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TAU Performance System
®

• Tuning and Analysis Utilities (18+ year project)
• Comprehensive performance profiling and tracing

– Integrated, scalable, flexible, portable

– Targets all parallel programming/execution paradigms

• Integrated performance toolkit
– Instrumentation, measurement, analysis, visualization

– Widely-ported performance profiling / tracing system

– Performance data management and data mining

– Open source (BSD-style license)

• Easy to integrate in application frameworks

                        http://tau.uoregon.edu
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What is TAU?

• TAU is a performance evaluation tool

• It supports parallel profiling and tracing 

• Profiling shows you how much (total) time was spent in each routine 

• Tracing shows you when the events take place in each process 
along a timeline

• Profiling and tracing can measure time as well as hardware 
performance counters (cache misses, instructions) from your CPU

• TAU can automatically instrument your source code using a 
package called PDT for routines, loops, I/O, memory, phases, etc.

• TAU runs on most HPC platforms and it is free (BSD style license)

• TAU has instrumentation, measurement and analysis tools
– paraprof is TAU’s 3D profile browser

• To use TAU’s automatic source instrumentation, you may set a 
couple of environment variables and substitute the name of your 
compiler with a TAU shell script
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TAU: Usage Scenarios

• How much time is spent in each application routine and outer 
loops? Within loops, what is the contribution of each statement? 

• How many instructions are executed in these code regions? 
Floating point, Level 1 and 2 data cache misses, hits, branches 
taken? 

• What is the peak heap memory usage of the code? When and 
where is memory allocated/de-allocated? Are there any memory 
leaks? 

• How much time does the application spend performing I/O?  What is 
the peak read and write bandwidth of individual calls, total volume? 

• What is the contribution of different phases of the program? What is 
the time wasted/spent waiting for collectives, and I/O operations in 
Initialization, Computation, I/O phases?

• How does the application scale? What is the efficiency, runtime 
breakdown of performance across different core counts? 
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Using TAU: Simplest Case

• Uninstrumented code:
– % mpirun –np 8 ./a.out

• With TAU:
– % mpirun –np 8 tau_exec ./a.out

– % paraprof 
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ParaProf: Mflops Sorted by Exclusive Time

low mflops in 
loops?
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Parallel Profile Visualization: ParaProf
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How does TAU work?

• Instrumentation: Adds probes to perform measurements

– Source code instrumentation using pre-processors and compiler scripts

– Wrapping external libraries (I/O, MPI, Memory, CUDA, OpenCL, pthread)

– Rewriting the binary executable

• Measurement: Profiling or Tracing using wallclock time or hardware counters

– Direct instrumentation (Interval events measure exclusive or inclusive duration)

– Indirect instrumentation (Sampling measures statement level contribution)

– Throttling and runtime control of low-level events that execute frequently

– Per-thread storage of performance data

– Interface with external packages (Scalasca, VampirTrace, Score-P, PAPI)

• Analysis: Visualization of profiles and traces

– 3D visualization of profile data in paraprof, perfexplorer tools

– Trace conversion & display in external visualizers (Vampir, Jumpshot, ParaVer)
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Using TAU: A Brief Introduction

• TAU supports several measurement and thread options 
– Phase profiling, profiling with hardware counters, trace with Score-P… 

• Each measurement configuration of TAU corresponds to a 
unique stub makefile and library that is generated when you 
configure it

• To instrument source code automatically using PDT
– Choose an appropriate TAU stub makefile in <arch>/lib:
% export TAU_MAKEFILE=$TAU/Makefile.tau-mpi-pdt

% export TAU_OPTIONS=‘-optVerbose …’ (see tau_compiler.sh )

Use tau_f90.sh, tau_cxx.sh or tau_cc.sh as F90, C++ or C compilers:

% mpif90 foo.f90       changes to 
% tau_f90.sh foo.f90

• Set runtime environment variables, execute application and 
analyze performance data:

% pprof   (for text based profile display)

% paraprof  (for GUI)
9
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Choosing an Appropriate TAU_MAKEFILE

% cd $TAUROOTDIR/<arch>/lib; ls Makefile.*
Makefile.tau-pdt
Makefile.tau-mpi-pdt
Makefile.tau-pthread-pdt
Makefile.tau-papi-mpi-pdt
Makefile.tau-mpi-pthread-pdt
Makefile.tau-papi-pthread-pdt
Makefile.tau-opari-openmp-mpi-pdt
Makefile.tau-papi-mpi-pdt-epilog-scalasca-trace
Makefile.tau-papi-mpi-pdt-vampirtrace-trace …

• For an MPI+F90 application, you may choose Makefile.tau-mpi-pdt
– Supports MPI instrumentation & PDT for automatic source instrumentation
– % export TAU_MAKEFILE=$TAU/Makefile.tau-mpi-pdt
– % tau_f90.sh matrix.f90 -o matrix
– % mpirun –np 8 ./matrix
– % paraprof
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TAU Instrumentation Approach

