
11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

TAU PERFORMANCE SYSTEM

Sameer Shende
Kevin Huck, Wyatt Spear, Scott Biersdorff

Performance Research Lab

Allen D. Malony, Nick Chaimov, David Poliakoff, David Ozog
Department of Computer and Information Science

University of Oregon

John Linford
ParaTools, Inc.

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

TAU Performance System
®

• Tuning and Analysis Utilities (18+ year project)
• Comprehensive performance profiling and tracing

– Integrated, scalable, flexible, portable

– Targets all parallel programming/execution paradigms

• Integrated performance toolkit
– Instrumentation, measurement, analysis, visualization

– Widely-ported performance profiling / tracing system

– Performance data management and data mining

– Open source (BSD-style license)

• Easy to integrate in application frameworks

 http://tau.uoregon.edu
2

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

What is TAU?

• TAU is a performance evaluation tool

• It supports parallel profiling and tracing

• Profiling shows you how much (total) time was spent in each routine

• Tracing shows you when the events take place in each process
along a timeline

• Profiling and tracing can measure time as well as hardware
performance counters (cache misses, instructions) from your CPU

• TAU can automatically instrument your source code using a
package called PDT for routines, loops, I/O, memory, phases, etc.

• TAU runs on most HPC platforms and it is free (BSD style license)

• TAU has instrumentation, measurement and analysis tools
– paraprof is TAU’s 3D profile browser

• To use TAU’s automatic source instrumentation, you may set a
couple of environment variables and substitute the name of your
compiler with a TAU shell script

3

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

TAU: Usage Scenarios

• How much time is spent in each application routine and outer
loops? Within loops, what is the contribution of each statement?

• How many instructions are executed in these code regions?
Floating point, Level 1 and 2 data cache misses, hits, branches
taken?

• What is the peak heap memory usage of the code? When and
where is memory allocated/de-allocated? Are there any memory
leaks?

• How much time does the application spend performing I/O? What is
the peak read and write bandwidth of individual calls, total volume?

• What is the contribution of different phases of the program? What is
the time wasted/spent waiting for collectives, and I/O operations in
Initialization, Computation, I/O phases?

• How does the application scale? What is the efficiency, runtime
breakdown of performance across different core counts?

4

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

Using TAU: Simplest Case

• Uninstrumented code:
– % mpirun –np 8 ./a.out

• With TAU:
– % mpirun –np 8 tau_exec ./a.out

– % paraprof

5

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

ParaProf: Mflops Sorted by Exclusive Time

low mflops in
loops?

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

Parallel Profile Visualization: ParaProf

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

How does TAU work?

• Instrumentation: Adds probes to perform measurements

– Source code instrumentation using pre-processors and compiler scripts

– Wrapping external libraries (I/O, MPI, Memory, CUDA, OpenCL, pthread)

– Rewriting the binary executable

• Measurement: Profiling or Tracing using wallclock time or hardware counters

– Direct instrumentation (Interval events measure exclusive or inclusive duration)

– Indirect instrumentation (Sampling measures statement level contribution)

– Throttling and runtime control of low-level events that execute frequently

– Per-thread storage of performance data

– Interface with external packages (Scalasca, VampirTrace, Score-P, PAPI)

• Analysis: Visualization of profiles and traces

– 3D visualization of profile data in paraprof, perfexplorer tools

– Trace conversion & display in external visualizers (Vampir, Jumpshot, ParaVer)

8

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

Using TAU: A Brief Introduction

• TAU supports several measurement and thread options
– Phase profiling, profiling with hardware counters, trace with Score-P…

• Each measurement configuration of TAU corresponds to a
unique stub makefile and library that is generated when you
configure it

• To instrument source code automatically using PDT
– Choose an appropriate TAU stub makefile in <arch>/lib:
% export TAU_MAKEFILE=$TAU/Makefile.tau-mpi-pdt

% export TAU_OPTIONS=‘-optVerbose …’ (see tau_compiler.sh)

Use tau_f90.sh, tau_cxx.sh or tau_cc.sh as F90, C++ or C compilers:

% mpif90 foo.f90 changes to
% tau_f90.sh foo.f90

• Set runtime environment variables, execute application and
analyze performance data:

% pprof (for text based profile display)

% paraprof (for GUI)
9

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay10

Choosing an Appropriate TAU_MAKEFILE

% cd $TAUROOTDIR/<arch>/lib; ls Makefile.*
Makefile.tau-pdt
Makefile.tau-mpi-pdt
Makefile.tau-pthread-pdt
Makefile.tau-papi-mpi-pdt
Makefile.tau-mpi-pthread-pdt
Makefile.tau-papi-pthread-pdt
Makefile.tau-opari-openmp-mpi-pdt
Makefile.tau-papi-mpi-pdt-epilog-scalasca-trace
Makefile.tau-papi-mpi-pdt-vampirtrace-trace …

