
12th VI-HPS Tuning Workshop, 7-11 October 2013, JSC, Jülich

Automatic trace analysis
with Scalasca

Markus Geimer, Brian Wylie, David Böhme
Jülich Supercomputing Centre

12th VI-HPS Tuning Workshop, 7-11 October 2013, JSC, Jülich

Automatic trace analysis

• Idea
– Automatic search for patterns of inefficient behavior
– Classification of behavior & quantification of significance

– Guaranteed to cover the entire event trace
– Quicker than manual/visual trace analysis
– Parallel replay analysis exploits available memory & processors

to deliver scalability

2

Call
path

P
ro

pe
rty

Location

Low-level
event trace

High-level
result

Analysis ≡

12th VI-HPS Tuning Workshop, 7-11 October 2013, JSC, Jülich

The Scalasca project: Overview

• Project started in 2006
– Initial funding by Helmholtz Initiative & Networking Fund
– Many follow-up projects

• Follow-up to pioneering KOJAK project (started 1998)
– Automatic pattern-based trace analysis

• Now joint development of
– Jülich Supercomputing Centre

– German Research School for Simulation Sciences

3

12th VI-HPS Tuning Workshop, 7-11 October 2013, JSC, Jülich

The Scalasca project: Objective

• Development of a scalable performance analysis toolset
for most popular parallel programming paradigms

• Specifically targeting large-scale parallel applications
– such as those running on IBM BlueGene or Cray XT systems

with one million or more processes/threads

• Latest release:
– Scalasca v2.0 with Score-P support (August 2013)

4

12th VI-HPS Tuning Workshop, 7-11 October 2013, JSC, Jülich

Scalasca 2.0 features

• Open source, New BSD license
• Fairly portable

– IBM Blue Gene, IBM SP & blade clusters, Cray XT, SGI Altix,
Solaris & Linux clusters, ...

• Uses Score-P instrumenter & measurement libraries
– Scalasca 2.0 core package focuses on trace-based analyses
– Supports common data formats

• Reads event traces in OTF2 format
• Writes analysis reports in CUBE4 format

• Current limitations:
– No support for nested OpenMP parallelism and tasking
– Unable to handle OTF2 traces containing CUDA events

5

12th VI-HPS Tuning Workshop, 7-11 October 2013, JSC, Jülich

Scalasca trace analysis

Scalasca workflow

6

Instr.
target
application

Measurement
library

HWC
Parallel wait-
state search

Wait-state
report

Local event
traces

Summary
report

Optimized measurement configuration

Instrumenter
compiler /

linker

Instrumented
executable

Source
modules

R
ep

or
t

m
an

ip
ul

at
io

n

Which problem? Where in the
program?

Which
process?

12th VI-HPS Tuning Workshop, 7-11 October 2013, JSC, Jülich

Example: Wait at NxN

• Time spent waiting in front of synchronizing collective
operation until the last process reaches the operation

• Applies to: MPI_Allgather, MPI_Allgatherv, MPI_Alltoall,
MPI_Reduce_scatter, MPI_Reduce_scatter_block,
MPI_Allreduce

7

time

location

MPI_Allreduce

MPI_Allreduce

MPI_Allreduce

MPI_Allreduce

12th VI-HPS Tuning Workshop, 7-11 October 2013, JSC, Jülich

Example: Late Broadcast

• Waiting times if the destination processes of a collective
1-to-N operation enter the operation earlier than the source
process (root)

• Applies to: MPI_Bcast, MPI_Scatter, MPI_Scatterv

time

location

MPI_Bcast (root)

MPI_Bcast

MPI_Bcast

MPI_Bcast

12th VI-HPS Tuning Workshop, 7-11 October 2013, JSC, Jülich

Example: Late Sender

• Waiting time caused by a blocking receive operation posted
earlier than the corresponding send

