PTF CFS Plugin - User’s Guide
- version 1.5 -

Anca Berariu

February 7, 2014

Contents

1 Introduction

2 Quick Start

2.1 Quick installation
2.2 Basic configuration - config.cfg
2.3 Running CFS
2.4 Executionresults o o oL

3 CFS Autotuning Approach

3.1 Tuning parameter L.
3.2 Search strategy o
3.3 Tuning scenario o
3.4 Tuningaction L L o

4 Configuration

4.1 config.cfgfile Lo oo
4.2 Application settings
4.3 Search strategies
4.3.1 Exhaustive search
4.3.2 Individual search
4.4 CFS tuning parameters
4.4.1 7"ON/OFF” compiler flags
4.4.2 Flags with multiple values
4.4.3 Combining flags
4.44 Excluding flags L.
4.4.5 Compiler default configuration
4.5 Improved tuning timeo
4.5.1 Selectivemake oo oL
4.5.2 Instrumented applications

5 How To Use the Tuning Advice

Chapter 1

Introduction

One of the main targets in performance optimization is the minimization of
the execution time of an application. Besides the choice of the implemented
algorithm and the way the program is written, another important factor is
represented by the the compiler. The compiler generates the actual executed
code, the machine code, from the high-level source code.

Nowadays, compilers apply a large number of program transformations to
generate the best code for a given architecture. Such transformations are,
for example: loop interchange, data prefetching, vectorization, or software
pipelining. While the compiler ensures the correctness of the transforma-
tions, it is very difficult to predict the performance impact and also to select
the right sequence of transformations. They rather provide a long list of
compiler flags (and even directives) and expect the programmer to guide
the compiler in the optimization phase by choosing the right flags and com-
binations.

Due to the large number of flags and the required background knowledge in
the compiler transformations and their interaction with the application and
the hardware, it is very difficult for the programmer to select the best flags
and to guide the compiler by inserting directives. It is thus often the case,
that only the standard flags O2 and O3 are used to change the approach of
the compiler optimization.

The CFS Plugin automatically searches for the best combination of compiler
flags to be used when building a particular application. The programmer
only has to provide a list of flags which should be taken into consideration.
Using the Periscope Framework, the execution time of the application com-
piled with different configurations are being measured and tracked. The
combination with best execution time is then being displayed.

Chapter 2

Quick Start

2.1 Quick installation

CFS is being installed along with the Periscope Tuning Framework. Please
refer to the PTF Installation Guide for a complete description of the instal-
lation process.

2.2 Basic configuration - config.cfg

In order to use CFS, a set of configuration instructions are required. These
instructions are read at execution time from the config.cfg configuration

file.

To start with, copy the default configuration file config.cfg.default into
the folder containing the executable of your application and rename it to
config.cfg.

$PSC_ROOT/templates/config.cfg.default —
$APP_ROQOT/.../config.cfg

For example, for the NPB benchmarks', copy the configuration file into the
bin folder:

>cp $PSC_RO0T/templates/config.cfg.default NPB3.3-MZ/bin/config.cfg

Edit config.cfg to reflect the current context of your application. Here is
an example for the NPB BT-MZ benchmark:

!See http://www.nas.nasa.gov/publications/npb.html for downloading and docu-
mentation.

CHAPTER 2. QUICK START 4

// *¥xx*xx*xx* application related settings *xkx¥kx**x
// the path to the Makefile

makefile path="../";

// the variable containing the build flags

makefile flags_var="FFLAGS";

// arguments for the make command
makefile_args="BT-MZ CLASS=W TARGET=BT-MZ";

// path to the source files of the application
application_src_path="../BT-MZ";

[/ REEAA KKK KA Ko KoK Kok KoK o Kok KoK ok KoK oK ok oK oK ok K ok ok ok Kok oK ok oK oK ok

// Fxx*kxxkxx plugin related settings *kkkskkkxskkkkkkx

// the desired search algorithm: ezhaustive or individual
search_algorithm="exhaustive";

// the compiler flags to be considered in the search

tp "Opt" = n_n ["01", IIO2II’ llDSH];

[/ Frsrsrsksk koK sk sk sk sk koo ok ok sk sk ko kokok ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok o ok o k k

2.3 Running CFS

CFS runs as a plugin within the Periscope Tuning Framework. It can be
started using psc_frontend (see also PTF User’s Guide) by setting the
tune flag to compilerflags.