• For an MPI+F90 application, you may choose Makefile.tau-mpi-pdt
– Supports MPI instrumentation & PDT for automatic source instrumentation
– % export TAU_MAKEFILE=$TAU/Makefile.tau-mpi-pdt
– % tau_f90.sh matrix.f90 -o matrix
– % mpirun –np 8 ./matrix
– % paraprof

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

TAU Instrumentation Approach

• Supports both direct and indirect performance observation

– Direct instrumentation of program (system) code (probes)

– Instrumentation invokes performance measurement

– Event measurement: performance data, meta-data, context

– Indirect mode supports sampling based on periodic timer or hardware
performance counter overflow based interrupts

• Support for user-defined events

– Interval (Start/Stop) events to measure exclusive & inclusive duration

– Atomic events (Trigger at a single point with data, e.g., heap memory)

• Measures total, samples, min/max/mean/std. deviation statistics

– Context events (are atomic events with executing context)

• Measures above statistics for a given calling path

11

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

Direct Observation: Events

• Event types
– Interval events (begin/end events)

• Measures exclusive & inclusive durations between events
• Metrics monotonically increase

– Atomic events (trigger with data value)
• Used to capture performance data state
• Shows extent of variation of triggered values

(min/max/mean)

• Code events
– Routines, classes, templates
– Statement-level blocks, loops

12

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

inclusive
duration

exclusive
duration

int foo()
{
 int a;
 a =a + 1;

 bar();

 a =a + 1;
 return a;
}

Inclusive and Exclusive Profiles

• Performance with respect to code regions
• Exclusive measurements for region only
• Inclusive measurements includes child regions

13

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

Interval Events, Atomic Events in TAU

14

Interval events
e.g., routines
(start/stop) show
duration

Atomic events
(triggered with
value) show
extent of variation

(min/max/mean)% export TAU_CALLPATH_DEPTH=0
% export TAU_TRACK_HEAP=1

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

% export TAU_CALLPATH_DEPTH=1

% export TAU_TRACK_HEAP=1

Atomic events

Context events
=atomic event
+ executing
context

Atomic Events, Context Events

15

Controls depth of executing
context shown in profiles

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

% export TAU_CALLPATH_DEPTH=2
% export TAU_TRACK_HEAP=1

Context event
=atomic event
+ executing
context

Context Events (Default)

16

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

TAU Instrumentation / Measurement

SC 11: Hands-on Practical Hybrid Parallel Application Performance Engineering 17

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

Direct Instrumentation Options in TAU

• Source Code Instrumentation
– Manual instrumentation

– Automatic instrumentation using pre-processor based on static
analysis of source code (PDT), creating an instrumented copy

– Compiler generates instrumented object code

• Library Level Instrumentation
– Wrapper libraries for standard MPI libraries using PMPI interface

– Wrapping external libraries where source is not available

• Runtime pre-loading and interception of library calls

• Binary Code instrumentation
– Rewrite the binary, runtime instrumentation

• Virtual Machine, Interpreter, OS level instrumentation

18

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

TAU’s Static Analysis System:
Program Database Toolkit (PDT)

19

Application
/ Library

C / C++
parser

Fortran parser
F77/90/95

C / C++
IL analyzer

Fortran
IL analyzer

Program
Database

Files

IL IL

DUCTAPE
TAU

instrumentor
Automatic source
instrumentation

.

.

.

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

Automatic Source Instrumentation using PDT

20

tau_instrumentor

Parsed
program

Instrumentation
specification file

Instrumented
copy of source

TAU source
analyzer

Application
source

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

PDT: Automatic Source Code Instrumentation

• To instrument source code using PDT
– Choose an appropriate TAU stub makefile from

<taudir>/<arch>/lib/Makefile.tau*:
(typically, arch=i386_linux, x86_64, craycnl, bgp, cygwin … and
taudir=/usr/local/packages/tau on LiveDVD)

% export TAU_MAKEFILE=$TAU/Makefile.tau-mpi-pdt

% make CC=tau_cc.sh CXX=tau_cxx.sh F90=tau_f90.sh

• Execute application and analyze performance data:
% pprof (for text based profile display)

% paraprof (for GUI)

21

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

Usage Scenarios: Routine Level Profile

• How much time is spent in each application routine?

22

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

Solution: Generating a flat profile with MPI

SC 11: Hands-on Practical Hybrid Parallel Application Performance Engineering 23

% export TAU_MAKEFILE=<taudir>/<arch>/lib/Makefile.tau-mpi-pdt

% export PATH=<taudir>/<arch>/bin:$PATH

Or

% module load tau

% make F90=tau_f90.sh

Or

% tau_f90.sh matmult.f90

% mpirun –np 8 ./a.out

% paraprof

To view. To view the data locally on the workstation,

% paraprof -–pack app.ppk

Move the app.ppk file to your desktop.

% paraprof app.ppk

Click on the “node 0” label to see profile for that node. Right
click to see other options. Windows -> 3D Visualization for 3D
window.