• Supports both direct and indirect performance observation

– Direct instrumentation of program (system) code (probes)

– Instrumentation invokes performance measurement

– Event measurement: performance data, meta-data, context

– Indirect mode supports sampling based on periodic timer or hardware 
performance counter overflow based interrupts

• Support for user-defined events

– Interval (Start/Stop) events to measure exclusive & inclusive duration

– Atomic events (Trigger at a single point with data, e.g., heap memory) 

• Measures total, samples, min/max/mean/std. deviation statistics

– Context events (are atomic events with executing context)

• Measures above statistics for a given calling path

11
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Direct Observation: Events

• Event types
– Interval events (begin/end events)

• Measures exclusive & inclusive durations between events 
• Metrics monotonically increase

– Atomic events (trigger with data value)
• Used to capture performance data state
• Shows extent of variation of triggered values 

(min/max/mean)

• Code events
– Routines, classes, templates
– Statement-level blocks, loops

12
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inclusive
duration

exclusive
duration

int foo() 
{
       int a;
       a =a + 1;

     bar();

       a =a + 1;
       return a;
}

Inclusive and Exclusive Profiles

• Performance with respect to code regions
• Exclusive measurements for region only
• Inclusive measurements includes child regions

13
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Interval Events, Atomic Events in TAU

14

Interval events
e.g., routines
(start/stop) show 
duration

Atomic events
(triggered with 
value) show 
extent of variation 

(min/max/mean)% export TAU_CALLPATH_DEPTH=0
% export TAU_TRACK_HEAP=1



11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

% export TAU_CALLPATH_DEPTH=1

% export TAU_TRACK_HEAP=1

Atomic events

Context events
=atomic event
+ executing 
context

Atomic Events, Context Events

15

Controls depth of executing 
context shown in profiles
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% export TAU_CALLPATH_DEPTH=2
% export TAU_TRACK_HEAP=1

Context event
=atomic event
+ executing 
context

Context Events (Default)

16
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TAU Instrumentation / Measurement

SC 11: Hands-on Practical Hybrid Parallel Application Performance Engineering 17
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Direct Instrumentation Options in TAU

• Source Code Instrumentation
– Manual instrumentation

– Automatic instrumentation using pre-processor based on static 
analysis of source code (PDT), creating an instrumented copy

– Compiler generates instrumented object code

• Library Level Instrumentation
– Wrapper libraries for standard MPI libraries using PMPI interface

– Wrapping external libraries where source is not available

• Runtime pre-loading and interception of library calls

• Binary Code instrumentation
– Rewrite the binary, runtime instrumentation

• Virtual Machine, Interpreter, OS level instrumentation

18
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TAU’s Static Analysis System: 
Program Database Toolkit (PDT)

19

Application
/ Library

C / C++
parser

Fortran parser
F77/90/95

C / C++
IL analyzer

Fortran
IL analyzer

Program
Database

Files

IL IL

DUCTAPE
TAU

instrumentor
Automatic source
instrumentation
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Automatic Source Instrumentation using PDT

20

tau_instrumentor

Parsed
program

Instrumentation
specification file

Instrumented 
copy of source

TAU source
analyzer

Application 
source
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PDT: Automatic Source Code Instrumentation

• To instrument source code using PDT
– Choose an appropriate TAU stub makefile from 

<taudir>/<arch>/lib/Makefile.tau*:
(typically, arch=i386_linux, x86_64, craycnl, bgp, cygwin … and
taudir=/usr/local/packages/tau on LiveDVD)

% export TAU_MAKEFILE=$TAU/Makefile.tau-mpi-pdt

% make CC=tau_cc.sh CXX=tau_cxx.sh F90=tau_f90.sh

• Execute application and analyze performance data:
% pprof   (for text based profile display)

% paraprof  (for GUI)

21
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Usage Scenarios: Routine Level Profile

• How much time is spent in each application routine?

22
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Solution: Generating a flat profile with MPI

SC 11: Hands-on Practical Hybrid Parallel Application Performance Engineering 23

% export TAU_MAKEFILE=<taudir>/<arch>/lib/Makefile.tau-mpi-pdt

% export PATH=<taudir>/<arch>/bin:$PATH

Or

% module load tau

% make F90=tau_f90.sh

Or

% tau_f90.sh matmult.f90 

% mpirun –np 8 ./a.out

% paraprof

To view. To view the data locally on the workstation, 

% paraprof -–pack app.ppk

Move the app.ppk file to your desktop. 

% paraprof app.ppk

Click on the “node 0” label to see profile for that node. Right
click to see other options. Windows -> 3D Visualization for 3D 
window.
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Automatic Instrumentation

• We now provide compiler wrapper scripts
– Simply replace CC with tau_cxx.sh
– Automatically instruments C++ and C source code, links with TAU MPI 

Wrapper libraries.