--tune=compilerflags

For the NPB BT-MZ example, one would call from within the folder con-
taining the execution file:

psc_frontend --apprun="./bt-MZ.W" --uninstrumented --mpinumprocs=1
--tune=compilerflags --force-localhost --cfs-config="config.cfg"

This will start the measurements and the CFS tuning strategy for the unin-
strumented version of the BT benchmark using one process.

2.4 Execution results

Upon successful completion of the tuning measurements, the CFS plugin
displays at the standard output the list of all flags combinations (scenarios)

CHAPTER 2. QUICK START)

that were used in the search along with the corresponding execution times
(severity). It also outputs the scenario with the best execution time.

For example, this is the output of the above call to psc_frontend for the
BT-MZ benchmark:

AutoTune Results:

Optimum Scenario: 2

Compiler Flags tested:

Scenario 0 flags: " -01 "
Scenario 1 flags: " -02 "
Scenario 2 flags: " -03 "

All Results:
Scenario | Severity
0 | 3.82434
1| 3.81748
2 | 3.81678

Chapter 3

CFS Autotuning Approach

CFS follows the general PTF plugin approach (see also PTF User’s Guide).

3.1 Tuning parameter

Each entry in the flag list represents a tuning parameter. All tuning param-
eters define together the tuning space.

3.2 Search strategy

In order to find the best tuning of an application, a search through the
tuning space has to be performed. For the CFS plugin, the search strategy
can be selected by the plugin user. CFS provides two search strategies:

e cxhaustive search and
e individual search

See section 4.3 for more details about the search algorithms.

3.3 Tuning scenario

Based on the chosen strategy, consecutive tuning scenarios are then be-
ing generated at run time and the performance of the application is being
evaluated for each of these scenarios.

In the CFS plugin, one scenario represents one combination of compiler flags.

CHAPTER 3. CFS AUTOTUNING APPROACH 7
3.4 Tuning action

Applying one specific scenario to the application represents in the CFS case
recompiling the application using the compiler flags corresponding to that
particular scenario. Thus, the tuning action is the recompilation of the

application.

Chapter 4

Configuration

4.1 config.cfg file

All configuration settings for the CFS plugin are read at execution time from
the configuration file. The default name of the configuration file is

config.cfg

Another configuration file can be specified by setting the cfs-config pa-
rameter when calling the psc_frontend:

psc_frontend --cfs-config="<config file name>"

The configuration file is being searched in the folder from which the psc_frontend
was started. Hence, if the name also includes a relative path to the file, it
has to be relative to that folder.

4.2 Application settings

All path settings within the configuration file are relative to the path from
which psc_frontend was started.

The following settings are mandatory for any application:

e the path to the application Makefile (where make should be issued)
makefile_path="<pathName>";

e the variable used inside the Makefile to store compiler flags
makefile flags_var="<varName>";

e the path to the source files of the application
application_src_path="<pathName>";

CHAPTER 4. CONFIGURATION 9

Additionally, one could use the makefile _args parameter for passing nec-
essary arguments to the make process:

makefile_args="<1list0fArguments>";

4.3 Search strategies

The search algorithm to be used by the CFS plugin can be set using the
search_algorithm parameter:

search_algorithm="<algorithmName>";

The default search algorithm is the exhaustive search.

4.3.1 Exhaustive search

Exhaustive search generates all possible combinations of the given flags (the
cross-product). This means that the size of the search space grows very fast
(exponentially) with the number of flags.

To select exhaustive search, one should add to the configuration file:

search_algorithm="exhaustive";

4.3.2 Individual search

The individual search starts with the scenario containing only the first given
flag and then iteratively adds the next flags, always keeping for the next step
only the k best scenarios from the current step.