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay24

Automatic Instrumentation

• We now provide compiler wrapper scripts
– Simply replace CC with tau_cxx.sh
– Automatically instruments C++ and C source code, links with TAU MPI

Wrapper libraries.

• Use tau_cc.sh and tau_f90.sh for C and Fortran

Before
CXX = mpicxx
F90 = mpif90
CXXFLAGS =
LIBS = -lm
OBJS = f1.o f2.o f3.o … fn.o

app: $(OBJS)
$(CXX) $(LDFLAGS) $(OBJS) -o $@
$(LIBS)

.cpp.o:
$(CXX) $(CXXFLAGS) -c $<

After
CXX = tau_cxx.sh
F90 = tau_f90.sh
CXXFLAGS =
LIBS = -lm
OBJS = f1.o f2.o f3.o … fn.o

app: $(OBJS)
$(CXX) $(LDFLAGS) $(OBJS) -o $@
$(LIBS)

.cpp.o:
$(CXX) $(CXXFLAGS) -c $<

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay25

Passing Optional Parameters to TAU Compiler Scripts

• See <taudir>/<arch>/bin/tau_compiler.sh –help
• Compilation:

% ftn -c foo.f90
Changes to
% gfparse foo.f90 $(OPT1)
% tau_instrumentor foo.pdb foo.f90 –o foo.inst.f90 $(OPT2)
% ftn –c foo.inst.f90 –o foo.o $(OPT3)

• Linking:
% ftn foo.o bar.o –o app
Changes to
% ftn foo.o bar.o –o app <taulibs> $(OPT4)

• Where options OPT[1-4] default values may be overridden by the user:

F90 = tau_f90.sh

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

Compile-Time Environment Variables

• Optional parameters for the TAU_OPTIONS environment variable:
% tau_compiler.sh

-optVerbose Turn on verbose debugging messages

-optCompInst Use compiler based instrumentation

-optMemDbg Enable memory debugging instrumentation.

-optTrackIO Wrap POSIX I/O call and calculates vol/bw of I/O operations
(Requires TAU to be configured with –iowrapper)

-optKeepFiles Does not remove intermediate .pdb and .inst.* files

-optPreProcess Preprocess Fortran sources before instrumentation

-optTauSelectFile=”<file>" Specify selective instrumentation file for tau_instrumentor

-optTauWrapFile=”<file>" Specify path to link_options.tau generated by tau_gen_wrapper

-optHeaderInst Enable Instrumentation of headers

-optLinking="" Options passed to the linker. Typically
$(TAU_MPI_FLIBS) $(TAU_LIBS) $(TAU_CXXLIBS)

-optCompile="" Options passed to the compiler. Typically
$(TAU_MPI_INCLUDE) $(TAU_INCLUDE) $(TAU_DEFS)

-optPdtF95Opts="" Add options for Fortran parser in PDT (f95parse/gfparse)

-optPdtF95Reset="" Reset options for Fortran parser in PDT (f95parse/gfparse)

-optPdtCOpts="" Options for C parser in PDT (cparse). Typically
$(TAU_MPI_INCLUDE) $(TAU_INCLUDE) $(TAU_DEFS)

-optPdtCxxOpts="" Options for C++ parser in PDT (cxxparse). Typically
$(TAU_MPI_INCLUDE) $(TAU_INCLUDE) $(TAU_DEFS) ...

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay27

Compiling Fortran Codes with TAU

• If your Fortran code uses free format in .f files (fixed is default for .f), you may use:
% export TAU_OPTIONS=‘-optPdtF95Opts=“-R free” -optVerbose ’

• To use the compiler based instrumentation instead of PDT (source-based):
% export TAU_OPTIONS=‘-optCompInst -optVerbose’

• If your Fortran code uses C preprocessor directives (#include, #ifdef, #endif):
% export TAU_OPTIONS=‘-optPreProcess -optVerbose -optDetectMemoryLeaks’

• To use an instrumentation specification file:
% export TAU_OPTIONS=‘-optTauSelectFile=select.tau -optVerbose -optPreProcess’
% cat select.tau
BEGIN_INSTRUMENT_SECTION
loops routine=“#”
this statement instruments all outer loops in all routines. # is wildcard as well as comment in first column.
END_INSTRUMENT_SECTION

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

Runtime Environment Variables in TAU

Environment Variable Default Description

TAU_TRACE 0 Setting to 1 turns on tracing

TAU_CALLPATH 0 Setting to 1 turns on callpath profiling

TAU_TRACK_MEMORY_LEAKS 0 Setting to 1 turns on leak detection (for use with tau_exec –memory
./a.out)

TAU_TRACK_HEAP or
TAU_TRACK_HEADROOM

0 Setting to 1 turns on tracking heap memory/headroom at routine entry
& exit using context events (e.g., Heap at Entry: main=>foo=>bar)

