backsubstitute 329@z_solve.f	1.98	0.06
copy_faces 4@copy_faces.f	0.88	0.06
MPID_nem_dapl_rc_poll_dyn_opt_	0.74	0.62
MPID_nem_Imt_shm_start_send	0.68	0.06

•

Pinpointing hotspots GUI snapshot (2/4)

Performance Evaluation - Profiling results

Name	Excl %Time	Excl Time (s)
matmul_sub 56@solve_subs.f	16.92	16.4
compute_rhs 4@rhs.f	9.92	9.6
y_solve_cell 385@y_solve.f	9.08	8.8
✓ loops	9.08	
 Loop 267 - y_solve.f@415 	0	
 Loop 268 - y_solve.f@425 	0	
Loop 272 - y_solve.f@426	0.25	
Loop 270 - y_solve.f@524	6.57	
o Loop 271 - y_solve.f@436	2.22	
o Loop 269 - y_solve.f@716	0.04	
x_solve_cell 391@x_solve.f	9.01	8.7
✓ loops	9.01	
Loop 235 - x_solve.f@420	0	
Loop 236 - x_solve.f@429	0	
Loop 237 - x_solve.f@709	0.06	
o Loop 239 - x_solve.f@431	2.71	
o Loop 238 - x_solve.f@519	6.24	

Pinpointing hotspots GUI snapshot (4/4)

cirrus5003 - Process	#53572 -	Thread #1
----------------------	----------	-----------

Name	Excl %Time	Excl Time (s
matmul_sub 56@solve_subs.f	16.92	16.4
▶ compute_rhs 4@rhs.f	9.92	9.6
y_solve_cell 385@y_solve.f	9.08	8.8
✓ loops	9.08	
 Loop 267 - y_solve.f@415 	0	
 Loop 268 - y_solve.f@425 	0	
 Loop 272 - y_solve.f@426 	0.25	
C Loop 270 y_solve.f@524	6.57	
Loop 271 - y_solve.f@436	2.22	
o Loop 269 - y_solve.f@716	0.04	
x_solve_cell 391@x_solve.f	9.01	8.7
✓ loops	9.01	
Loop 235 - x_solve.f@420	0	
 Loop 236 - x_solve.f@429 	0	
Loop 237 - x_solve.f@709	0.06	
o Loop 239 - x_solve.f@431	2.71	
c Loop 238 x_solve.f@519	6.24	

Introduction

> Pinpointing hotspots

- Functions, loops
- MPI characterization

Code quality analysis

VI-HPS

> Our methodology

- Coarse grain: overview, global trends/patterns
- Fine grain: filtering precise issues
- Tracing issues
 - Scalability
 - Memory size: can we reduce it ?
 - Trace size: can we reduce it ?
 - IO's wall: remove it ?

Scalable coarse grain analysis

VI-HPS

> Online profiling

- Aggregated metrics
- No traces
- No IOs (only one result file)
- Reduced memory footprint
- Scalable on 100+ procs

- > Web based visualizer
 - > Only requires a web browser

Pinpointing hotspots MPI characterization: analyses (1/5)

MPI primitives high level profile (hits,time,size)

MPI Profile	Density Summary	Per Function Density	Topology Graph	Topology Matrix
I Profil	e			
Hits Pie Cl	hart			
MPI_Waitall	MPI_Init			
		er MPI Isend MPI Reduce	MPI Irecv MPI Comm s	split 💭 MPI Bcast 🔵 MPI Fina
MPI_Wtime	MPI_Comm_size MPI_Comm		MPI_Irecv	split 🛑 MPI_Bcast 🌘 MPI_Fina
			MPI_Irecv • MPI_Comm_s	plit <mark>● MPI_Bcast</mark> ● MPI_Fin

MPI Time Pie Chart

VI-HPS

Function scattering over time

Pinpointing hotspots MPI characterization: analyses (3/5)

Probability densities

min: 2.91482e-7. max: 0.00023

Pinpointing hotspots MPI characterization: analyses (4/5)

Pinpointing hotspots MPI characterization: analyses (4/5)

> Topology view (2/2) Rank 19 Delete Node Node Statistics Neighbour Total In Out 1 4 4 Size In Out Total 28.309 28.309 56.617 MB MB MB

Click on a node in the force layout to display its

Hover a node to see its MPI rank

Hover an edge to see its value

Pinpointing hotspots MPI characterization: analyses (5/5)

Communication matrix (1/3)

MPI_Irecv V Total Size V Reset View

Communication Matrix

Pinpointing hotspots MPI characterization: analyses (5/5)

Communication matrix (2/3)

Pinpointing hotspots MPI characterization: analyses (5/5)

Communication matrix (3/3)

Per Rank distribution

Fine grained analyses should be:

Investigated using (MPI) tracing tools

And filtering on specific processes/events of interest detected thanks to this tool

Introduction

- > Pinpointing hotspots
 - Functions, loops
 - MPI characterization

Code quality analysis

- Main performance issues:
 - Core level
 - Multicore interactions
 - Communications

Most of the time core level is forgotten

- Simulates the target (micro)architecture
 - Instructions description (latency, uops dispatch...)
 - Machine model
- For a given binary and micro-architecture, provides
 - Quality metrics (how well the binary is fitted to the micro architecture)
 - Static performance (lower bounds on cycles)
 - Hints and workarounds to improve static performance

- Vectorization (ratio and speedup)
 - Allows to predict vectorization (if possible) speedup and increase vectorization ratio if it's worth
- > High latency instructions (division/square root)
 - Allows to use less precise but faster instructions like RCP (1/x) and RSQRT (1/sqrt(x))
- Unrolling (unroll factor detection)
 - Allows to statically predict performance for different unroll factors (find main loops)

Static performance modeling Output example (1/2)

And a second sec	Code quality analysis
And in case of the local division of the loc	oodo quanty analysis
urce loop ending at line (682
AQAO binary loop id: 23	
oop is defined in MPI/BT/x_so	
of peak computational perfo	rmance is used (1.23 out of 8.00 FLOP per cycle (GFLOPS @ 1GHz))
n Potential gain Hints E	Experts only
	Vectorization
	but is NOT OR PARTIALLY VECTORIZED and could benefit from full vectorization.
fully vectorizing your loop, you can	n lower the cost of an iteration from 190.00 to 60.75 cycles (3.13x speedup).
fully vectorizing your loop, you can nee your execution units are vector u	
fully vectorizing your loop, you car nee your execution units are vector u oposed solution(s):	n lower the cost of an iteration from 190.00 to 60.75 cycles (3.13x speedup).
fully vectorizing your loop, you can nee your execution units are vector u oposed solution(s): yo propositions:	n lower the cost of an iteration from 190.00 to 60.75 cycles (3.13x speedup). Inits, only a fully vectorized loop can use their full power.
fully vectorizing your loop, you can be your execution units are vector u posed solution(s): propositions:	n lower the cost of an iteration from 190.00 to 60.75 cycles (3.13x speedup). Inits, only a fully vectorized loop can use their full power.
fully vectorizing your loop, you can ce your execution units are vector u oposed solution(s): o propositions: ry another compiler or update/tune	n lower the cost of an iteration from 190.00 to 60.75 cycles (3.13x speedup). Inits, only a fully vectorized loop can use their full power.

Source loop ending at line 734

Static performance modeling Output example (2/2)

Thanks for your attention !

Questions ?

