Virtual Institute — High Productivity Supercomputing

MPI Runtime Error Detection with MUST

For the 13th VI-HPS Tuning Workshop

Joachim Protze and Felix Munchhalfen
IT Center RWTH Aachen University
February 2014

(=) — TECHNISCHE uNiversiTE DE SR
G R h School TECHNISCHE e
e e’ RWNTH:== (ONCHEN o Bl o e L e

SSSSS ~QUENTIN-EN-YVELINES

" FR1% M Lawrence Livermore TECHNISCHE e nus NIVERSITYor
<) JULICH L Natonar Lavoratory UNIVERSITAT TENNESSEE br

« MPI Usage Errors

* Error Classes

« Avoiding Errors

« Correctness Tools

* Runtime Error Detection
« MUST

 Hands On

Motivation

* MPI programming Is error prone

» Portability errors
(just on some systems, just for some runs)

« Bugs may manifest as:

— Crash

— Application hanging Error more

— Flnl.SheS obvious
« Questions:

— Why crash/hang?

— Is my result correct?
— Will my code also give correct results on another system?

« Tools help to pin-point these bugs

Common MPI Error Classes _/J—'JI—J_PS}

-

\
>

« Common syntactic errors: h
— Incorrect arguments Tool to use:
— Resource usage MUST,
— Lost/Dropped Requests gy atjc analysis tool,
— Buffer usage
— Type-matching (DEbugger)
— Deadlocks)
« Semantic errors that are correct in terms of MPI A
standard, but do not match the programmers
Intent:
— Displacement/Size/Count errors Tool to use:
Debugger)

MPI Usage Errors (2)

« Complications in MPI usage:
— Non-blocking communication
— Persistent communication
— Complex collectives (e.g. Alltoallw)
— Derived datatypes
— Non-contiguous buffers

« Error Classes include:
— Incorrect arguments
— Resource errors
— Buffer usage
— Type matching
— Deadlocks

« MPI Usage Errors
 Error Classes

« Avoiding Errors

« Correctness Tools

* Runtime Error Detection
« MUST

 Hands On

Error Classes — Incorrect Arguments

« Complications
— Calls with many arguments
— In Fortran many arguments are of type INTEGER
— Several restrictions for arguments of some calls
= Compilers can’t detect all incorrect arguments

« Example:

MPI_Send(
buf,
count,
MPI_INTEGER,
target,
tag,
MPI_COMM_WORLD);

Error Classes — Resource Usage

« Complications
— Many types of resources
— Leaks
— MPI internal limits

« Example:

MPI_Comm_dup (MPI_COMM_WORLD, &newComm);
MPI_Finalize ();

Error Classes — Buffer Usage

« Complications

— Memory regions passed to MPI must not overlap
(except send-send)

— Derived datatypes can span non-contiguous regions
— Collectives can both send and receive

« Example:

MPI_lIsend (&(buf[0]), 5 /*count*/, MPI_INT, ...);
MPI_lIrecv (&(buf[4]), 5 /*count*/, MPI_INT, ...);

Error Classes — Type Matching

« Complications
— Complex derived types
— Types match if the signature matches, not their constructors
— Partial receives

« Example 1:
Task O Task 1

MPI_Send (buf, 1, MPI_INT); MPI_Recv (buf, 1, MPI_INT);

— Matches => Equal types match

Error Classes — Type Matching (2)

« Example 2:
— Consider type T1 = {MPI_INT, MPI_INT}
Task O Task 1

MPI_Send (buf, 1, T1); MPI_Recv (buf, 2, MPI_INT);

— Matches => type signatures are equal

« Example 3:
— T1={MPL_INT, MPI_FLOAT}
— T2 ={MPL_INT, MPI_INT}
Task O Task 1

MPI1_Send (buf, 1, T1); MPI1_Recv (buf, 1, T2);

— Missmatch => MPI_INT != MPI_FLOAT

Error Classes — Type Matching (3)

« Example 4:
— T1={MPL_INT, MPI_FLOAT}
— T2 ={MPL_INT, MPI_FLOAT, MPI_INT}

Task O Task 1
MPI_Send (buf, 1, T1); MPI_Recv (buf, 1, T2);

— Matches => MPI allows partial receives

« Example 4:
— T1 ={MPIL_INT, MPI_FLOAT}
— T2 ={MPIL_INT, MPI_FLOAT, MPI_INT}
Task O Task 1
MPI_Send (buf, 2, T1); MPI_Recv (buf, 1, T2);
— Missmatch => Partial send is not allowed

Error Classes — Deadlocks

« Complications:
— Non-blocking communication
— Complex completions (Wait{all, any, some})
— Non-determinism (e.g. MP1_ANY_SOURCE)
— Choices for MPI implementation (e.g. buffered MP1_Send)
— Deadlocks may be causes by non-trivial dependencies

« Example 1:

Task O Task 1
MPI_Recv (from:1); MPI_Recv (from:0);

— Deadlock: 0 waits for 1, which waits for O

Error Classes — Deadlocks (2)

 How to visualise/understand deadlocks?