TAU_CALLPATH_DEPTH 2 Specifies depth of callpath. Setting to 0 generates no callpath or
routine information, setting to 1 generates flat profile and context
events have just parent information (e.g., Heap Entry: foo)

TAU_TRACK_IO_PARAMS 0 Setting to 1 with –optTrackIO or tau_exec –io captures arguments of
I/O calls

TAU_SAMPLING 1 Generates sample based profiles

TAU_COMM_MATRIX 0 Setting to 1 generates communication matrix display using context
events

TAU_THROTTLE 1 Setting to 0 turns off throttling. Enabled by default to remove
instrumentation in lightweight routines that are called frequently

TAU_THROTTLE_NUMCALLS 100000 Specifies the number of calls before testing for throttling

TAU_THROTTLE_PERCALL 10 Specifies value in microseconds. Throttle a routine if it is called over
100000 times and takes less than 10 usec of inclusive time per call

TAU_COMPENSATE 0 Setting to 1 enables runtime compensation of instrumentation
overhead

TAU_PROFILE_FORMAT Profile Setting to “merged” generates a single file. “snapshot” generates xml
format

TAU_METRICS TIME Setting to a comma separated list generates other metrics. (e.g.,
TIME:P_VIRTUAL_TIME:PAPI_FP_INS:PAPI_NATIVE_<event>\\:<sub
event>)

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

Usage Scenarios: Loop Level Instrumentation

• Goal: What loops account for the most time? How much?
• Flat profile with wallclock time with loop instrumentation:

29

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

Solution: Generating a loop level profile

30

% export TAU_MAKEFILE=<taudir>/<arch>/lib/Makefile.tau-mpi-pdt

% export TAU_OPTIONS=‘-optTauSelectFile=select.tau –optVerbose’

% cat select.tau

 BEGIN_INSTRUMENT_SECTION

 loops routine=“#”

 END_INSTRUMENT_SECTION

% module load tau

% make F90=tau_f90.sh

(Or edit Makefile and change F90=tau_f90.sh)

% mpirun –np 8 ./a.out

% paraprof -–pack app.ppk

Move the app.ppk file to your desktop.

% paraprof app.ppk

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

Computing Floating Point Instructions
Executed Per Second in Loops

• Goal: What execution rate do my application loops get in mflops?
• Flat profile with PAPI_FP_INS and time with loop instrumentation:

31

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

Generate a PAPI profile with 2 or more counters

32

% export TAU_MAKEFILE=<taudir>/<arch>/lib/Makefile.tau-papi-mpi-pdt

% export TAU_OPTIONS=‘-optTauSelectFile=select.tau –optVerbose’

% cat select.tau

 BEGIN_INSTRUMENT_SECTION

 loops routine=“#”

 END_INSTRUMENT_SECTION

% make F90=tau_f90.sh

(Or edit Makefile and change F90=tau_f90.sh)

% export TAU_METRICS=TIME:PAPI_FP_INS

% mpirun –np 8 ./a.out

% paraprof -–pack app.ppk

Move the app.ppk file to your desktop.

% paraprof app.ppk

 Choose Options -> Show Derived Panel -> Click PAPI_FP_INS,
 Click “/”, Click TIME, Apply, Choose new metric by double clicking.

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

Usage Scenarios: Compiler-based Instrumentation

• Use the compiler to automatically emit instrumentation calls in the
object code instead of parsing the source code using PDT.

33

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

Use Compiler-Based Instrumentation

% export TAU_MAKEFILE=<taudir>/<arch>/lib/Makefile.tau-mpi-pdt
% export TAU_OPTIONS=‘-optCompInst –optQuiet’

% make CC=tau_cc.sh CXX=tau_cxx.sh F90=tau_f90.sh

NOTE: You may also use the short-hand scripts taucc, tauf90,
taucxx instead of specifying TAU_OPTIONS and using the traditional
tau_<cc,cxx,f90>.sh scripts. These scripts use compiler-based
instrumentation by default.

% make CC=taucc CXX=taucxx F90=tauf90
% mpirun –np 8 ./a.out
% paraprof -–pack app.ppk
Move the app.ppk file to your desktop.

% paraprof app.ppk

34

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

Generate a Callpath Profile

35

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

Callpath Profile

36

• Generates program callgraph

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

Generate a Callpath Profile

37

% export TAU_MAKEFILE=<taudir>/<arch>/lib/Makefile.tau-mpi-pdt

% export PATH=<taudir>/<arch>/bin:$PATH

% make F90=tau_f90.sh

(Or edit Makefile and change F90=tau_f90.sh)

% export TAU_CALLPATH=1

% export TAU_CALLPATH_DEPTH=100
(truncates all calling paths to a specified depth)

% mpirun -np 8 ./a.out

% paraprof -–pack app.ppk

Move the app.ppk file to your desktop.

% paraprof app.ppk

(Windows -> Thread -> Call Graph)

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

Communication Matrix Display

• Goal: What is the volume of inter-process communication? Along which
calling path?