• Use tau_cc.sh and tau_f90.sh for C and Fortran

Before
CXX = mpicxx
F90 = mpif90
CXXFLAGS =
LIBS = -lm
OBJS = f1.o f2.o f3.o … fn.o

app: $(OBJS)
$(CXX) $(LDFLAGS) $(OBJS) -o $@ 
$(LIBS)

.cpp.o:
$(CXX) $(CXXFLAGS) -c $<

After
CXX = tau_cxx.sh
F90 = tau_f90.sh
CXXFLAGS =
LIBS = -lm
OBJS = f1.o f2.o f3.o … fn.o

app: $(OBJS)
$(CXX) $(LDFLAGS) $(OBJS) -o $@ 
$(LIBS)

.cpp.o:
$(CXX) $(CXXFLAGS) -c $<
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Passing Optional Parameters to TAU Compiler Scripts

• See <taudir>/<arch>/bin/tau_compiler.sh –help
• Compilation:

% ftn -c foo.f90
Changes to
% gfparse foo.f90 $(OPT1)
% tau_instrumentor foo.pdb foo.f90 –o foo.inst.f90 $(OPT2)
% ftn –c foo.inst.f90 –o foo.o $(OPT3)

• Linking:
% ftn foo.o bar.o –o app
Changes to
% ftn foo.o bar.o –o app <taulibs> $(OPT4)

• Where options OPT[1-4] default values may be overridden by the user:

F90 = tau_f90.sh
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Compile-Time Environment Variables 

• Optional parameters for the TAU_OPTIONS environment variable: 
% tau_compiler.sh

-optVerbose Turn on verbose debugging messages

-optCompInst Use compiler based instrumentation

-optMemDbg Enable memory debugging instrumentation.

-optTrackIO         Wrap POSIX I/O call and calculates vol/bw of I/O operations 
(Requires TAU to be configured with –iowrapper)

-optKeepFiles         Does not remove intermediate .pdb and .inst.* files

-optPreProcess         Preprocess Fortran sources before instrumentation

-optTauSelectFile=”<file>" Specify selective instrumentation file for tau_instrumentor

-optTauWrapFile=”<file>" Specify path to link_options.tau generated by tau_gen_wrapper

-optHeaderInst  Enable Instrumentation of headers

-optLinking=""        Options passed to the linker. Typically 
$(TAU_MPI_FLIBS) $(TAU_LIBS) $(TAU_CXXLIBS)

-optCompile=""        Options passed to the compiler. Typically 
$(TAU_MPI_INCLUDE) $(TAU_INCLUDE) $(TAU_DEFS)

-optPdtF95Opts="" Add options for Fortran parser in PDT (f95parse/gfparse)

-optPdtF95Reset="" Reset options for Fortran parser in PDT (f95parse/gfparse)

-optPdtCOpts=""      Options for C parser in PDT (cparse). Typically 
$(TAU_MPI_INCLUDE) $(TAU_INCLUDE) $(TAU_DEFS)

-optPdtCxxOpts="" Options for C++ parser in PDT (cxxparse). Typically
$(TAU_MPI_INCLUDE) $(TAU_INCLUDE) $(TAU_DEFS) ...
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Compiling Fortran Codes with TAU 

• If your Fortran code uses free format in .f files (fixed is default for .f), you may use:
% export TAU_OPTIONS=‘-optPdtF95Opts=“-R free” -optVerbose ’

• To use the compiler based instrumentation instead of PDT (source-based):
% export TAU_OPTIONS=‘-optCompInst -optVerbose’

• If your Fortran code uses C preprocessor directives (#include, #ifdef, #endif):
% export TAU_OPTIONS=‘-optPreProcess -optVerbose -optDetectMemoryLeaks’

• To use an instrumentation specification file:
% export TAU_OPTIONS=‘-optTauSelectFile=select.tau -optVerbose -optPreProcess’
% cat select.tau
BEGIN_INSTRUMENT_SECTION
loops  routine=“#”
# this statement instruments all outer loops in all routines. # is wildcard as well as comment in first column. 
END_INSTRUMENT_SECTION
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Runtime Environment Variables in TAU

Environment Variable Default Description

TAU_TRACE 0 Setting to 1 turns on tracing

TAU_CALLPATH 0 Setting to 1 turns on callpath profiling

TAU_TRACK_MEMORY_LEAKS 0 Setting to 1 turns on leak detection (for use with tau_exec –memory 
./a.out)

TAU_TRACK_HEAP or 
TAU_TRACK_HEADROOM

0 Setting to 1 turns on tracking heap memory/headroom at routine entry 
& exit using context events (e.g., Heap at Entry: main=>foo=>bar)