— Common approach waiting-for graphs (WFGS)

— One node for each rank

— Rank X waits for rank Y => node X has an arc to node Y
« Consider situation from Example 1.:

Task O Task 1
MPI_Recv (from:1); MPI_Recv (from:0);

* Visualization:

0: MPI_Recv _1:MPLRecv >

« Deadlock criterion: cycle (For simple cases)

Error Classes — Deadlocks (3)

What about collectives?
— Rank calling coll. operation waits for all tasks to issue a matching call
= One arc to each task that did not call a matching call
— One node potentially has multiple outgoing arcs
— Multiple arcs means: waits for all of the nodes

Example 2:
Task O Task 1 Task 2

MPI_Bcast (WORLD); || MPI_Bcast (WORLD); || MPI_Gather (WORLD);

Visualization:

0: MPI_Bcast

1: MP|_Bcast 2: MP1_Gather

Deadlock criterion: cycle (Also here)

Error Classes — Deadlocks (4)

« What about freedom in semantic?

— Collectives may not be synchronizing

— Standard mode send may (or may not) be buffered
« Example 3:

Task O Task 1
MPI_Send (to:1); MPI_Send (to:0);

* This is a deadlock!
— These are called “potential” deadlocks
— Can manifest for some implementations and/or message sizes

* Visualization:

0: MPI_Send _1:MPI_Send >

Error Classes — Deadlocks (5)

« What about timely interleaving?
— Non-deterministic applications

— Interleaving determines what calls match or are issued
— Causes bugs that only occur “sometimes”

« Example 3:

Task O Task 1 Task 2
MPI_Recv(from:ANY);
MPI_Send(to:1) MPI_Recv(from:2) MPI_Send(to:1)
MPI1_Barrier() MPI1_Barrier() MPI1_Barrier()
« What happens:
— CaseA: — Case B:
+ Recv (from:ANY) matches « Recv (from:ANY) matches
send from task O send from task 2

+ All calls complete + Deadlock

Error Classes — Deadlocks (6)

« What about “any” and “some”?

— MPI_Waitany/Waitsome and wild-card (MPI_ANY_SOURCE)
receives have special semantics

— These walit for at least one out of a set or ranks
— This is different from the “waits for all” semantic

« Example 4:

Task O Task 1 Task 2
MPI_Recv(from:1) MPI_Recv(from:ANY); || MPI_Recv(from:1)

« What happens:
— No call can progress, Deadlock
— O waits for 1; 1 waits for either O or 1; 2 waits for 1

Error Classes — Deadlocks (7)

« How to visualize the "any/some” semantic?
— There is the “Waits for all of” wait type => “AND” semantic
— There is the “Waits for any of” wait type => “OR” semantic
— Each type gets one type of arcs
— AND: solid arcs
— OR: Dashed arcs

 Visualization for Example 4:

Task O Task 1 Task 2
MPI_Recv(from:1) MPI_Recv(from:ANY); || MPI_Recv(from:1)

0: MPI_Recv C_1:MPILRecv_ > 2:MPI_Recv >

Error Classes — Deadlocks (8)

« Deadlock criterion for AND + OR
— Cycles are necessary but not sufficient
— A weakened form of a knot (OR-Knot) is the actual criterion
— Tools can detect it and visualize the core of the deadlock

« Some examples:
— An OR-Knot (which is also a knot, Deadlock):

Error Classes — Semantic Errors

« Description:

— Erroneous sizes, counts, or displacements
« Example: During datatype construction or communication
» Often “off-by-one” errors

« Example (C):

~

{Stride must be 10 for a column

W

/* Create datatype to sen of 10x10 array */

MBI Type vector (
IR0 ,

#blocks */

/* #elements per block */
/* #stride */

MPI INT, /* old type */

snewType /* new type */);

« MPI Usage Errors

* Error Classes

« Avoiding Errors

« Correctness Tools

* Runtime Error Detection
« MUST

 Hands On

Avoiding Errors

* The bugs you don’t introduce are the best one:
— Think, don’t hack
— Comment your code
— Confirm consistency with asserts
— Consider a verbose mode of your application
— Use unit testing, or at least provide test cases
— Set up nightly builds
— MPI Testing Tool:
— http://www.open-mpi.org/projects/mtt/
— Ctest & Dashboards:
— http://www.vtk.org/Wiki/CMake _Testing_With_CTest

http://www.open-mpi.org/projects/mtt/
http://www.open-mpi.org/projects/mtt/
http://www.open-mpi.org/projects/mtt/
http://www.vtk.org/Wiki/CMake_Testing_With_CTest