38

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

Evaluate Scalability using PerfExplorer Charts

% export TAU_MAKEFILE=$TAU/Makefile.tau-mpi-pdt
% export PATH=<taudir>/<arch>/bin:$PATH
% make F90=tau_f90.sh
(Or edit Makefile and change F90=tau_f90.sh)
% export TAU_COMM_MATRIX=1

% mpirun -np 8 ./a.out

% paraprof
(Windows -> Communication Matrix)
(Windows -> 3D Communication Matrix)

39

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay40

Three Instrumentation Techniques for
Wrapping External Libraries

• Pre-processor based substitution by re-defining a call (e.g., read)

– Tool defined header file with same name <unistd.h> takes precedence

– Header redefines a routine as a different routine using macros

– Substitution: read() substituted by preprocessor as tau_read() at callsite

• Preloading a library at runtime

– Library preloaded (LD_PRELOAD env var in Linux) in the address
space of executing application intercepts calls from a given library

– Tool’s wrapper library defines read(), gets address of global read()
symbol (dlsym), internally calls timing calls around call to global read

• Linker based substitution

– Wrapper library defines __wrap_read which calls __real_read and linker
is passed -Wl,-wrap,read to substitute all references to read from
application’s object code with the __wrap_read defined by the tool

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay41

Issues: Preprocessor based substitution

• Pre-processor based substitution by re-defining a call
– Compiler replaces read() with tau_read() in the body of the source code

• Advantages:
– Simple to instrument

• Preprocessor based replacement
• A header file redefines the calls
• No special linker or runtime flags required

• Disadvantages
– Only works for C & C++ for replacing calls in the body of the

code.
– Incomplete instrumentation: fails to capture calls in

uninstrumented libraries (e.g., libhdf5.a)

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay42

Issues: Linker based substitution

• Linker based substitution
– Wrapper library defines __wrap_read which calls __real_read

and linker is passed -Wl,-wrap, read

• Advantages
– Tool can intercept all references to a given call
– Works with static as well as dynamic executables
– No need to recompile the application source code, just re-link

the application objects and libraries with the tool wrapper library

• Disadvantages
– Wrapping an entire library can lengthen the linker command line

with multiple –Wl,-wrap,<func> arguments. It is better to store
these arguments in a file and pass the file to the linker

– Approach does not work with un-instrumented binaries

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay43

Solution: tau_gen_wrapper

• Automates creation of wrapper libraries using TAU
• Input:

– header file (foo.h)
– library to be wrapped (/path/to/libfoo.a)
– technique for wrapping

• Preprocessor based redefinition (-d)
• Runtime preloading (-r)
• Linker based substitution (-w: default)

– Optional selective instrumentation file (-f select)
• Exclude list of routines, or
• Include list of routines

• Output:
– wrapper library

– optional link_options.tau file (-w), pass –optTauWrapFile=<file>
in TAU_OPTIONS environment variable

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay44

Design of wrapper generator
(tau_gen_wrapper)

• tau_gen_wrapper shell script:

– parses source of header file using static analysis tool Program
Database Toolkit (PDT)

– Invokes tau_wrap, a tool that generates

• instrumented wrapper code,

• an optional link_options.tau file (for linker-based substitution, -w)

• Makefile for compiling the wrapper interposition library

– Builds the wrapper library using make

• Use TAU_OPTIONS environment variable to pass location of
link_options.tau file using
% export TAU_OPTIONS=‘–
optTauWrapFile=<path/to/link_options.tau> -optVerbose’

• Use tau_exec –loadlib=<wrapperlib.so> to pass location of wrapper
library for preloading based substitution

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay45

tau_wrap

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

HDF5 Library Wrapping

46

[sameer@zorak]$ tau_gen_wrapper hdf5.h /usr/lib/libhdf5.a -f select.tau

Usage : tau_gen_wrapper <header> <library> [-r|-d|-w (default)] [-g groupname] [-i
headerfile] [-c|-c++|-fortran] [-f <instr_spec_file>]
• instruments using runtime preloading (-r), or -Wl,-wrap linker (-w), redirection
of header file to redefine the wrapped routine (-d)
• instrumentation specification file (select.tau)
• group (hdf5)
• tau_exec loads libhdf5_wrap.so shared library using –loadlib=<libwrap_pkg.so>
• creates the wrapper/ directory

NODE 0;CONTEXT 0;THREAD 0:

