
Automatic Compiler Flag Selection 

with Periscope 

Michael Firbach 

firbach@in.tum.de 

February 13th, 2014 



Outline 

• Scope 

• Motivation 

• Basic workflow 

– Can we make this faster? 

• Limitations 

• Hands-on exercise 

• Bonus track: Workflow automation with Pathway 



Scope 

• Flags control the behavior of the compiler 

– Language version, Warning levels, Code generation 

 

• Compiler Flag Selection is a process that systematically 

determines the best configuration 

– Combinations of flags → multi-dimensional search space 

– Optimization problem: Find best combination 

 

• Applications that will benefit most: 

– Compute-bound applications 

– Single-core optimization 



Motivation 

• Optimization potential left unused 

– Most flags are optional, programmers don’t bother much 

– The effects of many flags is hard to predict 

• Specific to compiler, micro-architecture and application 

• Need a lot (often non-public) knowledge 

– Testing all possible combinations of flags is very cumbersome 

– Must be be re-done for a different HPC system or application 

 

• A tool can help automate this process 

– Can automatically evaluate flag combinations 

• Re-compile, re-run, log execution time 

– Tool already knows important flags for specific compilers 

 



Basic workflow 

CFS Plug-in 

scenarios = flags combinations 
Compiler flags 

Application 
search 

strategy 

Re-compilation 

Measurements 

Flags advice 



Basic workflow 

• Basic search strategy: Exhaustive search 

– Create a scenario for every possible combination of flags 

– Guaranteed to find best combination 

– Can take a long time (exponential complexity) 

 

• How can we speed up our workflow? 

Create list of 
scenarios 

Compile/Run 
all scenarios 

Pick best 
scenario 



Basic workflow – can we make this faster? 

• Faster search strategy: Individual search 

– Only creates scenarios for one flag at a time 

• Continues with best setting for this flag 

• E.g. test –O[n] first, then –xhost with best O setting 

– Might miss the optimal combination 

– The order of flags could be important! 

– Much faster (linear complexity) 

 

• Intermediate solution 

– Keep the k best scenarios while going through the list of flags 

– See User's Guide 



Basic workflow – can we make this faster? 

• Faster build times: Selective make 

– Time spent on re-building the application over and over can be 

significant 

– We don't need to re-compile the whole application for each 

scenario 

– User provides list of files to touch 

– With the Intel Fortran compiler, we can create list automatically 

• A script does a profile run and creates list 

 



Limitations 

• It will be always too time-consuming for real-world 

applications 

– Must use smaller, hopefully representative data set 

• If too small, Initialization overhead dominates the run-time 

– Test the combinations of most promising flags only 

– Individual search might miss the optimal combination 

 

• Restrictions for mixed-language applications 

– Flags should apply all compilers (e.g. Fortran, C++) 



BASIC WORKFLOW 

Hands-on exercises… get ready 



Hands-on Exercise (1) 

Load required modules 
 module use ~nct00001/gpfs_projects/UNITE/tutorial/mf 

 module load UNITE 

 module load periscope 

 

Actually only required in job script, but nice for testing. 
 



Hands-on Exercise (2) 

Copy the benchmark and periscope config file 
 cd ~ 

 cp -r ~nct00001/gpfs_projects/thursday_material/cfs . 

 mv cfs/.periscope ~ 

 cd cfs 

 unzip CFS_Demo.zip 



Hands-on Exercise (3) 

Check your home: 
 ls -a ~ 

.  ..  cfs  .periscope 

 

Check your bin: 
 cd NPB3.3-MZ-MPI/bin 

 ls 
config.cfg  job.lsf 



Hands-on Exercise (4) 

Command line for compiler flag selection: 
 psc_frontend --apprun=./bt-mz.W.4 --uninstrumented --

mpinumprocs=4 --tune=compilerflags 

 

• Hint: No need to make first 

 

Use the job script and follow the output file: 
 bsub < job.lsf 

tail -F cfs.out 

 

 



Hands-on Exercise (5) 

In the meantime, let’s see how CFS is configured… 
 vim config.cfg 

makefile_path="../"; 
makefile_flags_var="FFLAGS"; 
makefile_args="BT-MZ CLASS=W"; 
application_src_path="../BT-MZ"; 
make_selective="false"; 
 
search_algorithm="exhaustive"; 
 
tp "OPT" = "-" ["O2", "O3", "O4"]; 
tp "XHOST" = "-" ["xhost", " "]; 

 

(In the afternoon, you can add your own flags here) 



Hands-on Exercise (6) 

See cfs_results.txt 

 cat cfs_results.txt 
Optimum Scenario: 3 
 
Compiler Flags tested: 
Scenario 0 flags: " -O2  -xhost " 
Scenario 1 flags: " -O2  -  " 
Scenario 2 flags: " -O3  -xhost " 
Scenario 3 flags: " -O3  -  " 
Scenario 4 flags: " -O4  -xhost " 
Scenario 5 flags: " -O4  -  " 
[…] 

 

Tip: Runtime varies more widely with bigger problem 

classes 



Hands-on Exercise (7) 

• Now try with bigger problem class & individual search 

• CFS config 

 Modify build instructions (e.g. class A) 

 Configure "individual" search 

• Job script 

 Change executable name 

 

 Run & verify which combinations (scenarios) have been 

left out 



Hands-on Exercise (8) 

• Now try selective make 

• Only re-compile perforance-relevant files 

• Useful for applications with long build times 

 

 Config file: 
 make_selective="true"; 

selective_file_list="x_solve.f y_solve.f z_solve.f"; 

 Check output to verify which files are rebuilt 

 How much time is saved by that? 

 

 



BASIC WORKFLOW 

Bonus track: Pathway 



Bonus track 

• We develop a tool that automates performance 

engineering workflows 

– ... like the workflow you just performed 

– Comes with graphical workflow editor 

– Makes new performance tools more accessible 

 

• Live demo of Pathway 