« MPI Usage Errors

* Error Classes

« Avoiding Errors
 Correctness Tools

* Runtime Error Detection
« MUST

 Hands On

Tool Overview — Approaches Techniques

* Debuggers:

— Helpful to pinpoint any error
— Finding the root cause may be hard

— Won't detect sleeping errors

— E.g.: gdb, TotalView, Allinea DDT

« Static Analysis:

— Compilers and Source analyzers
— Typically: type and expression errors

— E.g.: MPI-Check

_1’

&status);

“-1" instead of “MPI_ANY_SOURCE"

~N

MPI_Recv (buf, 5, MPI_INT,

123, MPI_COMM_WORLD,

_/

* Model checking:

— Requires a model of your applications

— State explosion possible
— E.g.: MPI-Spin

if (rank == 1023)
crash ();

Only works with less than 1024 tasks

Tool Overview — Approaches Techniques (2)

Runtime error detection:
— Inspect MPI calls at runtime

— Limited to the timely interleaving that is observed
— Causes overhead during application run
— E.g.: Intel Trace Analyzer, Umpire, Marmot, MUST

Task 0

Task 1

g

\

|\

g

MPI_Send(to:1, type=MPI_INT)
N\

\

MPI_Recv(from:0, type=MPI_FLOAT)

N

)¢

J

Type mismatch

Tool Overview — Approaches Techniques (3)

« Formal verification:
— Extension of runtime error detection
— Explores all relevant interleavings (explore around nondet.)
— Detects errors that only manifest in some runs
— Possibly many interleavings to explore

- E.Q.. ISP
Task O Task 1 Task 2
- ——7 Y S
spend_some_time() MPI_Recv (from:ANY)
MPI_Send (to:1) MPI_Recv (from:0) MPI_Send (to:1)
L MPI_Barrier () MPI_Barrier ())\I\/IPI_Barrier ())
4___;&‘

[Deadlock if MPI_Send(to:1)@0 matches MPI_Recv(from:ANY)@1]

Approaches to Remove Bugs (Selection)

Repartitioning?
Representative input?

Our contribution: Grid? Reproducibility?
EMUST [T

TOTALVIEW

EEEEEEEEEEEE

Runtime Checking

Debuggers
Q/’D Umpire ISP/ ' '
g ARMOT DAMPI

Static Code Analysis

TASS pCFG’s Barrier Analysis

Node Memory?

\DDT

Model Checking

« MPI Usage Errors

* Error Classes

« Avoiding Errors

« Correctness Tools
 Runtime Error Detection
« MUST

 Hands On

Runtime Error Detection

« A MPI wrapper library intercepts all MPI calls

Application

calls MPI_X{...)
Correctness Tool

calls PMPI_X{...)

« Checks analyse the intercepted calls
— Local checks require data from just one task
— E.g.: invalid arguments, resource usage errors
— Non-local checks require data from multiple task

— E.g.: type matching, collective verification, deadlock
detection

Runtime Error Detection (2)

 Workflow:

— Attach tool to target application (Link library to application)
— Configure tool

— Enable/disable correctness checks

— Select output type

— Enable potential integrations (e.g. with debugger)
— Run application

— Usually a regular mpirun

— Non-local checks may require extra resources, e.g. extra
tasks

— Analyze correctness report
— May even be available if the application crashs
— Correct bugs and rerun for verification

« MPI Usage Errors

* Error Classes

« Avoiding Errors

« Correctness Tools

* Runtime Error Detection
« MUST

 Hands On

MUST = Overview

e MPI runtime error

DMUST

detection tool

* Open source (BSD license)
http://tu-dresden.de/zin/must

« Wide range of checks, strength areas:
— Overlaps in communication buffers
— Errors with derived datatypes

— Deadlocks

« Largely distributed, can scale with the application

MUST — Correctness Reports

« C code:

MPI Type contiguous (2, MPI_INTEGER, &newtype);
MPI Send (buf, count, newtype, target, tag,

MPI_COMM_WORL?ii_J\\\\\\

| Use of uncommitted type

e Tool Output:

MUST Outputf*
Who? T{ What? 14:11 2014. Where? Details }

Argument 3 (datatype) is not commited for transfer, RmI?W ifiw?i apmoess' “.

call MPI_Type_commit before using the type for | 209 '

:)
. tanafee: (1st reference 1 rank O:
0 |Error] (Information on datatypeDatatype created at reference occurrence) |MPI_Type_contiguous)

1 is for Fortran, based on the following type(s): { called from: |(1st o-_c:curreﬂce] called
MPI_INTEGER }Typemap = {(MPI_INTEGER, 0), 40 P -
(MPI_INTEGER, 4)}) main@test.c:17#0 main@test.c:14 v

MUST — Basic Usage

* Apply MUST with an mpiexec wrapper, that's it:

o\®

$ mpicc source.c -0 exe mpicc —g source.c -0 exe
% mpiexec -np 4 ./exe $ mustrun -np 4 ./exe

« After run: inspect “MUST _Output.ntml”

* “mustrun” (default config.) uses an extra process:
— l.e.: "mustrun —np 4 ...” will use 5 processes
— Allocate the extra resource in batch jobs!