%Time Exclusive Inclusive #Call #Subrs Inclusive Name
 msec total msec usec/call

100.0 0.057 1 1 13 1236 .TAU Application
 70.8 0.875 0.875 1 0 875 hid_t H5Fcreate()
 9.7 0.12 0.12 1 0 120 herr_t H5Fclose()
 6.0 0.074 0.074 1 0 74 hid_t H5Dcreate()
 3.1 0.038 0.038 1 0 38 herr_t H5Dwrite()
 2.6 0.032 0.032 1 0 32 herr_t H5Dclose()
 2.1 0.026 0.026 1 0 26 herr_t H5check_version()
 0.6 0.008 0.008 1 0 8 hid_t H5Screate_simple()
 0.2 0.002 0.002 1 0 2 herr_t H5Tset_order()
 0.2 0.002 0.002 1 0 2 hid_t H5Tcopy()
 0.1 0.001 0.001 1 0 1 herr_t H5Sclose()
 0.1 0.001 0.001 2 0 0 herr_t H5open()
 0.0 0 0 1 0 0 herr_t H5Tclose()

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

Using POSIX I/O wrapper library in TAU

• Setting environment variable TAU_OPTIONS=-optTrackIO links in
TAU’s wrapper interposition library using linker-based substitution

• Instrumented application generates bandwidth, volume data
• Workflow:

– % export TAU_OPTIONS=‘-optTrackIO –optVerbose’
– % export TAU_MAKEFILE=/path/to/tau/x86_64/lib/Makefile.tau-mpi-pdt
– % make CC=tau_cc.sh CXX=tau_cxx.sh F90=tau_f90.sh
– % mpirun –np 8 ./a.out
– % paraprof

• Get additional data regarding individual arguments by setting
environment variable TAU_TRACK_IO_PARAMS=1 prior to running

47

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay48

Issues: Preloading a wrapper library at
runtime

• Preloading a library at runtime
– Tool defines read(), gets address of global read() symbol

(dlsym), internally calls timing calls around call to global read
– tau_exec tool uses this mechanism to intercept library calls

• Advantages
– No need to re-compile or re-link the application source code
– Drop-in replacement library implemented using LD_PRELOAD

environment variable under Linux, Cray CNL, IBM BG/P CNK,
Solaris…

• Disadvantages
– Only works with dynamic executables. Default compilation mode

under Cray XE6 and IBM BG/P is to use static executables
– Not all operating systems support preloading of dynamic shared

objects (DSOs)

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay49

Runtime Preloading: tau_exec

• Runtime instrumentation by pre-loading the
measurement library

• Works on dynamic executables (default under Linux)

• Can substitute I/O, MPI, SHMEM, CUDA, OpenCL, and
memory allocation/deallocation routines with
instrumented calls

• Track interval events (e.g., time spent in write()) as well
as atomic events (e.g., how much memory was
allocated) in wrappers

• Accurately measure I/O and memory usage

• Preload any wrapper interposition library in the context of
the executing application

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay50

Preloading a Specific TAU Measurement Library

% ./configure –pdt=<dir> -mpi –papi=<dir>; make install
Creates in <taudir>/<arch>/lib:
Makefile.tau-papi-mpi-pdt
shared-papi-mpi-pdt/libTAU.so

% ./configure –pdt=<dir> -mpi; make install creates
Makefile.tau-mpi-pdt
shared-mpi-pdt/libTAU.so

To explicitly choose preloading of shared-<options>/libTAU.so change:
% mpirun –np 8 ./a.out to
% mpirun –np 8 tau_exec –T <comma_separated_options> ./a.out

% mpirun –np 8 tau_exec –T papi,mpi,pdt ./a.out
Preloads <taudir>/<arch>/shared-papi-mpi-pdt/libTAU.so
% mpirun –np 8 tau_exec –T papi ./a.out
Preloads <taudir>/<arch>/shared-papi-mpi-pdt/libTAU.so by matching.
% mpirun –np 8 tau_exec –T papi,mpi,pdt –s ./a.out
Does not execute the program. Just displays the library that it will preload if executed without

the –s option.
NOTE: -mpi configuration is selected by default. Use –T serial for
Sequential programs.

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

TAU Execution Command (tau_exec)

• Uninstrumented execution
– % mpirun –np 8 ./a.out

• Track MPI performance
– % mpirun –np 8 tau_exec ./a.out

• Track POSIX I/O and MPI performance (MPI enabled by default)
– % mpirun –np 8 tau_exec –io ./a.out

• Track memory operations
– % setenv TAU_TRACK_MEMORY_LEAKS 1
– % mpirun –np 8 tau_exec –memory ./a.out

• Use event based sampling (compile with –g)
– % mpirun –np 8 tau_exec –ebs ./a.out
– Also –ebs_source=<PAPI_COUNTER> -ebs_period=<overflow_count>

• Load wrapper interposition library
– % mpirun –np 8 tau_exec –loadlib=<path/libwrapper.so> ./a.out

• Track GPGPU operations
– % mpirun –np 8 tau_exec –T serial –cupti ./a.out
– % mpirun –np 8 tau_exec –opencl ./a.out

51

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

Profiling GPGPU Executions

• GPGPU compilers (e.g., CAPS hmpp and PGI) can now
automatically generate GPGPU code using manual
annotation of loop-level constructs and routines (hmpp)

