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Automatic trace analysis 

• Idea 
– Automatic search for patterns of inefficient behavior 
– Classification of behavior & quantification of significance 
 
 
 
 
 
 
– Guaranteed to cover the entire event trace 
– Quicker than manual/visual trace analysis 
– Parallel replay analysis exploits available memory & processors 

to deliver scalability 
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The Scalasca project: Overview 

• Project started in 2006 
– Initial funding by Helmholtz Initiative & Networking Fund 
– Many follow-up projects 

• Follow-up to pioneering KOJAK project (started 1998) 
– Automatic pattern-based trace analysis 

• Now joint development of 
– Jülich Supercomputing Centre 

 
– German Research School for Simulation Sciences 
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The Scalasca project: Objective 

• Development of a scalable performance analysis toolset 
for most popular parallel programming paradigms 

• Specifically targeting large-scale parallel applications 
– such as those running on IBM BlueGene or Cray XT systems 

with one million or more processes/threads 

• Latest release: 
– Scalasca v2.0 with Score-P support (August 2013) 
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Scalasca 2.0 features 

• Open source, New BSD license 
• Fairly portable 

– IBM Blue Gene, IBM SP & blade clusters, Cray XT, SGI Altix, 
Solaris & Linux clusters, ... 

• Uses Score-P instrumenter & measurement libraries 
– Scalasca 2.0 core package focuses on trace-based analyses 
– Supports common data formats 

• Reads event traces in OTF2 format 
• Writes analysis reports in CUBE4 format 

• Current limitations: 
– No support for nested OpenMP parallelism and tasking 
– Unable to handle OTF2 traces containing CUDA events 
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Scalasca trace analysis 

Scalasca workflow 
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Example: Wait at NxN 

• Time spent waiting in front of synchronizing collective 
operation until the last process reaches the operation 

• Applies to: MPI_Allgather, MPI_Allgatherv, MPI_Alltoall, 
MPI_Reduce_scatter, MPI_Reduce_scatter_block, 
MPI_Allreduce 
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Example: Late Broadcast 

• Waiting times if the destination processes of a collective 
1-to-N operation enter the operation earlier than the source 
process (root) 

• Applies to: MPI_Bcast, MPI_Scatter, MPI_Scatterv 
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Example: Late Sender 

• Waiting time caused by a blocking receive operation posted 
earlier than the corresponding send 

• Applies to blocking as well as non-blocking communication 
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Hands-on: 
NPB-MZ-MPI / BT 
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Scalasca command 

• One command for (almost) everything… 
 
 
 
 
 
 
 
 
– The ‘scalasca -instrument’ command is deprecated and 

only provided for backwards compatibility with Scalasca 1.x. 
– Recommended: use Score-P instrumenter directly 
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% scalasca 
Scalasca 2.0 
Toolset for scalable performance analysis of large-scale applications 
usage: scalasca [-v][-n][c] {action} 
    1. prepare application objects and executable for measurement: 
       scalasca –instrument <compile-or-link-command> # skin (using scorep) 
    2. run application under control of measurement system: 
       scalasca –analyze <application-launch-command> # scan 
    3. interactively explore measurement analysis report: 
       scalasca –examine <experiment-archive|report>  # square 
 
   -v, --verbose      enable verbose commentary 
   -n, --dry-run      show actions without taking them 
   -c, --show-config  show configuration and exit 
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Scalasca compatibility command: skin 

• Scalasca application instrumenter 
 
 
 
 
 
 
– Provides compatibility with Scalasca 1.x 
– Recommended: use Score-P instrumenter directly 
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% skin 
Scalasca 2.0: application instrumenter using scorep 
usage: skin [-v] [–comp] [-pdt] [-pomp] [-user] <compile-or-link-cmd>  
   -comp={all|none|...}: routines to be instrumented by compiler 
          (... custom instrumentation specification for compiler) 
   -pdt:  process source files with PDT instrumenter 
   -pomp: process source files for POMP directives 
   -user: enable EPIK user instrumentation API macros in source code 
   -v:    enable verbose commentary when instrumenting 
 
   --*:   options to pass to Score-P instrumenter 
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Scalasca convenience command: scan 