To select individual search, one should add to the configuration file:

search_algorithm="individual";
individual keep=<k>;

4.4 CFS tuning parameters

The tuning parameters for the CFS plugin are defined in the config.cfg
file as follows:

tp."<paramName>"_"<prefiz>"_[<valuesList>]
where

e <prefix> is a (not empty) string and

CHAPTER 4. CONFIGURATION 10

e <valuesList> specifies the list of values of the current parameter,
either as a list of strings:

<valuesList> = "waluel","value2",
with valuel, walue2, ... string values

or as a integer range:

<valuesList> = walStart, [step,]lvalEnd
with valStart, step and valEnd integer values.

If step is omitted, the default step value of 1 is being used.
The prefix is prepended to each of the values listed for a tuning parameter.

When building the scenarios, all given values of a tuning parameter are
considered one at a time when combining them with the values of the other
tuning parameters.

For example, having defined:

tp nTpqn" n-Q" [non,u2u,n3 -opt—prefetch"]
tp nwTpon non ["_ip"," u]

will generate the following scenarios:

-00 -ip
-00
-02 -ip
-02

-03 -opt-prefetch -ip
-03 -opt-prefetch

4.4.1 ”ON/OFF” compiler flags

The most simple tuning parameter for the CFS plugin is represented by one
single compiler flag which can either be enabled or disabled. Such are, for
example, the ip, ipo, or opt-prefetch flags.

An "ON/OFF” flag has two states which have to be given as two different
values. For example:

tp "SingleFlagl" non ["—ip"," n]
tp "SingleFlag2" " " ["-opt-prefetch"," "]

CHAPTER 4. CONFIGURATION 11

4.4.2 Flags with multiple values

Some compiler flags also accept the assignment of a particular value. Such
are, for example, the unroll flag which accepts a value for the unroll trans-
formation factor, or the optimization flag 0 which also accepts an optimiza-
tion level.

These kinds of flags can be easily defined as tuning parameters with either
a range of integer values, or a list of string values:

tp "ParameterFlagl" "-unroll=" [1,5]
tp llParameterFlagzll ||_Dll [llOll , ll2ll s ||3ll]

4.4.3 Combining flags

There are cases where several compiler flags are known to give best results if
considered together. In this case one would like to define such a ” combined”
flag.

This can be achieved by simply giving the two or more flags as one single
value of a tuning parameter. For example:

tp "CombinedFlag" "non [n_ip -ipO"," ll]

4.4.4 Excluding flags

For conflicting compiler flags, where it is known that they actually should
exclude each other in any flags combination, one could set them as different
values of the same tuning parameter. For example:

tp "ExcludingFlags" " " ["-03","-no-prefetch"]

4.4.5 Compiler default configuration

The CFS plugin comes along with a series of standard configuration files for
different compilers. These can be used by setting in the first line in the
configuration file, the name of the compiler which is going to be used:

compiler=<comptlerName>
For example, one could set:
compiler=icc
or

compiler=ifort

CHAPTER 4. CONFIGURATION 12

As of the current version, the following compilers are provided with a stan-
dard flags selection file:

’ Compilers: ‘ ifort ‘

The compiler configuration files are located at
$PSC_ROOT/templates/cfs_compilerName.cfg
and contain a list of predefined tuning parameters and configuration options.

For example, the cfs_ifort.cfg has the following content:

tp "TP_IFORT OPT" = "-" ["02", "03", "04"];

tp "TP_IFORT_XHOST" = " " ["-xhost", " "];

tp "TP_IFORT UNROLL" = " " ["-unroll", " "];

tp "TP_IFORT_PREFETCH" = " " ["-opt-prefetch", " "];
tp "TP_IFORT.IP" = " " ["-ip -ipo", " "];

individual_keep=1;
search_algorithm="individual";

The settings defined in the compiler configuration file are loaded at runtime
before those defined in the user configuration file. If the name of a tun-
ing parameter defined in the compiler file is also encountered in the user
configuration file, then a duplicate tuning parameter is being created.

All other settings besides the tuning parameters are being overwritten by
the settings in the user configuration file.

For example, if the following config.cfg file is being used:

compiler=ifort;

makefile path="../";

makefile flags_var="FFLAGS";

makefile args="BT-MZ CLASS=W TARGET=BT-MZ";
application_src_path="../BT-MZ";

search_algorithm="exhaustive";

tp "TP,IFORT,OPT" = n_n [||02ll s IIOBII] ;

then, first of all, the compiler configuration file cfs_ifort.cfg is going to
be loaded, setting the search strategy to individual search. Afterwards the
settings in the config.cfg are also being parsed, thus changing the search
strategy from individual to exhaustive search.