• The loops (and routines for HMPP) are transferred
automatically to the GPGPU

• TAU intercepts the runtime library routines and examines
the arguments

• Shows events as seen from the host

• Profiles and traces GPGPU execution

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

Heterogeneous Architecture

• Multi-CPU, multicore shared memory nodes
• GPU accelerators connected by high-BW I/O
• Cluster interconnection network

53

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

Host (CPU) - GPU Scenarios

• Single GPU

• Multi-stream

• Multi-CPU,
Multi-GPU

54

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

Host-GPU Measurement –
Callback Method

• GPU driver libraries provide callbacks for certain routines
and captures measurements

• Measurement tool registers the callbacks and processes
performance data

• Application code is not modified

55

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

Method Support and Implementation

• Synchronous method
– Place instrumentation appropriately around GPU calls (kernel

launch, library routine, …)
– Wrap (synchronous) library with performance tool

• Event queue method
– Utilize CUDA and OpenCL event support
– Again, need instrumentation to create and insert events in the

streams with kernel launch and process events
– Can be implemented with driver library wrapping

• Callback method
– Utilize language-level callback support in OpenCL
– Utilize NVIDIA CUDA Performance Tool Interface (CUPTI)
– Need to appropriately register callbacks

56

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

GPU Performance Measurement Tools

• Support the Host-GPU performance perspective
• Provide integration with existing measurement system to

facilitate tool use
• Utilize support in GPU driver library and device

• Tools
– TAU performance system
– Vampir
– PAPI
– NVIDIA CUPTI

57

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

GPU Performance Tool
Interoperability

58

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

NVIDIA CUPTI

• NVIDIA is developing CUPTI to enable the creation of
profiling and tracing tools

• Callback API
– Interject tool code at the entry and exist to each CUDA runtime

and driver API call

• Counter API
– Query, configure, start, stop, and read the counters on CUDA-

enabled devices

• CUPTI is delivered as a dynamic library

• CUPTI is released with CUDA 4.0

59

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

TAU for Heterogeneous Measurement

• Multiple performance perspectives
• Integrate Host-GPU support in TAU measurement

framework
– Enable use of each measurement approach
– Include use of PAPI and CUPTI
– Provide profiling and tracing support

• Tutorial
– Use TAU library wrapping of libraries
– Use tau_exec to work with binaries

% ./a.out (uninstrumented)
 % tau_exec –T serial –cupti ./a.out
 % paraprof

60

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

Example: SDK simpleMultiGPU

• Demonstration of multiple GPU device use
• main solverThread reduceKernel
• One Keeneland node with three GPUs

• Performance profile for:
– One main thread
– Three solverThread threads
– Three reduceKernel “threads”

61

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

simpleMultiGPU Profile

62

Overall profile

Comparison profile

Identified a known
overhead in GPU
context creation

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

SHOC FFT Profile with Callsite Info

• TAU is able to associate callsite context information with
kernel launch so that different kernel calls can be
distinguished

63

Each kernel (ifft1D_512, fft1D_512 and chk1D_512) is broken down by call-
site, either during the single precession or double precession step.

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

Example: SHOC Stencil2D

• Compute 2D, 9-point stencil
– Multiple GPUs using MPI
– CUDA and OpenCL versions

• One Keeneland node with 3 GPUs
• Eight Keeneland nodes with 24 GPUs

• Performance profile and trace
– Application events
– Communication events
– Kernel execution

64

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

Stencil2D Parallel Profile

65

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

Stencil2D Parallel Profile / Trace in Vampir

66

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

Building Bridges to Other Tools

67

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

TAU Analysis

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

Example: NAMD with CUPTI

69

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

HMPP SGEMM (CAPS Entreprise)

Host
Process

Transfer
Kernel

Compute
Kernel

Host
Process

Transfer
Kernel

Compute
Kernel

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

Profiling PGI Accelerator Primitives

• PGI compiler allows users to annotate source code to
identify loops that should be accelerated

• When a program is compiled with TAU, its measurement
library intercepts the PGI runtime library layer to
measure time spent in the runtime library routines and
data transfers

• TAU also captures the arguments:
– array data dimensions and sizes, strides, upload and download

times, variable names, source file names, row and column
information, and routines

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

Example: PGI GPU-accelerated MM

72

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

PGI MM Computational Kernel

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

Instrumentation: Re-writing Binaries

• Support for both static and dynamic executables
• Specify the list of routines to instrument/exclude from

instrumentation
• Specify the TAU measurement library to be injected

• Simplify the usage of TAU:
– To instrument:

% tau_run a.out –o a.inst

– To perform measurements, execute the application:
% mpirun –np 8 ./a.inst

– To analyze the data:
% paraprof

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

 tau_run with NAS PBS

75

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

TAU Analysis

76

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

Performance Analysis

• Analysis of parallel profile and trace measurement
• Parallel profile analysis (ParaProf)

– Java-based analysis and visualization tool
– Support for large-scale parallel profiles

• Performance data management framework (PerfDMF)
• Parallel trace analysis

– Translation to VTF (V3.0), EPILOG, OTF formats
– Integration with Vampir / Vampir Server (TU Dresden)
– Profile generation from trace data

• Online parallel analysis and visualization
• Integration with CUBE browser (Scalasca, UTK / FZJ)

77

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

ParaProf Profile Analysis Framework

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

NAS BT – Flat Profile

79

How is MPI_Wait()
distributed relative to
solver direction?

