
Performance Analysis and Optimization Tool

Andres S. CHARIF-RUBIAL

Emmanuel OSERET

{andres.charif,emmanuel.oseret}@uvsq.fr

Performance Analysis Team, University of Versailles

http://www.maqao.org

VI-HPS

Introduction
Performance Analysis

 Understand the performance of an application

 How well it behaves on a given machine

 What are the issues ?

 Generally a multifaceted problem

 Maximizing the number of views = better understand

 Use techniques and tools to understand issues

 Once understood Optimize application

VI-HPS

Introduction
Compilation chain

 Compiler remains your best friend

 Be sure to select proper flags (e.g., -xavx)

 Pragmas: Unrolling, Vector alignment

 O2 V.S. O3

 Vectorisation/optimisation report

VI-HPS

Introduction
MAQAO Tool

 Open source (LGPL 3.0)

 Currently binary release

 Source release by mid December

 Available for x86-64 and Xeon Phi

 Looking forward in porting MAQAO on BlueGene

VI-HPS

Introduction
MAQAO Tool

 Easy install

 Packaging : ONE (static) standalone binary

 Easy to embeed

 Audience

 User/Tool developer: analysis and optimisation tool

 Performance tool developer: framework services

 TAU: tau_rewrite (MIL)

 ScoreP: on-going effort (MIL)

VI-HPS

Introduction
MAQAO Tool

VI-HPS

Introduction
MAQAO Tool

 Scripting language

 Lua language : simplicity and productivity

 Fast prototyping

 MAQAO Lua API : Access to services

VI-HPS

Introduction
MAQAO Tool

 Built on top of the Framework

 Loop-centric approach

 Produce reports

 We deal with low level details

 You get high level reports

VI-HPS

Outline

 Introduction

 Pinpointing hotspots

 Code quality analysis

 Upcoming modules

VI-HPS

Pinpointing hotspots
Measurement methodology

 MAQAO Profiling

 Instrumentation

 Through binary rewriting

 High overhead / More precision

 Sampling

 Hardware counter through perf_event_open

system call

 Very low overhead / less details

VI-HPS

Pinpointing hotspots
Parallelism level

 SPMD

 Program level

 SIMD

 Instruction level

 By default MAQAO only considers system

processes and threads

VI-HPS

Pinpointing hotspots
Parallelism level

 Display functions and their exclusive time

 Associated callchains and their contribution

 Loops

 Innermost loops can then be analyzed by

the code quality analyzer module (CQA)

 Command line and GUI (HTML) outputs

VI-HPS

Pinpointing hotspots
GUI snapshot

VI-HPS

Outline

 Introduction

 Pinpointing hotspots

 Code quality analysis

 Upcoming modules

VI-HPS

Static performance modeling
Introduction

 Main performance issues:

 Core level

 Multicore interactions

 Communications

 Most of the time core level is forgotten

VI-HPS

Static performance modeling
Goals

 Static performance model

 Targets innermost loops

 source loop V.S. assembly loop

 Take into account processor

(micro)architecture

 Assess code quality

 Estimate performance

 Degree of vectorization

 Impact on micro architecture

Source Loop

L255@file.c

ASM

Loop 1
ASM

Loop 2

ASM

Loop 3

ASM

Loop 4

ASM

Loop 5

VI-HPS

Static performance modeling
Model

 Simulates the target (micro)architecture

 Instructions description (latency, uops dispatch...)

 Machine model

 For a given binary and micro-architecture, provides

 Quality metrics (how well the binary is fitted to the micro

architecture)

 Static performance (lower bounds on cycles)

 Hints and workarounds to improve static performance

VI-HPS

Static performance modeling
Metrics

 Vectorization (ratio and speedup)

 Allows to predict vectorization (if possible) speedup

and increase vectorization ratio if it’s worth

 High latency instructions (division/square root)

 Allows to use less precise but faster instructions like

RCP (1/x) and RSQRT (1/sqrt(x))

 Unrolling (unroll factor detection)

 Allows to statically predict performance for different

unroll factors (find main loops)

VI-HPS

Static performance modeling
Report example

Pathological cases

Your loop is processing FP elements but is NOT

OR PARTIALLY VECTORIZED.

Since your execution units are vector units,

only a fully vectorized loop can use their full

power.

By fully vectorizing your loop, you can lower

the cost of an iteration from 14.00 to 3.50

cycles (4.00x speedup).

Two propositions:

- Try another compiler or update/tune your

current one:

* gcc: use O3 or Ofast. If targeting IA32,

add mfpmath=sse combined with march=<cputype>,

msse or msse2.

* icc: use the vec-report option to

understand why your loop was not vectorized. If

"existence of vector dependences", try the

IVDEP directive. If, using IVDEP,

"vectorization possible but seems inefficient",

try the VECTOR ALWAYS directive.

- Remove inter-iterations dependences from

your loop and make it unit-stride.

WARNING: Fix as many pathological cases as you

can before reading the following sections.

Bottlenecks

The divide/square root unit is a bottleneck.

Try to reduce the number of division or square

root instructions.

If you accept to loose numerical precision, you

can speedup your code by passing the following

options to your compiler:

gcc: (ffast-math or Ofast) and mrecip

icc: this should be automatically done by

default

By removing all these bottlenecks, you can

lower the cost of an iteration from 14.00 to

1.50 cycles (9.33x speedup).

VI-HPS

Outline

 Introduction

 Pinpointing hotspots

 Code quality analysis

 Upcoming modules

VI-HPS

Ongoing work

 Dynamic bottleneck analyzer

 Differential analysis

 Memory characterization tool

 Access patterns

 Data reshaping

 Cache simulator

 Value profiler

 Function specialization / memorizing

 Loops instances (iteration count) variations

VI-HPS

MAQAO Tool

Thanks for your attention !

Questions ?