— Default configuration tolerates application crash; BUT is very
slow (detalls later)

MUST — With your Code

MUST Output, starting date: Wed Feb 5 09:16:34 2014.

MUST detected no MPI usage errors nor any
suspicious behavior during this application run.

MUST has completed successfully, end date: Wed Feb 5 09:16:34 2014.

« Congratulations you appear to use MPI correctly!

« Consider:
— Different process counts or inputs can still yield errors
— Errors may only be visible on some machines
— Integrate MUST into your regular testing

Errors with MPI Datatypes — Overview

« Derived datatypes use constructors, example:

’ iﬂ, /IVI Pl_Type_vector (\
| NumRows /*count*/,
U N L /*blocklength*/,

NumColumns /*stride*/,
2D Field MPI_INT /*oldtype*/,
(of integers) k&newType); /

« Errors that involve datatypes can be complex:
— Need to be detected correctly
— Need to be visualized

Errors with MPI Datatypes — Example

e C Code:

tag, MPI COMNMT

columntype, Yarget,

MPI Recv (buf@:unt*/
tag, MPI COMM —

MPI Wait (&request, &s

. xstatus) ;

4

« Memory:

~

(

-

Error: buffer overlap

MPI_Isend reads, MPI_Recv
writes at the same time

A Tool must;

- Detect the error
- Pinpoint the user to the

\I 2D Field

(of integers)

ecact problem

Errors with MPI Datatypes — Error Positions

 How to point to an error in a derived datatype?
— Derived types can span wide areas of memory
— Understanding errors requires precise knowledge

— E.g., not sufficient: Type X overlaps with tyne Y

Contiguous datatype to span a
« Example: oWl YPETOSP

« We use path expressions to
point to error positions \

— For the example, overlap at:
* | [O[(VECTOR)[2][0](MPI_INT) =
. [§](CONTIG

Index within block 2D Field

(of integers)

Vector datatype to span a

Block index column

\ V 4 z
Error: buffer overlap

Count in communication call

MUST Usage Example - Source code

« Example “vinpsl13 2014.c”:

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)

(17)

(18)
(19)

MPI_Init (&argc,&argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);

//1) Create a datatype
MPI_Type_contiguous (2, MPL_INT, &newType);
MPI_Type_commit (&newType);

//2) Use MPI_Sendrecv to perform a ring communication
MPI_Sendrecv (
sBuf, 1, newType, (rank+1)%size, 123,
rBuf, sizeof(int)*2, MPI_BYTE, (rank-1+size) % size, 123,
MPI_COMM_WORLD, &status);

//3) Use MPI_Send and MPI_Recv to perform a ring communication
MPI_Send (sBuf, 1, newType, (rank+1)%size, 456,
MPI_COMM_WORLD);
MPI_Recv (rBuf, sizeof(int)*2, MPI_BYTE, (rank-1+size) % size, 456,
MPI_COMM_WORLD, &status);

MPI_Finalize ();

MUST Usage Example - Execution

« Runs without any apparent issue with OpenMPI
« Are there any errors?

« Verify with MUST:

% mpicc -g vihpsl3 2014.c \

-0 vihps13 2014.exe
% mustrun -np 4 vihpsl3 2014.exe
% firefox MUST Output.html

MUST Usage Example — Error 1: Buffer Overlap

« First error: Overlap in Isend + Recv

Who? What? Where? Details
. o™ S T S

[Error

The memory regions to be transfered by this receive operation overlap with regions
spanned by a pending non-blocking operation!

(Information on the request associated with the other communication:
Request activated at reference 1)

(Information on the datatype associated with the other communication:
Datatype created at reference 2 is for C, commited at reference 3, based on the
following type(s): { MPI_INT}Typemap = {(MPL_INT, 0), (MPI_INT, 20),
(MPI_INT, 40), (MPI_INT, 60), (MPL_INT, 80)})

The other communication overlaps with this communication at position:(vector)[2]

[0JMPL_INT)

(Information on the datatype associated with this communication:
Datatype created at reference 4 is for C, commited at reference 3, based on the
following type(s): { MPL_INT} Typemap = {{(MPL_INT, 0), (MPL_INT, 4),
(MPI_INT, 8), (MPI_INT, 12), (MPI_INT, 16)})

This communication overlaps with the other communication at position:(contiguous)
[OIMPL_INT)

A graphical representation of this sitnation is available in a detailed overlap view
(MUST Output-files/MUST Overlap 0 0.html).