• Scalasca measurement collection & analysis nexus 

13 

% scan 
Scalasca 2.0: measurement collection & analysis nexus 
usage: scan {options} [launchcmd [launchargs]] target [targetargs] 
      where {options} may include: 
  -h    Help: show this brief usage message and exit. 
  -v    Verbose: increase verbosity. 
  -n    Preview: show command(s) to be launched but don't execute. 
  -q    Quiescent: execution with neither summarization nor tracing. 
  -s    Summary: enable runtime summarization. [Default] 
  -t    Tracing: enable trace collection and analysis. 
  -a    Analyze: skip measurement to (re-)analyze an existing trace. 
  -e exptdir   : Experiment archive to generate and/or analyze. 
                 (overrides default experiment archive title) 
  -f filtfile  : File specifying measurement filter. 
  -l lockfile  : File that blocks start of measurement. 
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Scalasca convenience command: square 

• Scalasca analysis report explorer 
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% square 
Scalasca 2.0: analysis report explorer 
usage: square [-v] [-s] [-f filtfile] [-F] <experiment archive 
                                            | cube file> 
   -F          : Force remapping of already existing reports 
   -f filtfile : Use specified filter file when doing scoring 
   -s          : Skip display and output textual score report 
   -v          : Enable verbose mode 
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Automatic measurement configuration 

• scan configures Score-P measurement by setting some 
environment variables automatically 
– e.g., experiment title, profiling/tracing mode, filter file, … 
– Precedence order: 

• Command-line arguments 
• Environment variables already set 
• Automatically determined values 

• Also, scan includes consistency checks and prevents 
corrupting existing experiment directories 

• For tracing experiments, after trace collection completes 
then automatic parallel trace analysis is initiated 
– uses identical launch configuration to that used for measurement 

(i.e., the same allocated compute resources) 
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BT-MZ summary measurement 

• Run the application using the Scalasca measurement 
collection & analysis nexus prefixed to launch command 

 
 
 
 
 
 
 
 
 
• Creates experiment directory ./scorep_bt-mz_W_4x4_sum 
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% export SCOREP_EXPERIMENT_DIRECTORY=scorep_bt-mz_W_4x4_sum 
% OMP_NUM_THREADS=4 scan mpiexec –np 4 ./bt-mz_W.4 
S=C=A=N: Scalasca 2.0 runtime summarization 
S=C=A=N: ./scorep_bt-mz_W_4x4_sum experiment archive 
S=C=A=N: Thu Sep 13 18:05:17 2012: Collect start 
mpiexec –np 4 ./bt-mz_W.4 
 
 NAS Parallel Benchmarks (NPB3.3-MZ-MPI) - BT-MZ MPI+OpenMP Benchmark 
 
 Number of zones:   8 x   8 
 Iterations: 200    dt:   0.000300 
 Number of active processes:     4 
 
 [... More application output ...] 
 
S=C=A=N: Thu Sep 13 18:05:39 2012: Collect done (status=0) 22s 
S=C=A=N: ./scorep_bt-mz_W_4x4_sum complete. 
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BT-MZ summary analysis report examination 

• Score summary analysis report 
 
 
 

 

• Post-processing and interactive exploration with CUBE 
   
 

 
• The post-processing derives additional metrics and 

generates a structured metric hierarchy 
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% square  scorep_bt-mz_W_4x4_sum 
INFO: Displaying ./scorep_bt-mz_W_4x4_sum/summary.cubex... 
 
                 [GUI showing summary analysis report] 

% square -s  scorep_bt-mz_W_4x4_sum 
INFO: Post-processing runtime summarization result... 
INFO: Score report written to ./scorep_bt-mz_W_4x4_sum/scorep.score 
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Post-processed summary analysis report 
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Performance Analysis Steps 

0.0 Reference preparation for validation 
 

1.0 Program instrumentation 
1.1 Summary measurement collection 
1.2 Summary analysis report examination 
 

2.0 Summary experiment scoring 
2.1 Summary measurement collection with filtering 
2.2 Filtered summary analysis report examination 
 

3.0 Event trace collection 
3.1 Event trace examination & analysis 



12th VI-HPS Tuning Workshop, 7-11 October 2013, JSC, Jülich 

Setup environment 

• Load modules 
 
 
 
 
 

• Change to directory containing NPB BT-MZ sources 
• Existing instrumented binary in bin.scorep/ can be reused 
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% module load UNITE 
UNITE loaded 
% module load scorep/1.2.1 
scorep/1.2.1 loaded 
% module load scalasca/2.1-alpha1 
scalasca/2.1-alpha1 loaded 
% module load cube/4.2 
cube/4.2 loaded 
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BT-MZ trace measurement collection... 