• Applies to blocking as well as non-blocking communication

time

location

MPI_Recv

MPI_Send

time

location

MPI_Recv

MPI_Send

MPI_Irecv MPI_Wait

MPI_Send

time

location

MPI_Recv MPI_Irecv

MPI_Isend

MPI_Wait

MPI_Isend MPI_Wait MPI_Wait

12th VI-HPS Tuning Workshop, 7-11 October 2013, JSC, Jülich

Hands-on:
NPB-MZ-MPI / BT

12th VI-HPS Tuning Workshop, 7-11 October 2013, JSC, Jülich

Scalasca command

• One command for (almost) everything…

– The ‘scalasca -instrument’ command is deprecated and

only provided for backwards compatibility with Scalasca 1.x.
– Recommended: use Score-P instrumenter directly

11

% scalasca
Scalasca 2.0
Toolset for scalable performance analysis of large-scale applications
usage: scalasca [-v][-n][c] {action}
 1. prepare application objects and executable for measurement:
 scalasca –instrument <compile-or-link-command> # skin (using scorep)
 2. run application under control of measurement system:
 scalasca –analyze <application-launch-command> # scan
 3. interactively explore measurement analysis report:
 scalasca –examine <experiment-archive|report> # square

 -v, --verbose enable verbose commentary
 -n, --dry-run show actions without taking them
 -c, --show-config show configuration and exit

12th VI-HPS Tuning Workshop, 7-11 October 2013, JSC, Jülich

Scalasca compatibility command: skin

• Scalasca application instrumenter

– Provides compatibility with Scalasca 1.x
– Recommended: use Score-P instrumenter directly

12

% skin
Scalasca 2.0: application instrumenter using scorep
usage: skin [-v] [–comp] [-pdt] [-pomp] [-user] <compile-or-link-cmd>
 -comp={all|none|...}: routines to be instrumented by compiler
 (... custom instrumentation specification for compiler)
 -pdt: process source files with PDT instrumenter
 -pomp: process source files for POMP directives
 -user: enable EPIK user instrumentation API macros in source code
 -v: enable verbose commentary when instrumenting

 --*: options to pass to Score-P instrumenter

12th VI-HPS Tuning Workshop, 7-11 October 2013, JSC, Jülich

Scalasca convenience command: scan

• Scalasca measurement collection & analysis nexus

13

% scan
Scalasca 2.0: measurement collection & analysis nexus
usage: scan {options} [launchcmd [launchargs]] target [targetargs]
 where {options} may include:
 -h Help: show this brief usage message and exit.
 -v Verbose: increase verbosity.
 -n Preview: show command(s) to be launched but don't execute.
 -q Quiescent: execution with neither summarization nor tracing.
 -s Summary: enable runtime summarization. [Default]
 -t Tracing: enable trace collection and analysis.
 -a Analyze: skip measurement to (re-)analyze an existing trace.
 -e exptdir : Experiment archive to generate and/or analyze.
 (overrides default experiment archive title)
 -f filtfile : File specifying measurement filter.
 -l lockfile : File that blocks start of measurement.

12th VI-HPS Tuning Workshop, 7-11 October 2013, JSC, Jülich

Scalasca convenience command: square

• Scalasca analysis report explorer

14

% square
Scalasca 2.0: analysis report explorer
usage: square [-v] [-s] [-f filtfile] [-F] <experiment archive
 | cube file>
 -F : Force remapping of already existing reports
 -f filtfile : Use specified filter file when doing scoring
 -s : Skip display and output textual score report
 -v : Enable verbose mode

12th VI-HPS Tuning Workshop, 7-11 October 2013, JSC, Jülich

Automatic measurement configuration

• scan configures Score-P measurement by setting some
environment variables automatically
– e.g., experiment title, profiling/tracing mode, filter file, …
– Precedence order:

• Command-line arguments
• Environment variables already set
• Automatically determined values

• Also, scan includes consistency checks and prevents
corrupting existing experiment directories

• For tracing experiments, after trace collection completes
then automatic parallel trace analysis is initiated
– uses identical launch configuration to that used for measurement

(i.e., the same allocated compute resources)

15

12th VI-HPS Tuning Workshop, 7-11 October 2013, JSC, Jülich

BT-MZ summary measurement

• Run the application using the Scalasca measurement
collection & analysis nexus prefixed to launch command