Representative location:
MPI_Recv (1st occurrence) called from:
#0
main@mpi_overlap_deadlock_errors.c:23

[References of a representative process:

reference 1 rank O: MPI_Isend (1st
loccurrence) called from:

0
main@mpi_overlap_deadlock_errors.c:22|

reference 2 rank O: MPI_Type_vector
(1st occurrence) called from:

0
main@mpi_overlap_deadlock_errors.c:17

reference 3 rank 0: MPI_Type_commit
(2nd occurrence) called from:

0
main@mpi_overlap_deadlock_errors.c:19|

reference 4 rank 0:
IMPI_Type_contiguous (1st occurrence)
called from:

0
main@mpi_overlap_deadlock_errors.c:16|

reference 5 rank 0: MPI_Type_commit
(1st occurrence) called from:

0
main@mpi_overlap_deadlock_errors.c:18

MUST Usage Example — Error 1: Buffer Overlap

« First error: Overlap in Isend + Recv

These refer to
the “References”
(Details) column

The memory regions to be transfered by this receive operation overlap with regions spanned

by a pending non-blocking operation!

(In

Datatyp
follow

The other
Iy

Datatyp
follow

[This comn

A graphi

type(s): { MPL _ NT}T}'pemap {(‘v[PI INT, 0). {MPI =05, (MPI_INT, 40), (MPL_INT,

60), (MPI_INT, 80}})
The other communication overlaps with this communication at position:(VECTOR)[2][0]
(MPI_INT)

{Information op the datatj,fpe associated with this communication:

Datatype created ‘ or C, commited @: ed on the following

type(s): { MPL INT FIYpewry™= {(MPI_INT. 0). (MPI TT===TRIPI_INT. 8). (MPI_INT.
12). (MPI_INT, 16)})

This communication overlaps with the other communication at position:{CONTIGUOUS)

[0](MPL_INT)

A graphical representation of this situation is available in a detailed overlap view
(MUST Overlap html)

teferences
leferences of a representative process:

sference 1 rank 0: MPI_Isend (1st
ccurrence) called from:

0
1ain@mpi_overlap_deadlock_errors.c:22

sference 2 rank 0: MPI_Type_vector
1st occurrence) called from:

0
1ain@mpi_overlap_deadlock_errors.c:17

sference 3 rank 0: MPI_Type_commit
2nd occurrence) called from:

0
nain@mpi_overlap_deadlock_errors.c:19)

sference 4 rank 0:
API_Type_contiguous (1st occurrence)
alled from:

0
nain@mpi_overlap_deadlock_errors.c:16

sference 5 rank O: MPI_Type_commit

Lst occurrence) called from:

0
main@mpi_overlap_deadlock_errors.c:18

MUST Usage Example — Error 1: Buffer Overlap

* Visualization of overlap (MUST _Overlap.html):

The application issued a set of MPI calls that overlap in communication buffers! The graph below shows details on this situation. The first colliding item of each involved

communication request is highlighted.

MPI_Isend:send(buf= 0x7fff33719fe4)

'

MPI_Type_ vector(count=5) MPI_Recv:recv(buf= +0x28)

o /

(blocklength=1) | MPI_Type_contiguous(count=5)

[0] ﬁ]

MPI_INT

MUST Usage Example — Warning

« Warning for unusual values, that match MPI
specification:

Representative location:
0-1 Warning Argument 2 (count) is zero, which is correct but unusual! MPI_Send (1st occurrence) called from:
#0 main@mpi_overlap_deadlock_errors.c:26

MUST Usage Example — Error 2 Deadlock

« Second Error: potential Deadlock

Message

[Error]

The application issued a set of MPI calls that can cause a deadlock!
A graphical representation of this situation is available in a detailed
deadlock view (MUST Output-filesMUST Deadlock .html).
References 1-2 list the involved calls (limited to the first 5 calls,
further calls may be involved). The application still runs, if the
deadlock manifested (e.g. caused a hang on this MPI
implementation) you can attach to the involved ranks with a
debugger or abort the application (if necessary).

eferences of a representative process:

ference 1 rank 0: MPI_Send (1st
nce) called from:

in@mpi_overlap_deadlock_errors.c:26)

ference 2 rank 1: MPI_Send (1st
nce) called from:

in@mpi_overlap_deadlock_errors.c:26)

MUST Usage Example — Error 2 Deadlock

« Visualization of deadlock (MUST _Deadlock.html)

The application issued a set of MPI calls that can cause a deadlock! The graphs below show details on this situation. This includes a wait-for graph that shows active wait-for
dependencies between the processes that cause the deadlock. Note that this process set only includes processes that cause the deadlock and no further processes. A legend details the
wait-for graph components in addition , while a parallel call stack view summarizes the locations of the MPI calls that cause the deadlock . Below these graphs, a message queue
graph shows active and unmatched point-to-point communications. This graph only includes operations that could have been intended to match a point-to-point operation that is
relevant to the deadlock situation. Finally, a parallel call stack shows the locations of any operation in the parallel call stack. The leafs of this call stack graph show the components of
the message queue graph that they span. The application still runs, if the deadlock manifested (e.g. caused a hang on this MPI implementation) you can attach to the involved ranks
with a debugger or abort the application (if necessary).