TAU_CALLPATH_DEPTH 2 Specifies depth of callpath. Setting to 0 generates no callpath or 
routine information, setting to 1 generates flat profile and context 
events have just parent information (e.g., Heap Entry: foo)

TAU_TRACK_IO_PARAMS 0 Setting to 1 with –optTrackIO or tau_exec –io captures arguments of 
I/O calls

TAU_SAMPLING 1 Generates sample based profiles

TAU_COMM_MATRIX 0 Setting to 1 generates communication matrix display using context 
events

TAU_THROTTLE 1 Setting to 0 turns off throttling. Enabled by default to remove 
instrumentation in lightweight routines that are called frequently

TAU_THROTTLE_NUMCALLS 100000 Specifies the number of calls before testing for throttling

TAU_THROTTLE_PERCALL 10 Specifies value in microseconds. Throttle a routine if it is called over 
100000 times and takes less than 10 usec of inclusive time per call

TAU_COMPENSATE 0 Setting to 1 enables runtime compensation of instrumentation 
overhead

TAU_PROFILE_FORMAT Profile Setting to “merged” generates a single file. “snapshot” generates xml 
format

TAU_METRICS TIME Setting to a comma separated list generates other metrics. (e.g., 
TIME:P_VIRTUAL_TIME:PAPI_FP_INS:PAPI_NATIVE_<event>\\:<sub
event>)
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Usage Scenarios: Loop Level Instrumentation

• Goal: What loops account for the most time? How much?
• Flat profile with wallclock time with loop instrumentation:

29
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Solution: Generating a loop level profile

30

% export TAU_MAKEFILE=<taudir>/<arch>/lib/Makefile.tau-mpi-pdt

% export TAU_OPTIONS=‘-optTauSelectFile=select.tau –optVerbose’

% cat select.tau

  BEGIN_INSTRUMENT_SECTION

  loops routine=“#”

  END_INSTRUMENT_SECTION

% module load tau 

% make F90=tau_f90.sh

(Or edit Makefile and change F90=tau_f90.sh)

% mpirun –np 8 ./a.out

% paraprof -–pack app.ppk

Move the app.ppk file to your desktop. 

% paraprof app.ppk
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Computing Floating Point Instructions 
Executed Per Second in Loops

• Goal: What execution rate do my application loops get in mflops? 
• Flat profile with PAPI_FP_INS and time with loop instrumentation:

31
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Generate a PAPI profile with 2 or more counters

32

% export TAU_MAKEFILE=<taudir>/<arch>/lib/Makefile.tau-papi-mpi-pdt

% export TAU_OPTIONS=‘-optTauSelectFile=select.tau –optVerbose’

% cat select.tau

  BEGIN_INSTRUMENT_SECTION

  loops routine=“#”

  END_INSTRUMENT_SECTION

% make F90=tau_f90.sh

(Or edit Makefile and change F90=tau_f90.sh)

% export TAU_METRICS=TIME:PAPI_FP_INS

% mpirun –np 8 ./a.out

% paraprof -–pack app.ppk

Move the app.ppk file to your desktop. 

% paraprof app.ppk

  Choose Options -> Show Derived Panel -> Click PAPI_FP_INS, 
 Click “/”,  Click TIME, Apply, Choose new metric by double clicking.
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Usage Scenarios: Compiler-based Instrumentation

• Use the compiler to automatically emit instrumentation calls in the 
object code instead of parsing the source code using PDT.

33
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Use Compiler-Based Instrumentation

% export TAU_MAKEFILE=<taudir>/<arch>/lib/Makefile.tau-mpi-pdt
% export TAU_OPTIONS=‘-optCompInst –optQuiet’

% make CC=tau_cc.sh CXX=tau_cxx.sh F90=tau_f90.sh

NOTE: You may also use the short-hand scripts taucc, tauf90, 
taucxx instead of specifying TAU_OPTIONS and using the traditional 
tau_<cc,cxx,f90>.sh scripts. These scripts use compiler-based 
instrumentation by default.

% make CC=taucc CXX=taucxx F90=tauf90
% mpirun –np 8 ./a.out
% paraprof -–pack app.ppk
Move the app.ppk file to your desktop. 

% paraprof app.ppk
  

34
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Generate a Callpath Profile

35
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Callpath Profile

36

• Generates program callgraph



11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

Generate a Callpath Profile

37

% export TAU_MAKEFILE=<taudir>/<arch>/lib/Makefile.tau-mpi-pdt

% export PATH=<taudir>/<arch>/bin:$PATH

% make F90=tau_f90.sh

(Or edit Makefile and change F90=tau_f90.sh)

% export TAU_CALLPATH=1

% export TAU_CALLPATH_DEPTH=100
(truncates all calling paths to a specified depth)

% mpirun -np 8 ./a.out

% paraprof -–pack app.ppk

Move the app.ppk file to your desktop. 