• Change to executable directory and edit job script 
 
 
 
 
 
 
 
 

• Submit the job 
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% cd bin.scorep 
% cp ../jobscript/juqueen/scalasca2.ll . 

% vim scalasca2.ll 
 
 [...] 
 
module load UNITE scalasca/2.1-alpha1 
 
export SCOREP_FILTERING_FILE=../config/scorep.filt 
export SCOREP_TOTAL_MEMORY=50M 
export SCOREP_METRIC_PAPI=PAPI_FP_OPS 
 
scalasca -analyze –t \ 
    runjob --exp-env NPB_MZ_BLOAD --exp-env OMP_NUM_THREADS --exe $EXE 

% llsubmit scalasca2.ll 
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BT-MZ trace measurement ... analysis 

• Continues with automatic (parallel) analysis of trace files 
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S=C=A=N: Fri Sep 20 15:09:59 2013: Analyze start 
 
Analyzing experiment archive ./scorep_bt-mz_C_2p64x8_trace/traces.otf2 
 
Opening experiment archive ... done (0.019s). 
Reading definition data    ... done (0.178s). 
Reading event trace data   ... done (2.068s). 
Preprocessing              ... done (3.789s). 
Analyzing trace data       ...  
  Wait-state detection (fwd)      (1/5) ... done (2.889s). 
  Wait-state detection (bwd)      (2/5) ... done (1.136s). 
  Synchpoint exchange (fws)       (3/5) ... done (0.813s). 
  Critical-path & delay analysis  (4/5) ... done (0.568s). 
done (5.413s). 
Writing analysis report    ... done (1.994s). 
 
Max. memory usage         : 181.066MB 
 
Total processing time     : 13.645s 
S=C=A=N: Fri Sep 20 15:10:16 2013: Analyze done (status=0) 17s 
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BT-MZ trace analysis report exploration 

• Produces trace analysis report in experiment directory 
containing trace-based wait-state metrics 
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% square  scorep_bt-mz_C_32x8_trace 
INFO: Post-processing runtime summarization result... 
INFO: Post-processing trace analysis report... 
INFO: Displaying ./scorep_bt-mz_C_32x8_trace/trace.cubex... 
 
                 [GUI showing trace analysis report] 
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Post-processed trace analysis report 
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Additional trace-based 
metrics in metric hierarchy 



12th VI-HPS Tuning Workshop, 7-11 October 2013, JSC, Jülich 

Online metric description 
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Access online metric 
description via context 

menu 
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Online metric description 
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Critical-path analysis 
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Critical-path profile shows 
wall-clock time impact 
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Critical-path analysis 
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Pattern instance statistics 
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Access pattern instance 
statistics via context menu 

Click to get 
statistics details 
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Connect to Vampir trace browser 
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To investigate most severe 
pattern instances, connect 

to a trace browser… 
…and select trace file from 

the experiment directory 
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Show most severe pattern instances 
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Select “Max severity in trace 
browser” from context menu 
of call paths marked with a 

red frame 
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Investigate most severe instance in Vampir 
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Vampir will automatically 
zoom to the worst 

instance in multiple steps 
(i.e., undo zoom provides 

more context) 



12th VI-HPS Tuning Workshop, 7-11 October 2013, JSC, Jülich 

Further information 

Scalable performance analysis of 
large-scale parallel applications 
– toolset for scalable performance measurement & analysis of 

MPI, OpenMP & hybrid parallel applications 
– supporting most popular HPC computer systems 
– available under New BSD open-source license 
– sources, documentation & publications: 

• http://www.scalasca.org 
• mailto: scalasca@fz-juelich.de 
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