T COMM_WORLD,
b Legend

0: MPI_Send Active MPI Call

comm=A, tag=345comm=A, tag=345

1: MP1_Send Sub Operation

Call Stack
A A waits for B and CI- B
main@mpi_overlap_deadlock errors.c:26 C
Ranks: 0-1

A waits for B or C
MPI_Send A fmo oo » B

MUST Usage Example — Error 3 Type Leak

« Third error: Leaked resource (derived datatype)

[Rank(s)]Type]

Message

0-1 [Error

There are 2 datatypes that are not freed when MPI_Finalize was issued, a quality
application should free all MPI resources before calling MPI_Finalize. Listing
information for these datatypes:

-Datatype 1: Datatype created at reference 1 is for C, commited at reference 2, based
on the following type(s): { MPL_ INT} Typemap = {(MFI_INT, 0), (MPL INT, 4),
(MPI_INT, 8), (MPI_INT, 12), (MPL_INT, 16)}

-Datatype 2: Datatype created at reference 3 is for C, commited at reference 4, based
on the following type(s): { MPL_INT } Typemap = {(MPI_INT, 0), (MPFL_INT, 20),
(MPL_INT, 40), (MPL_INT, 60), (MPL INT, 80)}

Representative location:
MPI_Type_contiguous (1st occurrence)
called from:
#0

main@mpi overlap_deadlock errors.c:16jreference 3 rank 0: MPI_Type_vector

References of a representative process:

reference 1 rank 0:
IMPI_Type_contiguous (1st occurrence)
called from:

0
main@mpi_overlap_deadlock_errors.c:16

reference 2 rank 0: MPI_Type_commit
(1st occurrence) called from:

0
main@mpi_overlap_deadlock_errors.c:18

(1st occurrence) called from:
0
main@mpi_overlap_deadlock_errors.c:17

reference 4 rank 0: MPI_Type_commit
(2nd occurrence) called from:

0

main@mpi overlap_deadlock_errors.c:19

4

MUST Usage Example — Error 4 Missing Completion f

* Fourth error: Leaked resource (request)
— Leaked requests often indicate missing synchronization by

MPI_Wait/Test

There are 1 requests that are not freed when MPI_Finalize was issued, a quality
application should free all MPI resources before calling MPI_Finalize. Listing
0-1 |Error information for these requests:

-Request 1: Request activated at reference 1

Representative location:
IMPI_Isend (1st occurrence) called from:
#0
main@mpi_overlap_deadlock_errors.c:22]

[References of a representative process:

reference 1 rank O0: MPI_Isend (1st
loccurrence) called from:

0
main@mpi_overlap_deadlock_errors.c:22|

MUST Usage Example — Summary

« Example “mpi_overlap_deadlock errors.c” :

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

(10)
(11)
(12)
(13)
(14)

(15)
(16)
(17)
(18)
(19)
(20)

MPI_Init (&argc,&argv); e
KAOFr,TmC‘ MPI—CO&AM—WORED’ K): Buffer overlap, first MPI_INT of
—~omm_ran (comm, ran) the MPI_Recv overlaps with first
MPI_Comm_size (comm, &size); MEHNT .(? third block of
_lIsen

//1) Create some datatypes

MPI_Type contiguous (5, MPIL_INT, &r
MPI_Type _commit (&rowType);
MPI_Type vector (5 /*count*/, 1 /*blo
&colType);
MPI_Type commit (&colType);

, 5 [*stride*/, MPI_INT,

//2) Use MPI_1Send and
MPI_Isend (&arr[0], 1
MPI_Recv (&arr[10

&status);

~Recv to perform a ring communication
ype, (rank+1)%size, 456, comm, &request);
, rowType, (rank-1+size) % size, 456, comm,

/1/13) Use MPI_Send and MPI_Recv to acknowledge recv
MPI_Send (arr, 0, MPI_INT, (rank-1+size) % size, 345, comm);
MPI_Recv (arr, 0, MPI_INT, (rank+1)%size, 345, comm, &status);

MPI_Finalize ();

MUST Usage Example — Summary

 Example “mpi_overlap_deadlock errors.c”

(1) MPI_Init (&argc,&argv);