Application routine names
reflect phase semantics

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

NAS BT – Phase Profile

SC 11: Hands-on Practical Hybrid Parallel Application Performance Engineering 80

Main phase shows nested phases and immediate events

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

Phase Profiling of HW Counters

• GTC particle-in-cell simulation of fusion turbulence
• Phases assigned to

iterations
• Poor temporal locality for

one important data
• Automatically generated

by PE2 python script

81

increasing phase
execution time

decreasing
flops rate

declining cache
performance

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

Profile Snapshots in ParaProf

• Profile snapshots are parallel profiles recorded at
runtime

• Shows performance profile dynamics (all types
allowed)

Initialization

Checkpointing

Finalization

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

Profile Snapshot Views

• Percentage
breakdown

• Only show main loop

83

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

Snapshot Replay in ParaProf

All windows dynamically update

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

PerfExplorer – Runtime Breakdown

MPI_Waitall

WRITE_SAVEFILE

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

PerfExplorer – Relative Comparisons

• Total execution time
• Timesteps per second
• Relative efficiency
• Relative efficiency per event
• Relative speedup
• Relative speedup per event
• Group fraction of total
• Runtime breakdown
• Correlate events with total runtime
• Relative efficiency per phase
• Relative speedup per phase
• Distribution visualizations

86

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

PerfExplorer – Correlation Analysis

87

Data: FLASH on BGL(LLNL), 64 nodes

Strong negative linear correlation
between

CALC_CUT_BLOCK_CONTRIBUTION
S

and MPI_Barrier

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

PerfExplorer – Correlation Analysis

• -0.995 indicates strong, negative relationship
• As CALC_CUT_

BLOCK_CONTRIBUTIONS() increases in execution
time, MPI_Barrier() decreases

88

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

PerfExplorer – Cluster Analysis

SC 11: Hands-on Practical Hybrid Parallel Application Performance Engineering 89

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

PerfExplorer – Cluster Analysis

• Four significant events automatically selected
• Clusters and correlations are visible

90

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

PerfExplorer – Performance Regression

91

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

Usage Scenarios: Evaluate Scalability

• Goal: How does my application scale? What
bottlenecks at what CPU counts?

• Load profiles in PerfDMF database and examine with
PerfExplorer

92

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

Usage Scenarios: Evaluate Scalability

93

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

Performance Regression Testing

94

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

Evaluate Scalability using PerfExplorer Charts

% export TAU_MAKEFILE=<taudir>/<arch>
/lib/Makefile.tau-mpi-pdt

% export PATH=<taudir>/<arch>/bin:$PATH

% make F90=tau_f90.sh

(Or edit Makefile and change F90=tau_f90.sh)

% qsub run1p.job

% paraprof -–pack 1p.ppk

% qsub run2p.job …

% paraprof -–pack 2p.ppk … and so on.

On your client:

% taudb_configure –create-default

% perfexplorer_configure

(Yes to load schema, defaults)

% paraprof

(load each trial: DB -> Add Trial -> Type (Paraprof Packed
Profile) -> OK, OR use taudb_loadtrial on the commandline)

% perfexplorer

(Charts -> Speedup)

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

Other Projects in TAU

• TAU Portal
– Support collaborative performance study

• Kernel-level system measurements (KTAU)
– Application to OS noise analysis and I/O system

analysis
• TAU performance monitoring

– TAUoverSupermon and TAUoverMRNet
• PerfExplorer integration and expert-based analysis

– OpenUH compiler optimizations
– Computational quality of service in CCA

• Eclipse CDT and PTP integration
• Performance tools integration (NSF POINT

project)

96

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay 97

Support Acknowledgements

• US Department of Energy (DOE)
– Office of Science contracts
– SciDAC, LBL contracts
– LLNL-LANL-SNL ASC/NNSA contract
– Battelle, PNNL contract
– ANL, ORNL contract

• Department of Defense (DoD)
– PETTT, HPTi

• National Science Foundation (NSF)
– SDCI, SI-2

• University of Oregon
• ParaTools, Inc.
• University of Tennessee, Knoxville

– Dr. Shirley Moore
• T.U. Dresden, GWT

– Dr. Wolfgang Nagel and Dr. Andreas Knupfer
• Research Centre Juelich

– Dr. Bernd Mohr, Dr. Felix Wolf
Dr. Markus Geimer, Dr. Brian Wylie

11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

For more information

• TAU Website:
http://tau.uoregon.edu

– Software
– Release notes
– Documentation

98