• Creates experiment directory ./scorep_bt-mz_W_4x4_sum

16

% export SCOREP_EXPERIMENT_DIRECTORY=scorep_bt-mz_W_4x4_sum
% OMP_NUM_THREADS=4 scan mpiexec –np 4 ./bt-mz_W.4
S=C=A=N: Scalasca 2.0 runtime summarization
S=C=A=N: ./scorep_bt-mz_W_4x4_sum experiment archive
S=C=A=N: Thu Sep 13 18:05:17 2012: Collect start
mpiexec –np 4 ./bt-mz_W.4

 NAS Parallel Benchmarks (NPB3.3-MZ-MPI) - BT-MZ MPI+OpenMP Benchmark

 Number of zones: 8 x 8
 Iterations: 200 dt: 0.000300
 Number of active processes: 4

 [... More application output ...]

S=C=A=N: Thu Sep 13 18:05:39 2012: Collect done (status=0) 22s
S=C=A=N: ./scorep_bt-mz_W_4x4_sum complete.

12th VI-HPS Tuning Workshop, 7-11 October 2013, JSC, Jülich

BT-MZ summary analysis report examination

• Score summary analysis report

• Post-processing and interactive exploration with CUBE

• The post-processing derives additional metrics and

generates a structured metric hierarchy

17

% square scorep_bt-mz_W_4x4_sum
INFO: Displaying ./scorep_bt-mz_W_4x4_sum/summary.cubex...

 [GUI showing summary analysis report]

% square -s scorep_bt-mz_W_4x4_sum
INFO: Post-processing runtime summarization result...
INFO: Score report written to ./scorep_bt-mz_W_4x4_sum/scorep.score

12th VI-HPS Tuning Workshop, 7-11 October 2013, JSC, Jülich

Post-processed summary analysis report

18

Split base metrics into
more specific metrics

12th VI-HPS Tuning Workshop, 7-11 October 2013, JSC, Jülich

Performance Analysis Steps

0.0 Reference preparation for validation

1.0 Program instrumentation
1.1 Summary measurement collection
1.2 Summary analysis report examination

2.0 Summary experiment scoring
2.1 Summary measurement collection with filtering
2.2 Filtered summary analysis report examination

3.0 Event trace collection
3.1 Event trace examination & analysis

12th VI-HPS Tuning Workshop, 7-11 October 2013, JSC, Jülich

Setup environment

• Load modules

• Change to directory containing NPB BT-MZ sources
• Existing instrumented binary in bin.scorep/ can be reused

20

% module load UNITE
UNITE loaded
% module load scorep/1.2.1
scorep/1.2.1 loaded
% module load scalasca/2.1-alpha1
scalasca/2.1-alpha1 loaded
% module load cube/4.2
cube/4.2 loaded

12th VI-HPS Tuning Workshop, 7-11 October 2013, JSC, Jülich

BT-MZ trace measurement collection...

• Change to executable directory and edit job script

• Submit the job

21

% cd bin.scorep
% cp ../jobscript/juqueen/scalasca2.ll .

% vim scalasca2.ll

 [...]

module load UNITE scalasca/2.1-alpha1

export SCOREP_FILTERING_FILE=../config/scorep.filt
export SCOREP_TOTAL_MEMORY=50M
export SCOREP_METRIC_PAPI=PAPI_FP_OPS

scalasca -analyze –t \
 runjob --exp-env NPB_MZ_BLOAD --exp-env OMP_NUM_THREADS --exe $EXE

% llsubmit scalasca2.ll

12th VI-HPS Tuning Workshop, 7-11 October 2013, JSC, Jülich

BT-MZ trace measurement ... analysis

• Continues with automatic (parallel) analysis of trace files

22

S=C=A=N: Fri Sep 20 15:09:59 2013: Analyze start

Analyzing experiment archive ./scorep_bt-mz_C_2p64x8_trace/traces.otf2

Opening experiment archive ... done (0.019s).
Reading definition data ... done (0.178s).
Reading event trace data ... done (2.068s).
Preprocessing ... done (3.789s).
Analyzing trace data ...
 Wait-state detection (fwd) (1/5) ... done (2.889s).
 Wait-state detection (bwd) (2/5) ... done (1.136s).
 Synchpoint exchange (fws) (3/5) ... done (0.813s).
 Critical-path & delay analysis (4/5) ... done (0.568s).
done (5.413s).
Writing analysis report ... done (1.994s).