(2) comm = MPI_COMM_WORLD;

(3) MPI_Comm_rank (comm, &rank);
(4) MPI_Comm_size (comm, &size);
k

(11)
(12)
(13)
(14)

(15)
(16)
(17)
(18)
(19)
(20)

User forgets to call an MPI_Wait
for the MPI request

}TU’_NTPI_I_YIJE_L,UIIIIIIIL (

MPI_INT, &rowType);

pe);
blocklength/, 5 /*stride*/, MPI1_INT,

1/2) Use MPI_1Send and MPI_Recv to perform a ring nication

MPI_Isend (&arr[0], 1, colType, (rank+1)%size, 456, comm, &request);

MPI_Recv (&arr[10], 1 rowType, (rank- 1+S|ze)%S|ze 456, comm,
&status);

/1/13) Use MPI_Send and MPI_Recv to acknowledge recv
MPI_Send (arr, 0, MPI_INT, (rank-1+size) % size, 345, comm);
MPI_Recv (arr, 0, MPI_INT, (rank+1)%size, 345, comm, &status);

MPI_Finalize ();

MUST Usage Example — Summary

 Example “mpi_overlap_deadlock errors.c”

(1) MPI_Init (&argc,&argv);

(2) comm = MPI_COMM_WORLD;

(3) MPI_Comm_rank (comm, &rank);

(4) MPI_Comm_size (comm, &size);

(5)

(6) //1) Create some datatypes

(7) MPI_Type contiguous (5, MPIL_INT, &rowType);

(8) MPI_Type _commit (&rowType);

(9) MPI_Type vector (5 /*count*/, 1 /*blocklength*/, 5 /*stride*/, MPI_INT,

&colType);
(10) MPI_Type _commit (&colType); ~
(11)
(12) //12) Use MPI_ISend and MPI_Recv to pe e
(13) MPI _Isend (&arr[0], 1, colType, (rank+1 ?ﬁgﬂgg&g count are 0, is this
(14) MPI_Recv (&arr[10], 1 rowType,
&status); y

(15)
(16) //13) Use MPI_Send an ecv to acknowledge recv

(17) MPI_Send (arr, O; |_INT, (rank-1+size) % size, 345, comm);
(18) MPI_Recv (arr, 0, MPI_INT, (rank+1)%size, 345, comm, &status);
(19)

(20) MPI_Finalize ();

MUST Usage Example — Summary

« Example “mpi_overlap_deadlock errors.c” :

(1) MPI_Init (&argc,&argv);

(2) comm = MPI_COMM_WORLD;

(3) MPI_Comm_rank (comm, &rank);
(4) MPI_Comm_size (comm, &size);

(6) //1) Create some datatypes

(7) MPI_Type contiguous (5, MPIL_INT, &rowType);

(8) MPI_Type _commit (&rowType);

(9) MPI_Type vector (5 /*count*/, 1 /*blocklength*/, 5 /*stride*/, MPI_INT,
&colType);

(1(}_M.Blim.mm.m.i.t_L&caIL4Qe);
(1 _ o
(Y potential for deadlock, MPI_Send IRecv to perform a ring communication

(4 can block (depends on MPI De, (rank+1)%size, 456, comm, &request);
(1 implementation and buffer size) [ype, (rank-1+size) % size, 456, comm,

(16) // Pl_Send and MPI_Recv to acknowledge recv

(17) MPI_Send (arr, 0, MPI_INT, (rank-1+size) % size, 345, comm);
(18) MPI_Recv (arr, 0, MPI_INT, (rank+1)%size, 345, comm, &status);
(19)

(20) MPI_Finalize ();

MUST Usage Example — Summary

 Example “mpi_overlap_deadlock errors.c”

(1) MPI_Init (&argc,&argv);

(2) comm = MPI_COMM_WORLD;

(3) MPI_Comm_rank (comm, &rank);

(4) MPI_Comm_size (comm, &size);

(5)

(6) //1) Create some datatypes

(7) MPI_Type contiguous (5, MPIL_INT, &rowType);

(8) MPI_Type _commit (&rowType);

(9) MPI_Type_vector (5 /*count*/, 1 /*blocklength*/, 5 /*stride*/, MPI_INT,

&colType);

(10) MPI_Type _commit (&colType);

(11)

(12) //12) Use MPI_ISend and MPI_Recv to perform a ring communication

(13) MPI_Isend (&arr[0], 1, colType, (rank+1)%size, 456, comm, &request);

(14) MPI_Recv (&arr[10], 1 rowType, (rank-1+size) % size, 456, comm,
&status); ~N

(15)
(16) //3) Use MPI_Send and MPI_R
(17) MPI_Send (arr, 0, MPI_INT, (
(18) MPI_Recv (arr, 0, MPIL_|
(19)