The optimization levels, however, are not going to be overwritten. There will
be two tuning parameters called TP_IFORT_OPT. As result, in this particular

CHAPTER 4. CONFIGURATION 13

case, scenarios like -02 -02 and -03 -02 will also be created (which, of
course, is not a recommended practice).

4.5 Improved tuning time

There are two means to guide the CFS plugin to speedup the tuning process.

4.5.1 Selective make

As described in section 3, the CFS plugin performs as a tuning action the
recompilation of the test application. This means that for each test scenario
the entire application will be rebuilt. Even for relatively small source codes
this might already require considerable time compared to the rest of the
autotuning process.

The rebuild process can be directed to recompile only a restricted list of
source files, i.e. the files which contain the code with a high percentage of
the execution time.

This option can be activated by setting the make _selective flag to true
and the selective file_list to a particular list of files.

For the previous example, the NPB BT-MZ application, one would set:

make_selective="true";
selective_file list="x_solve.f y_solve.f z solve.f";

The list of files which should be included in the build process can also be
determined automatically by means of the cfs_extract_files.sh script,
which comes along with the CFS plugin. The script makes use of the profile
file generated by using the -profile-functions flag of the Intel compiler.
Proceed as follows:

1. add the -profile-functions flag to your build command;
2. build the application using the Intel compiler;

3. run the application (as usually). This will generate in the current
folder one *.xml file and one *.dump file.

4. run cfs_extract_files.sh giving the generated profile file as input,
e.g.:

:$cfs_extract_files.sh < loop_prof_funcs_1391808148.dump

CHAPTER 4. CONFIGURATION 14

5. copy the list of files generated in files2touch to your config.cfg
configuration file.

4.5.2 Instrumented applications

Another means to reduce the tuning time is to carry out perform measure-
ments only on a (short) interval of the execution and not on the entire
application. For example, if there is a main iterative loop, one could mea-
sure performance for only one iteration step instead of the entire execution
of the loop.

Such a behaviour can be achieved by instrumenting the application with
appropriate phase region definition. More precisely, for the case above, the

entire body of the main loop would be defined as a phase region’.

For example, the NPB BT-MZ application can be instrumented by adding
the phase region declarations to the bt.f file:

c start the benchmark time step loop

do step = 1, niter
! (lines omitted here ...)

I$MON user region

call exch_gbc(u, gbc, nx, nxmax, ny, nz)

do zone = 1, num_zones

call adi(rho_i(startl (zone)), us(startl (zone)),

vs(startl (zone)), ws(startl (zone)),

u(starth (zone)),

ShH H L H P

end do
I$MON end wuser region

end do

By default, CFS assumes that the application is instrumented. If no phase
region is given in the application, then the main program is used.

!Please also refer to the PTF User’s Guide for more details regarding application
instrumentation.

gs(startl (zone)), square(startl (zone)),
rhs(startb (zone)), forcing(startb (zone)),

nx (zone), nxmax(zone), ny(zone), nz(zone))

CHAPTER 4. CONFIGURATION 15

In order to carry out the tuning process in the uninstrumented mode, one
can pass to psc_frontend the flag

—-—uninstrumented

Please note that, in the uninstrumented mode, the execution time is mea-
sured as the wall clock time of the system command which executes the
application. This means that reliable results can be achieved only if the
execution time of the application is not too small.

Chapter 5

How To Use the Tuning
Advice

Upon successful completion, the CFS plugin outputs a list of all tested
scenarios as well as the id of the best scenario. This best scenario is the
tuning advice of the plugin and it consists of the compiler flag combination
which provided the best execution time of the test application.

One should copy the string indicating the best scenario (best combination)
and add it to the Makefile as an option for the compiler.

Given the plugin output:

AutoTune Results:

Optimum Scenario: 2

Compiler Flags tested:

Scenario 0 flags: " -01 "
Scenario 1 flags: " -02 "
Scenario 2 flags: " -03 "

one should add in the Makefile, for example:

gcc -02 myFile.c

16

