
Performance Analysis and Optimization Tool

Andres S. CHARIF-RUBIAL

Emmanuel OSERET

{andres.charif,emmanuel.oseret}@uvsq.fr

Performance Analysis Team, University of Versailles

http://www.maqao.org

VI-HPS

Introduction
Performance Analysis

 Understand the performance of an application

 How well it behaves on a given machine

 What are the issues ?

 Generally a multifaceted problem

 Maximizing the number of views = better understand

 Use techniques and tools to understand issues

 Once understood Optimize application

VI-HPS

Introduction
Compilation chain

 Compiler remains your best friend

 Be sure to select proper flags (e.g., -xavx)

 Pragmas: Unrolling, Vector alignment

 O2 V.S. O3

 Vectorisation/optimisation report

VI-HPS

Introduction
MAQAO Tool

 Open source (LGPL 3.0)

 Currently binary release

 Source release by mid December

 Available for x86-64 and Xeon Phi

 Looking forward in porting MAQAO on BlueGene

VI-HPS

Introduction
MAQAO Tool

 Easy install

 Packaging : ONE (static) standalone binary

 Easy to embeed

 Audience

 User/Tool developer: analysis and optimisation tool

 Performance tool developer: framework services

 TAU: tau_rewrite (MIL)

 ScoreP: on-going effort (MIL)

VI-HPS

Introduction
MAQAO Tool

VI-HPS

Introduction
MAQAO Tool

 Scripting language

 Lua language : simplicity and productivity

 Fast prototyping

 MAQAO Lua API : Access to services

VI-HPS

Introduction
MAQAO Tool

 Built on top of the Framework

 Loop-centric approach

 Produce reports

 We deal with low level details

 You get high level reports

VI-HPS

Outline

 Introduction

 Pinpointing hotspots

 Code quality analysis

 Upcoming modules

VI-HPS

Pinpointing hotspots
Measurement methodology

 MAQAO Profiling

 Instrumentation

 Through binary rewriting

 High overhead / More precision

 Sampling

 Hardware counter through perf_event_open

system call

 Very low overhead / less details

VI-HPS

Pinpointing hotspots
Parallelism level

 SPMD

 Program level

 SIMD

 Instruction level

 By default MAQAO only considers system

processes and threads

VI-HPS

Pinpointing hotspots
Parallelism level

 Display functions and their exclusive time

 Associated callchains and their contribution

 Loops

 Innermost loops can then be analyzed by

the code quality analyzer module (CQA)

 Command line and GUI (HTML) outputs

VI-HPS

Pinpointing hotspots
GUI snapshot

VI-HPS

Outline

 Introduction

 Pinpointing hotspots

 Code quality analysis

 Upcoming modules

VI-HPS

Static performance modeling
Introduction

 Main performance issues:

 Core level

 Multicore interactions

 Communications

 Most of the time core level is forgotten

VI-HPS

Static performance modeling
Goals

 Static performance model

 Targets innermost loops

 source loop V.S. assembly loop

 Take into account processor

(micro)architecture

 Assess code quality

 Estimate performance

 Degree of vectorization

 Impact on micro architecture

Source Loop

L255@file.c

ASM

Loop 1
ASM

Loop 2

ASM

Loop 3

ASM

Loop 4

ASM

Loop 5

VI-HPS

Static performance modeling
Model

 Simulates the target (micro)architecture

 Instructions description (latency, uops dispatch...)

 Machine model

 For a given binary and micro-architecture, provides

 Quality metrics (how well the binary is fitted to the micro

architecture)

 Static performance (lower bounds on cycles)

 Hints and workarounds to improve static performance

VI-HPS

Static performance modeling
Metrics

 Vectorization (ratio and speedup)

 Allows to predict vectorization (if possible) speedup

and increase vectorization ratio if it’s worth

 High latency instructions (division/square root)

 Allows to use less precise but faster instructions like

RCP (1/x) and RSQRT (1/sqrt(x))

 Unrolling (unroll factor detection)

 Allows to statically predict performance for different

unroll factors (find main loops)

VI-HPS

Static performance modeling
Report example

Pathological cases

Your loop is processing FP elements but is NOT

OR PARTIALLY VECTORIZED.

Since your execution units are vector units,

only a fully vectorized loop can use their full

power.

By fully vectorizing your loop, you can lower

the cost of an iteration from 14.00 to 3.50

cycles (4.00x speedup).

Two propositions:

- Try another compiler or update/tune your

current one:

* gcc: use O3 or Ofast. If targeting IA32,

add mfpmath=sse combined with march=<cputype>,

msse or msse2.

* icc: use the vec-report option to

understand why your loop was not vectorized. If

"existence of vector dependences", try the

IVDEP directive. If, using IVDEP,

"vectorization possible but seems inefficient",

try the VECTOR ALWAYS directive.

- Remove inter-iterations dependences from

your loop and make it unit-stride.

WARNING: Fix as many pathological cases as you

can before reading the following sections.

Bottlenecks

The divide/square root unit is a bottleneck.

Try to reduce the number of division or square

root instructions.

If you accept to loose numerical precision, you

can speedup your code by passing the following

options to your compiler:

gcc: (ffast-math or Ofast) and mrecip

icc: this should be automatically done by

default

By removing all these bottlenecks, you can

lower the cost of an iteration from 14.00 to

1.50 cycles (9.33x speedup).

VI-HPS

Outline

 Introduction

 Pinpointing hotspots

 Code quality analysis

 Upcoming modules

VI-HPS

Ongoing work

 Dynamic bottleneck analyzer

 Differential analysis

 Memory characterization tool

 Access patterns

 Data reshaping

 Cache simulator

 Value profiler

 Function specialization / memorizing

 Loops instances (iteration count) variations

VI-HPS

MAQAO Tool

Thanks for your attention !

Questions ?