(20) MPI_Finalize ();

User forgot to free MPI Datatypes
before calling MPI_Finalize):

G)

« MPI Usage Errors

* Error Classes

« Avoiding Errors

« Correctness Tools

* Runtime Error Detection
« MUST

« Hands On

Hands On — Build for MUST

« Go into the NPB directory

« Edit config/make.def

« Disable any other tool (i.e. use mpif77)
* Build:

% make bt-mz NPROCS=4 CLASS=B

= NAS PARALLEL BENCHMARKS 3.3 =
= MPI+OpenMP Multi-Zone Versions =
= F77 =

cd BT-MZ; make CLASS=B NPROCS=4
make[1]: Entering directory

mpi77 -O3 -g -openmp -0 ../bin/bt-mz.B.4 bt.o initialize.o ...
make[1]: Leaving directory

Hands On - Prepare Job

« Go to bin directory

% cd bin

« Create and edit the jobscript

cp ../jobscript/marenostrum/run.must.Isf ./
vim run.must.|Isf

 Jobscript:

#BSUB -n 16

#BSUB -R “span[ptile=
MUST needs one extra process!
export OMP_NUM_THREADS=3
module load UNITE must
module list

1 tool process

~

We use 4 processes * 3 threads +

/

mustrun -np 4 ./bt-mz_B.4

Hands On — Executing with MUST

e Submit the jobscript:

bsub < run.must.Isf

« Job output should read:

[MUST] MUST configuration ... centralized checks with fall-back application crash handling
(very slow)

[MUST] Information: overwritting old intermediate data in directory “(...)/must_temp"!
[MUST] Weaver ... success

[MUST] Code generation ... success

[MUST] Generating P*"nMPI configuration ... success

[MUST] Search for preloaded PAnMPI ... not found ... success

[MUST] Executing application:

NAS Parallel Benchmarks (NPB3.3-MZ-MPI) - BT-MZ MPI+OpenMP Benchmark

Total number of threads: 16 (3.0 threads/process)
Calculated speedup = 11.97

Timestep 1
Verification Successful

tMUST] Execution finished, inspect “(...)/MUST_Output.htm|™

BT — MUST Results

* Open the MUST output: <Browser> MUST_ Output.html

4 OpenMPI-1.5 has by default no A
thread support. BT-MZ should

Rank(s) Message _
evaluate the “provided” thread level
You requested 3 threads by OMP NUM)
requested thread level MPI THREA and don't use threads. J
0-3 |Warning| the mpi library but thr libra ovides no thread occurrence) called
support.This is ok as long as your application doesn't make| from:
use of OpenMP #0 MAIN @bt.f:90
#1 main@bt.f:319
There are 1 communicators that are not freed when Representative Ef fg;gg;f:u%fea —
MPI Finalize was issued, a quality application should free location: P p '
all MPI resources before calling MPI Finalize. Listing [MPI_Comm_split (1st reference 1 rank 2:
0-3 Error information for these communicators: occurri?rl';cnel]. called MPI_Co split (1st
-Communicator 1: Communjcatw\#ﬂ MAIN__ @bt.£:90 'D#%CEE?;WE;EES g'rom:
size=4 ain@bt.f:319 A nEhLES1D

Resource leak:
A communicator created with
MPI_Comm_split is not free

Stacktraces in MUST

« We use an external lib for stacktraces

« This lib has no support for Intel compiler

— But: in most cases it's compatible to icc
compiled C applications

— You may load the must/intel+stackwalker
module for C applications
 Ifort compiled FORTRAN applications
lead to segfault
— Use the default module for fortran applications

— Use GNU compiler to build your application
and load the must/GNU+stackwalker module

« Supposed your application has no faults
you won’t need stacktraces ©

Representative
location:
MPI_Init_thread (1st
occurrence) called
from:

#0 MAIN (@bt.f:90
#1 main@bt.f:319

Representative
location:

MPI Comm_split (1st
occurrence) called
from:

#0 MAIN (@bt.f:90
#1 main@bt.f:319

MUST detected no MPI usage errors nor any
suspicious behavior during this application run.

Conclusions

« Many types of MPI usage errors
— Some errors may only manifest sometimes
— Consequences of some errors may be “invisible”
— Some errors can only manifest on some systems/MPIs

« Use MPI correctness tools

* Runtime error detection with MUST
— Provides various correctness checks
— Verifies type matching
— Detects deadlocks
— Verifies collectives

Quick Sheet

« MUST iIs a runtime MPI error detection tool
* Usage:

Compile & link as always
Use “mustrun” instead of “mpirun”
Keep in mind to allocate at least 1 extra task in batch jobs
— “--must:info” for details on task usage
Add “--must:nocrash” if your application does not crash
Open “MUST_Output.html” after the run completed/crashed