% paraprof app.ppk

(Windows -> Thread -> Call Graph)
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Communication Matrix Display

• Goal: What is the volume of inter-process communication? Along which 
calling path?

38
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Evaluate Scalability using PerfExplorer Charts

% export TAU_MAKEFILE=$TAU/Makefile.tau-mpi-pdt
% export PATH=<taudir>/<arch>/bin:$PATH
% make F90=tau_f90.sh
(Or edit Makefile and change F90=tau_f90.sh)
% export TAU_COMM_MATRIX=1

% mpirun -np 8 ./a.out

% paraprof 
(Windows -> Communication Matrix)
(Windows -> 3D Communication Matrix)

39
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Three Instrumentation Techniques for 
Wrapping External Libraries

• Pre-processor based substitution by re-defining a call (e.g., read)

– Tool defined header file with same name <unistd.h> takes precedence

– Header redefines a routine as a different routine using macros

– Substitution: read() substituted by preprocessor as tau_read() at callsite

• Preloading a library at runtime

– Library preloaded (LD_PRELOAD env var in Linux) in the address 
space of executing application intercepts calls from a given library

– Tool’s wrapper library defines read(), gets address of global read() 
symbol (dlsym), internally calls timing calls around call to global read

• Linker based substitution

– Wrapper library defines __wrap_read which calls __real_read and linker 
is passed -Wl,-wrap,read to substitute all references to read from 
application’s object code with the __wrap_read defined by the tool
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Issues: Preprocessor based substitution

• Pre-processor based substitution by re-defining a call
– Compiler replaces read() with tau_read() in the body of the source code

• Advantages:
– Simple to instrument

• Preprocessor based replacement
• A header file redefines the calls
• No special linker or runtime flags required

• Disadvantages
– Only works for C & C++ for replacing calls in the body of the 

code.  
– Incomplete instrumentation: fails to capture calls in 

uninstrumented libraries (e.g., libhdf5.a)
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Issues: Linker based substitution

• Linker based substitution
– Wrapper library defines __wrap_read which calls __real_read 

and linker is passed -Wl,-wrap, read 

• Advantages
– Tool can intercept all references to a given call
– Works with static as well as dynamic executables
– No need to recompile the application source code, just re-link 

the application objects and libraries with the tool wrapper library

• Disadvantages
– Wrapping an entire library can lengthen the linker command line 

with multiple –Wl,-wrap,<func> arguments. It is better to store 
these arguments in a file and pass the file to the linker

– Approach does not work with un-instrumented binaries
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Solution: tau_gen_wrapper

• Automates creation of wrapper libraries using TAU
• Input: 

– header file (foo.h)
– library to be wrapped (/path/to/libfoo.a)
– technique for wrapping 

• Preprocessor based redefinition (-d) 
• Runtime preloading (-r)
• Linker based substitution (-w: default)

– Optional selective instrumentation file (-f select)
• Exclude list of routines, or
• Include list of routines

• Output: 
– wrapper library 

– optional link_options.tau file (-w), pass –optTauWrapFile=<file> 
in TAU_OPTIONS environment variable
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Design of wrapper generator 
(tau_gen_wrapper)

• tau_gen_wrapper shell script:

– parses source of header file using static analysis tool Program 
Database Toolkit (PDT)

– Invokes tau_wrap, a tool that generates 

• instrumented wrapper code, 

• an optional link_options.tau file (for linker-based substitution, -w)

• Makefile for compiling the wrapper interposition library

– Builds the wrapper library using make

• Use TAU_OPTIONS environment variable to pass location of 
link_options.tau file using 
% export TAU_OPTIONS=‘–
optTauWrapFile=<path/to/link_options.tau> -optVerbose’ 

• Use tau_exec –loadlib=<wrapperlib.so> to pass location of wrapper 
library for preloading based substitution
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tau_wrap
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HDF5 Library Wrapping

46

[sameer@zorak]$ tau_gen_wrapper hdf5.h /usr/lib/libhdf5.a -f select.tau

Usage : tau_gen_wrapper <header> <library> [-r|-d|-w (default)] [-g groupname] [-i 
headerfile] [-c|-c++|-fortran] [-f <instr_spec_file> ]
• instruments using runtime preloading (-r), or -Wl,-wrap linker (-w), redirection 
of header file to redefine the wrapped routine (-d)
• instrumentation specification file (select.tau)
• group (hdf5)
• tau_exec loads libhdf5_wrap.so shared library using –loadlib=<libwrap_pkg.so>
• creates the wrapper/ directory

