
Performance Analysis and Optimization Tool

Andres S. CHARIF-RUBIAL

andres.charif@uvsq.fr

Performance Analysis Team, University of Versailles

http://www.maqao.org

VI-HPS

Introduction
Performance Analysis

 Develop performance analysis and optimization

tools: MAQAO Framework and Toolsuite

 Establish partnerships

 Optimize industrial applications

VI-HPS

Introduction
Performance Analysis

 Understand the performance of an application

 How well it behaves on a given machine

 What are the issues ?

 Generally a multifaceted problem

 Maximizing the number of views = better understand

 Use techniques and tools to understand issues

 Once understood Optimize application

VI-HPS

Introduction
Compilation chain

 Compiler remains your best friend

 Be sure to select proper flags (e.g., -xavx)

 Pragmas: Unrolling, Vector alignment

 O2 V.S. O3

 Vectorisation/optimisation report

VI-HPS

Introduction
MAQAO Tool

 Open source (LGPL 3.0)

 Currently binary release

 Available for x86-64 and Xeon Phi

 Looking forward in porting MAQAO on BlueGene

VI-HPS

Introduction
MAQAO Tool

 Easy install

 Packaging : ONE (static) standalone binary

 Easy to embeed

 Audience

 User/Tool developer: analysis and optimisation tool

 Performance tool developer: framework services

 TAU: tau_rewrite (MIL)

 ScoreP: on-going effort (MIL)

VI-HPS

Introduction
MAQAO Tool

VI-HPS

Introduction
MAQAO Tool

 Scripting language

 Lua language : simplicity and productivity

 Fast prototyping

 MAQAO Lua API : Access to services

VI-HPS

Introduction
MAQAO Tool

 Built on top of the Framework

 Loop-centric approach

 Produce reports

 We deal with low level details

 You get high level reports

VI-HPS

Introduction
MAQAO Tool

 A lot of tools ! Which one to use ? When

 Our approach/experience: decision tree

 Currently working on HPC

 Multi-node > Node > Socket > Core

 Classify IO/Memory/MPI/OpenMP/Application

 PAMDA methodology

 to be published: 7th Parallel Tools Workshop

 https://tools.zih.tu-dresden.de/2013/

VI-HPS

Outline

 Introduction

 Pinpointing hotspots

 Functions, loops

 MPI characterization

 Code quality analysis

VI-HPS

Pinpointing hotspots
Measurement methodology

 MAQAO Profiling

 Instrumentation

 Through binary rewriting

 High overhead / More precision

 Sampling

 Hardware counter through perf_event_open

system call

 Very low overhead / less details

VI-HPS

Pinpointing hotspots
Parallelism level

 SPMD

 Program level

 SIMD

 Instruction level

 By default MAQAO only considers system

processes and threads

VI-HPS

Pinpointing hotspots
Display

 Display functions and their exclusive time

 Associated callchains and their contribution

 Loops

 Innermost loops can then be analyzed by

the code quality analyzer module (CQA)

 Command line and GUI (HTML) outputs

VI-HPS

Pinpointing hotspots
GUI snapshot (1/4)

VI-HPS

Pinpointing hotspots
GUI snapshot (2/4)

VI-HPS

Pinpointing hotspots
GUI snapshot (3/4)

VI-HPS

Pinpointing hotspots
GUI snapshot (4/4)

VI-HPS

Outline

 Introduction

 Pinpointing hotspots

 Functions, loops

 MPI characterization

 Code quality analysis

VI-HPS

Pinpointing hotspots
MPI characterization: Introduction

 Our methodology

 Coarse grain: overview, global

trends/patterns

 Fine grain: filtering precise issues

 Tracing issues

 Scalability

 Memory size: can we reduce it ?

 Trace size: can we reduce it ?

 IO’s wall: remove it ?

VI-HPS

Pinpointing hotspots
MPI characterization: overview

 Scalable coarse grain analysis

MPI

APPLICATION

MAQAO profile.js

Web Visualizer

VI-HPS

Pinpointing hotspots
MPI characterization: key concepts

 Online profiling

 Aggregated metrics

 No traces

 No IOs (only one result file)

 Reduced memory footprint

 Scalable on 100+ procs

VI-HPS

Pinpointing hotspots
MPI characterization: visualization

 Web based visualizer

 Only requires a web browser

VI-HPS

Pinpointing hotspots
MPI characterization: analyses (1/5)

 MPI primitives high level profile (hits,time,size)

VI-HPS

Pinpointing hotspots
MPI characterization: analyses (2/5)

 Function scattering over time

VI-HPS

Pinpointing hotspots
MPI characterization: analyses (3/5)

 Probability densities

VI-HPS

Pinpointing hotspots
MPI characterization: analyses (4/5)

 Topology view (1/2)

Force driven

topology view

3 D topology

Selector

Information

Panel

Color scale

VI-HPS

Pinpointing hotspots
MPI characterization: analyses (4/5)

 Topology view (2/2)

Click on a node in

the force layout to

display its

information

Hover a node to see

its MPI rank

Hover an edge to

see its value

VI-HPS

Pinpointing hotspots
MPI characterization: analyses (5/5)

 Communication matrix (1/3)

VI-HPS

Pinpointing hotspots
MPI characterization: analyses (5/5)

 Communication matrix (2/3)

Zoom

VI-HPS

Pinpointing hotspots
MPI characterization: analyses (5/5)

 Communication matrix (3/3)

VI-HPS

Pinpointing hotspots
MPI characterization: next steps

 Fine grained analyses should be:

 Investigated using (MPI) tracing tools

 And filtering on specific processes/events of

interest detected thanks to this tool

VI-HPS

Outline

 Introduction

 Pinpointing hotspots

 Functions, loops

 MPI characterization

 Code quality analysis

VI-HPS

Static performance modeling
Introduction

 Main performance issues:

 Core level

 Multicore interactions

 Communications

 Most of the time core level is forgotten

VI-HPS

Static performance modeling
Goals

 Static performance model

 Targets innermost loops

 source loop V.S. assembly loop

 Take into account processor

(micro)architecture

 Assess code quality

 Estimate performance

 Degree of vectorization

 Impact on micro architecture

Source Loop

L255@file.c

ASM

Loop 1
ASM

Loop 2

ASM

Loop 3

ASM

Loop 4

ASM

Loop 5

VI-HPS

Static performance modeling
Model

 Simulates the target (micro)architecture

 Instructions description (latency, uops dispatch...)

 Machine model

 For a given binary and micro-architecture, provides

 Quality metrics (how well the binary is fitted to the micro

architecture)

 Static performance (lower bounds on cycles)

 Hints and workarounds to improve static performance

VI-HPS

Static performance modeling
Metrics

 Vectorization (ratio and speedup)

 Allows to predict vectorization (if possible) speedup

and increase vectorization ratio if it’s worth

 High latency instructions (division/square root)

 Allows to use less precise but faster instructions like

RCP (1/x) and RSQRT (1/sqrt(x))

 Unrolling (unroll factor detection)

 Allows to statically predict performance for different

unroll factors (find main loops)

VI-HPS

Static performance modeling
Output example (1/2)

VI-HPS

Static performance modeling
Output example (2/2)

VI-HPS

MAQAO Tool

Thanks for your attention !

Questions ?

