
Performance Analysis and Optimization Tool

Andres S. CHARIF-RUBIAL

andres.charif@uvsq.fr

Performance Analysis Team, University of Versailles

http://www.maqao.org

VI-HPS

Introduction
Performance Analysis

 Develop performance analysis and optimization

tools: MAQAO Framework and Toolsuite

 Establish partnerships

 Optimize industrial applications

VI-HPS

Introduction
Performance Analysis

 Understand the performance of an application

 How well it behaves on a given machine

 What are the issues ?

 Generally a multifaceted problem

 Maximizing the number of views = better understand

 Use techniques and tools to understand issues

 Once understood Optimize application

VI-HPS

Introduction
Compilation chain

 Compiler remains your best friend

 Be sure to select proper flags (e.g., -xavx)

 Pragmas: Unrolling, Vector alignment

 O2 V.S. O3

 Vectorisation/optimisation report

VI-HPS

Introduction
MAQAO Tool

 Open source (LGPL 3.0)

 Currently binary release

 Available for x86-64 and Xeon Phi

 Looking forward in porting MAQAO on BlueGene

VI-HPS

Introduction
MAQAO Tool

 Easy install

 Packaging : ONE (static) standalone binary

 Easy to embeed

 Audience

 User/Tool developer: analysis and optimisation tool

 Performance tool developer: framework services

 TAU: tau_rewrite (MIL)

 ScoreP: on-going effort (MIL)

VI-HPS

Introduction
MAQAO Tool

VI-HPS

Introduction
MAQAO Tool

 Scripting language

 Lua language : simplicity and productivity

 Fast prototyping

 MAQAO Lua API : Access to services

VI-HPS

Introduction
MAQAO Tool

 Built on top of the Framework

 Loop-centric approach

 Produce reports

 We deal with low level details

 You get high level reports

VI-HPS

Introduction
MAQAO Tool

 A lot of tools ! Which one to use ? When

 Our approach/experience: decision tree

 Currently working on HPC

 Multi-node > Node > Socket > Core

 Classify IO/Memory/MPI/OpenMP/Application

 PAMDA methodology

 to be published: 7th Parallel Tools Workshop

 https://tools.zih.tu-dresden.de/2013/

VI-HPS

Outline

 Introduction

 Pinpointing hotspots

 Functions, loops

 MPI characterization

 Code quality analysis

VI-HPS

Pinpointing hotspots
Measurement methodology

 MAQAO Profiling

 Instrumentation

 Through binary rewriting

 High overhead / More precision

 Sampling

 Hardware counter through perf_event_open

system call

 Very low overhead / less details

VI-HPS

Pinpointing hotspots
Parallelism level

 SPMD

 Program level

 SIMD

 Instruction level

 By default MAQAO only considers system

processes and threads

VI-HPS

Pinpointing hotspots
Display

 Display functions and their exclusive time

 Associated callchains and their contribution

 Loops

 Innermost loops can then be analyzed by

the code quality analyzer module (CQA)

 Command line and GUI (HTML) outputs

VI-HPS

Pinpointing hotspots
GUI snapshot (1/4)

VI-HPS

Pinpointing hotspots
GUI snapshot (2/4)

VI-HPS

Pinpointing hotspots
GUI snapshot (3/4)

VI-HPS

Pinpointing hotspots
GUI snapshot (4/4)

VI-HPS

Outline

 Introduction

 Pinpointing hotspots

 Functions, loops

 MPI characterization

 Code quality analysis

VI-HPS

Pinpointing hotspots
MPI characterization: Introduction

 Our methodology

 Coarse grain: overview, global

trends/patterns

 Fine grain: filtering precise issues

 Tracing issues

 Scalability

 Memory size: can we reduce it ?

 Trace size: can we reduce it ?

 IO’s wall: remove it ?

VI-HPS

Pinpointing hotspots
MPI characterization: overview

 Scalable coarse grain analysis

MPI

APPLICATION

MAQAO profile.js

Web Visualizer

VI-HPS

Pinpointing hotspots
MPI characterization: key concepts

 Online profiling

 Aggregated metrics

 No traces

 No IOs (only one result file)

 Reduced memory footprint

 Scalable on 100+ procs

VI-HPS

Pinpointing hotspots
MPI characterization: visualization

 Web based visualizer

 Only requires a web browser

VI-HPS

Pinpointing hotspots
MPI characterization: analyses (1/5)

 MPI primitives high level profile (hits,time,size)

VI-HPS

Pinpointing hotspots
MPI characterization: analyses (2/5)

 Function scattering over time

VI-HPS

Pinpointing hotspots
MPI characterization: analyses (3/5)

 Probability densities

VI-HPS

Pinpointing hotspots
MPI characterization: analyses (4/5)

 Topology view (1/2)

Force driven

topology view

3 D topology

Selector

Information

Panel

Color scale

VI-HPS

Pinpointing hotspots
MPI characterization: analyses (4/5)

 Topology view (2/2)

Click on a node in

the force layout to

display its

information

Hover a node to see

its MPI rank

Hover an edge to

see its value

VI-HPS

Pinpointing hotspots
MPI characterization: analyses (5/5)

 Communication matrix (1/3)

VI-HPS

Pinpointing hotspots
MPI characterization: analyses (5/5)

 Communication matrix (2/3)

Zoom

VI-HPS

Pinpointing hotspots
MPI characterization: analyses (5/5)

 Communication matrix (3/3)

VI-HPS

Pinpointing hotspots
MPI characterization: next steps

 Fine grained analyses should be:

 Investigated using (MPI) tracing tools

 And filtering on specific processes/events of

interest detected thanks to this tool

VI-HPS

Outline

 Introduction

 Pinpointing hotspots

 Functions, loops

 MPI characterization

 Code quality analysis

VI-HPS

Static performance modeling
Introduction

 Main performance issues:

 Core level

 Multicore interactions

 Communications

 Most of the time core level is forgotten

VI-HPS

Static performance modeling
Goals

 Static performance model

 Targets innermost loops

 source loop V.S. assembly loop

 Take into account processor

(micro)architecture

 Assess code quality

 Estimate performance

 Degree of vectorization

 Impact on micro architecture

Source Loop

L255@file.c

ASM

Loop 1
ASM

Loop 2

ASM

Loop 3

ASM

Loop 4

ASM

Loop 5

VI-HPS

Static performance modeling
Model

 Simulates the target (micro)architecture

 Instructions description (latency, uops dispatch...)

 Machine model

 For a given binary and micro-architecture, provides

 Quality metrics (how well the binary is fitted to the micro

architecture)

 Static performance (lower bounds on cycles)

 Hints and workarounds to improve static performance

VI-HPS

Static performance modeling
Metrics

 Vectorization (ratio and speedup)

 Allows to predict vectorization (if possible) speedup

and increase vectorization ratio if it’s worth

 High latency instructions (division/square root)

 Allows to use less precise but faster instructions like

RCP (1/x) and RSQRT (1/sqrt(x))

 Unrolling (unroll factor detection)

 Allows to statically predict performance for different

unroll factors (find main loops)

VI-HPS

Static performance modeling
Output example (1/2)

VI-HPS

Static performance modeling
Output example (2/2)

VI-HPS

MAQAO Tool

Thanks for your attention !

Questions ?