NODE 0;CONTEXT 0;THREAD 0:
---------------------------------------------------------------------------------------
%Time    Exclusive    Inclusive       #Call      #Subrs  Inclusive Name
              msec   total msec                          usec/call
---------------------------------------------------------------------------------------
100.0        0.057            1           1          13       1236 .TAU Application
 70.8        0.875        0.875           1           0        875 hid_t H5Fcreate()
  9.7         0.12         0.12           1           0        120 herr_t H5Fclose()
  6.0        0.074        0.074           1           0         74 hid_t H5Dcreate()
  3.1        0.038        0.038           1           0         38 herr_t H5Dwrite()
  2.6        0.032        0.032           1           0         32 herr_t H5Dclose()
  2.1        0.026        0.026           1           0         26 herr_t H5check_version()
  0.6        0.008        0.008           1           0          8 hid_t H5Screate_simple()
  0.2        0.002        0.002           1           0          2 herr_t H5Tset_order()
  0.2        0.002        0.002           1           0          2 hid_t H5Tcopy()
  0.1        0.001        0.001           1           0          1 herr_t H5Sclose()
  0.1        0.001        0.001           2           0          0 herr_t H5open()
  0.0            0            0           1           0          0 herr_t H5Tclose()
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Using POSIX I/O wrapper library in TAU

• Setting environment variable TAU_OPTIONS=-optTrackIO links in 
TAU’s wrapper interposition library using linker-based substitution

• Instrumented application generates bandwidth, volume data 
• Workflow:

– % export TAU_OPTIONS=‘-optTrackIO –optVerbose’
– % export TAU_MAKEFILE=/path/to/tau/x86_64/lib/Makefile.tau-mpi-pdt
– % make CC=tau_cc.sh CXX=tau_cxx.sh F90=tau_f90.sh 
– % mpirun –np 8 ./a.out
– % paraprof

• Get additional data regarding individual arguments by setting 
environment variable TAU_TRACK_IO_PARAMS=1 prior to running
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Issues: Preloading a wrapper library at 
runtime

• Preloading a library at runtime
– Tool defines read(), gets address of global read() symbol 

(dlsym), internally calls timing calls around call to global read
– tau_exec tool uses this mechanism to intercept library calls

• Advantages
– No need to re-compile or re-link the application source code
– Drop-in replacement library implemented using LD_PRELOAD 

environment variable under Linux, Cray CNL, IBM BG/P CNK, 
Solaris…

• Disadvantages
– Only works with dynamic executables. Default compilation mode 

under Cray XE6 and IBM BG/P is to use static executables
– Not all operating systems support preloading of dynamic shared 

objects (DSOs)
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Runtime Preloading: tau_exec

• Runtime instrumentation by pre-loading the 
measurement library

• Works on dynamic executables (default under Linux)

• Can substitute I/O, MPI, SHMEM, CUDA, OpenCL, and 
memory allocation/deallocation routines with 
instrumented calls

• Track interval events (e.g., time spent in write()) as well 
as atomic events (e.g., how much memory was 
allocated) in wrappers

• Accurately measure I/O and memory usage

• Preload any wrapper interposition library in the context of 
the executing application
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Preloading a Specific TAU Measurement Library

% ./configure –pdt=<dir> -mpi –papi=<dir>; make install
Creates in <taudir>/<arch>/lib:
Makefile.tau-papi-mpi-pdt
shared-papi-mpi-pdt/libTAU.so

% ./configure –pdt=<dir> -mpi; make install  creates
Makefile.tau-mpi-pdt 
shared-mpi-pdt/libTAU.so

To explicitly choose preloading of shared-<options>/libTAU.so change:
% mpirun –np 8 ./a.out     to
% mpirun –np 8 tau_exec –T <comma_separated_options> ./a.out

% mpirun –np 8 tau_exec –T papi,mpi,pdt ./a.out 
Preloads <taudir>/<arch>/shared-papi-mpi-pdt/libTAU.so 
% mpirun –np 8 tau_exec –T papi ./a.out 
Preloads <taudir>/<arch>/shared-papi-mpi-pdt/libTAU.so by matching.
% mpirun –np 8 tau_exec –T papi,mpi,pdt –s ./a.out
Does not execute the program. Just displays the library that it will preload if executed without 

the –s option. 
NOTE: -mpi configuration is selected by default. Use –T serial for 
Sequential programs.
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TAU Execution Command (tau_exec)

• Uninstrumented execution
– % mpirun –np 8 ./a.out

• Track MPI performance
– % mpirun –np 8  tau_exec ./a.out

• Track POSIX I/O and MPI performance (MPI enabled by default)
– % mpirun –np 8 tau_exec –io  ./a.out

• Track memory operations
– % setenv TAU_TRACK_MEMORY_LEAKS   1
– % mpirun –np 8 tau_exec –memory ./a.out

• Use event based sampling (compile with –g)
– % mpirun –np 8 tau_exec –ebs ./a.out
– Also –ebs_source=<PAPI_COUNTER> -ebs_period=<overflow_count>