Max. memory usage : 181.066MB

Total processing time : 13.645s
S=C=A=N: Fri Sep 20 15:10:16 2013: Analyze done (status=0) 17s

12th VI-HPS Tuning Workshop, 7-11 October 2013, JSC, Jülich

BT-MZ trace analysis report exploration

• Produces trace analysis report in experiment directory
containing trace-based wait-state metrics

23

% square scorep_bt-mz_C_32x8_trace
INFO: Post-processing runtime summarization result...
INFO: Post-processing trace analysis report...
INFO: Displaying ./scorep_bt-mz_C_32x8_trace/trace.cubex...

 [GUI showing trace analysis report]

12th VI-HPS Tuning Workshop, 7-11 October 2013, JSC, Jülich

Post-processed trace analysis report

24

Additional trace-based
metrics in metric hierarchy

12th VI-HPS Tuning Workshop, 7-11 October 2013, JSC, Jülich

Online metric description

25

Access online metric
description via context

menu

12th VI-HPS Tuning Workshop, 7-11 October 2013, JSC, Jülich

Online metric description

26

12th VI-HPS Tuning Workshop, 7-11 October 2013, JSC, Jülich

Critical-path analysis

27

Critical-path profile shows
wall-clock time impact

12th VI-HPS Tuning Workshop, 7-11 October 2013, JSC, Jülich

Critical-path analysis

28

Critical-path imbalance
highlights inefficient

parallelism

12th VI-HPS Tuning Workshop, 7-11 October 2013, JSC, Jülich

Pattern instance statistics

29

Access pattern instance
statistics via context menu

Click to get
statistics details

12th VI-HPS Tuning Workshop, 7-11 October 2013, JSC, Jülich

Connect to Vampir trace browser

30

To investigate most severe
pattern instances, connect

to a trace browser…
…and select trace file from

the experiment directory

12th VI-HPS Tuning Workshop, 7-11 October 2013, JSC, Jülich

Show most severe pattern instances

31

Select “Max severity in trace
browser” from context menu
of call paths marked with a

red frame

12th VI-HPS Tuning Workshop, 7-11 October 2013, JSC, Jülich

Investigate most severe instance in Vampir

32

Vampir will automatically
zoom to the worst

instance in multiple steps
(i.e., undo zoom provides

more context)

12th VI-HPS Tuning Workshop, 7-11 October 2013, JSC, Jülich

Further information

Scalable performance analysis of
large-scale parallel applications
– toolset for scalable performance measurement & analysis of

MPI, OpenMP & hybrid parallel applications
– supporting most popular HPC computer systems
– available under New BSD open-source license
– sources, documentation & publications:

• http://www.scalasca.org
• mailto: scalasca@fz-juelich.de

33

http://www.scalasca.org/
mailto:scalasca@fz-juelich.de

	Automatic trace analysis�with Scalasca
	Automatic trace analysis
	The Scalasca project: Overview
	The Scalasca project: Objective
	Scalasca 2.0 features
	Scalasca workflow
	Example: Wait at NxN
	Example: Late Broadcast
	Example: Late Sender
	Hands-on:�NPB-MZ-MPI / BT
	Scalasca command
	Scalasca compatibility command: skin
	Scalasca convenience command: scan
	Scalasca convenience command: square
	Automatic measurement configuration
	BT-MZ summary measurement
	BT-MZ summary analysis report examination
	Post-processed summary analysis report
	Performance Analysis Steps
	Setup environment
	BT-MZ trace measurement collection...
	BT-MZ trace measurement ... analysis
	BT-MZ trace analysis report exploration
	Post-processed trace analysis report
	Online metric description
	Online metric description
	Critical-path analysis
	Critical-path analysis
	Pattern instance statistics
	Connect to Vampir trace browser
	Show most severe pattern instances
	Investigate most severe instance in Vampir
	Further information