• Load wrapper interposition library
– % mpirun –np 8 tau_exec –loadlib=<path/libwrapper.so> ./a.out

• Track GPGPU operations
– % mpirun –np 8 tau_exec –T serial –cupti ./a.out
– % mpirun –np 8 tau_exec –opencl ./a.out
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Profiling GPGPU Executions

• GPGPU compilers (e.g., CAPS hmpp and PGI) can now 
automatically generate GPGPU code using manual 
annotation of loop-level constructs and routines (hmpp)

• The loops (and routines for HMPP) are transferred 
automatically to the GPGPU

• TAU intercepts the runtime library routines and examines 
the arguments

• Shows events as seen from the host 

• Profiles and traces GPGPU execution
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Heterogeneous Architecture

• Multi-CPU, multicore shared memory nodes
• GPU accelerators connected by high-BW I/O
• Cluster interconnection network
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Host (CPU) - GPU Scenarios

• Single GPU

• Multi-stream

• Multi-CPU,
Multi-GPU
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Host-GPU Measurement – 
Callback Method

• GPU driver libraries provide callbacks for certain routines 
and captures measurements

• Measurement tool registers the callbacks and processes 
performance data

• Application code is not modified
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Method Support and Implementation

• Synchronous method
– Place instrumentation appropriately around GPU calls (kernel 

launch, library routine, …)
– Wrap (synchronous) library with performance tool

• Event queue method
– Utilize CUDA and OpenCL event support
– Again, need instrumentation to create and insert events in the 

streams with kernel launch and process events
– Can be implemented with driver library wrapping

• Callback method
– Utilize language-level callback support in OpenCL
– Utilize NVIDIA CUDA Performance Tool Interface (CUPTI)
– Need to appropriately register callbacks
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GPU Performance Measurement Tools

• Support the Host-GPU performance perspective
• Provide integration with existing measurement system to 

facilitate tool use
• Utilize support in GPU driver library and device

• Tools
– TAU performance system
– Vampir
– PAPI
– NVIDIA CUPTI
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GPU Performance Tool 
Interoperability

58



11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

NVIDIA CUPTI

• NVIDIA is developing CUPTI to enable the creation of 
profiling and tracing tools

• Callback API
– Interject tool code at the entry and exist to each CUDA runtime 

and driver API call

• Counter API
– Query, configure, start, stop, and read the counters on CUDA-

enabled devices

• CUPTI is delivered as a dynamic library

• CUPTI is released with CUDA 4.0
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TAU for Heterogeneous Measurement

• Multiple performance perspectives
• Integrate Host-GPU support in TAU measurement 

framework
– Enable use of each measurement approach
– Include use of PAPI and CUPTI
– Provide profiling and tracing support

• Tutorial
– Use TAU library wrapping of libraries
– Use tau_exec to work with binaries

% ./a.out    (uninstrumented)
  % tau_exec –T serial –cupti ./a.out  
  % paraprof 
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Example: SDK simpleMultiGPU

• Demonstration of multiple GPU device use
• main        solverThread        reduceKernel
• One Keeneland node with three GPUs

• Performance profile for:
– One main thread
– Three solverThread threads
– Three reduceKernel “threads”
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simpleMultiGPU Profile

62

Overall profile

Comparison profile

Identified a known
overhead in GPU
context creation
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SHOC FFT Profile with Callsite Info

• TAU is able to associate callsite context information with 
kernel launch so that different kernel calls can be 
distinguished

63

Each kernel (ifft1D_512, fft1D_512 and chk1D_512) is broken down by call-
site, either during the single precession or double precession step.
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Example: SHOC Stencil2D

• Compute 2D, 9-point stencil
– Multiple GPUs using MPI
– CUDA and OpenCL versions

• One Keeneland node with 3 GPUs
• Eight Keeneland nodes with  24 GPUs

• Performance profile and trace
– Application events
– Communication events
– Kernel execution
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Stencil2D Parallel Profile
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Stencil2D Parallel Profile / Trace in Vampir
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Building Bridges to Other Tools
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TAU Analysis
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Example: NAMD with CUPTI
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HMPP SGEMM (CAPS Entreprise)

Host 
Process

Transfer 
Kernel

Compute 
Kernel

Host 
Process

Transfer 
Kernel

Compute 
Kernel
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Profiling PGI Accelerator Primitives

• PGI compiler allows users to annotate source code to 
identify loops that should be accelerated

• When a program is compiled with TAU, its measurement 
library intercepts the PGI runtime library layer to 
measure time spent in the runtime library routines and 
data transfers

• TAU also captures the arguments:
– array data dimensions and sizes, strides, upload and download 

times, variable names, source file names, row and column 
information, and routines
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Example: PGI GPU-accelerated MM 
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PGI MM Computational Kernel
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Instrumentation: Re-writing Binaries

• Support for both static and dynamic executables
• Specify the list of routines to instrument/exclude from 

instrumentation
• Specify the TAU measurement library to be injected

• Simplify the usage of TAU:
– To instrument:

% tau_run a.out –o a.inst

– To perform measurements, execute the application:
% mpirun –np 8 ./a.inst

– To analyze the data:
% paraprof 
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 tau_run with NAS PBS
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TAU Analysis
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Performance Analysis

• Analysis of parallel profile and trace measurement
• Parallel profile analysis (ParaProf)

– Java-based analysis and visualization tool
– Support for large-scale parallel profiles

• Performance data management framework (PerfDMF)
• Parallel trace analysis

– Translation to VTF (V3.0), EPILOG, OTF formats
– Integration with Vampir / Vampir Server (TU Dresden)
– Profile generation from trace data

• Online parallel analysis and visualization
• Integration with CUBE browser (Scalasca, UTK / FZJ)
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ParaProf Profile Analysis Framework
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NAS BT – Flat Profile

79

How is MPI_Wait()
distributed relative to
solver direction?

Application routine names
reflect phase semantics
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NAS BT – Phase Profile

SC 11: Hands-on Practical Hybrid Parallel Application Performance Engineering 80

Main phase shows nested phases and immediate events
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Phase Profiling of HW Counters

• GTC particle-in-cell simulation of fusion turbulence
• Phases assigned to

iterations
• Poor temporal locality for

one important data
• Automatically generated

by PE2 python script

81

increasing phase
execution time

decreasing 
flops rate

declining cache
performance



11th VI-HPS Tuning Workshop, 22-25 April 2013, MdS, Saclay

Profile Snapshots in ParaProf

• Profile snapshots are parallel profiles recorded at 
runtime

• Shows performance profile dynamics (all types 
allowed)

Initialization

Checkpointing

Finalization
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Profile Snapshot Views

• Percentage 
breakdown

• Only show main loop
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Snapshot Replay in ParaProf

All windows dynamically update
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PerfExplorer – Runtime Breakdown

MPI_Waitall

WRITE_SAVEFILE
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PerfExplorer – Relative Comparisons

• Total execution time
• Timesteps per second
• Relative efficiency
• Relative efficiency per event
• Relative speedup
• Relative speedup per event
• Group fraction of total
• Runtime breakdown
• Correlate events with total runtime
• Relative efficiency per phase
• Relative speedup per phase
• Distribution visualizations
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PerfExplorer – Correlation Analysis

87

Data: FLASH on BGL(LLNL), 64 nodes  

Strong negative linear correlation 
between

CALC_CUT_BLOCK_CONTRIBUTION
S

and MPI_Barrier
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PerfExplorer – Correlation Analysis

• -0.995 indicates strong, negative relationship
• As CALC_CUT_

BLOCK_CONTRIBUTIONS() increases in execution 
time, MPI_Barrier() decreases
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PerfExplorer – Cluster Analysis 

SC 11: Hands-on Practical Hybrid Parallel Application Performance Engineering 89
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PerfExplorer – Cluster Analysis

• Four significant events automatically selected
• Clusters and correlations are visible
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PerfExplorer – Performance Regression
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Usage Scenarios: Evaluate Scalability

• Goal: How does my application scale? What 
bottlenecks at what CPU counts?

• Load profiles in PerfDMF database and examine with 
PerfExplorer
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Usage Scenarios: Evaluate Scalability
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Performance Regression Testing
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Evaluate Scalability using PerfExplorer Charts

% export TAU_MAKEFILE=<taudir>/<arch>
/lib/Makefile.tau-mpi-pdt

% export PATH=<taudir>/<arch>/bin:$PATH

% make F90=tau_f90.sh

(Or edit Makefile and change F90=tau_f90.sh)

% qsub  run1p.job

% paraprof -–pack 1p.ppk

% qsub  run2p.job …

% paraprof -–pack 2p.ppk … and so on.

On your client:

% taudb_configure –create-default

% perfexplorer_configure

(Yes to load schema, defaults)

% paraprof 

(load each trial: DB -> Add Trial -> Type (Paraprof Packed 
Profile) -> OK, OR use taudb_loadtrial on the commandline)

% perfexplorer 

(Charts -> Speedup)
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Other Projects in TAU

• TAU Portal
– Support collaborative performance study

• Kernel-level system measurements (KTAU)
– Application to OS noise analysis and I/O system 

analysis
• TAU performance monitoring

– TAUoverSupermon and TAUoverMRNet
• PerfExplorer integration and expert-based analysis

– OpenUH compiler optimizations
– Computational quality of service in CCA

• Eclipse CDT and PTP integration
• Performance tools integration (NSF POINT 

project)
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For more information

• TAU Website:
http://tau.uoregon.edu 

– Software
– Release notes
– Documentation
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