

Introduction to VI-HPS

Brian Wylie

Jülich Supercomputing Centre

Virtual Institute – High Productivity Supercomputing

Goal: Improve the quality and accelerate the development process of complex simulation codes running on highly-parallel computer systems

Start-up funding (2006–2011) by Helmholtz Association of German Research Centres

- Activities
 - Development and integration of HPC programming tools
 - Correctness checking & performance analysis
 - Training workshops
 - Service
 - Support email lists
 - Application engagement
 - Academic workshops

http://www.vi-hps.org

VI-HPS partners (founders)

Forschungszentrum Jülich

Jülich Supercomputing Centre

RWTH Aachen University

Centre for Computing & Communication

Technical University of Dresden

Centre for Information Services & HPC

University of Tennessee (Knoxville)

Innovative Computing Laboratory

VI-HPS partners (cont.)

Barcelona Supercomputing Center

Centro Nacional de Supercomputación

German Research School

Laboratory of Parallel Programming
 Lawrence Livermore National Lab.

Centre for Applied Scientific Computing

Technical University of Munich

Chair for Computer Architecture

University of Oregon

Performance Research Laboratory

University of Stuttgart

■ HPC Centre

University of Versailles St-Quentin

LRC ITACA

Productivity tools

Marmot/MUST

MPI usage correctness checking

PAPI

Interfacing to hardware performance counters

Periscope

Automatic analysis via an on-line distributed search

Scalasca

Large-scale parallel performance analysis

TAU

Integrated parallel performance system

Vampir

Interactive graphical trace visualization & analysis

Score-P

■ Community instrumentation & measurement infrastructure

Productivity tools

KCachegrind

Callgraph-based cache analysis [x86 only]

MAQAO

Assembly instrumentation & optimization [x86 only]

mpiP/mpiPview

MPI profiling tool and analysis viewer

ompP

OpenMP profiling tool

Open MPI

Integrated memory checking

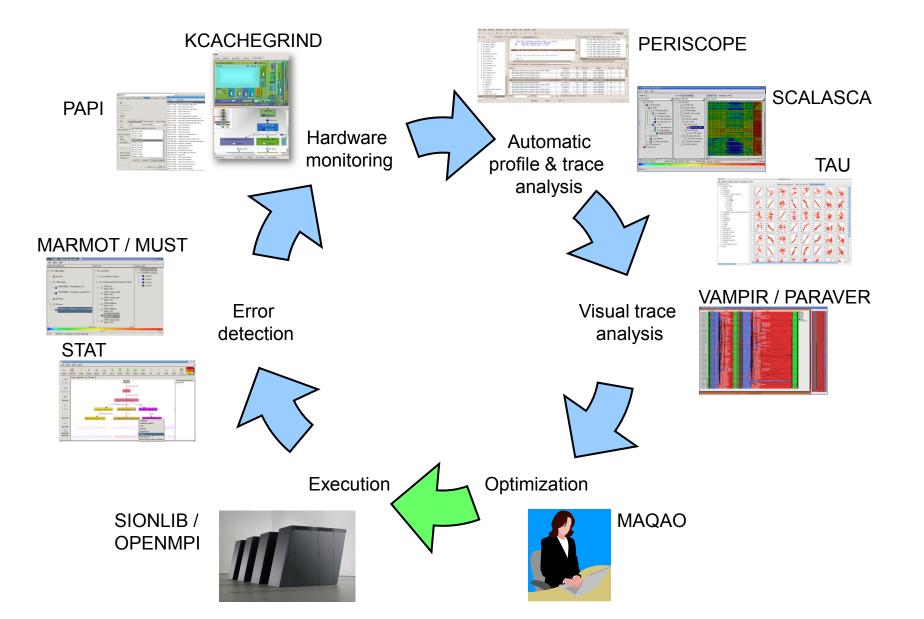
Open|Speedshop

Integrated parallel performance analysis environment

Paraver/Extrae

Event tracing and graphical trace visualization & analysis

SIONlib


Optimized native parallel file I/O

STAT

Stack trace analysis tools

Technologies and their integration

Tools will *not* automatically make you, your applications or computer systems more *productive*.

However, they can help you understand how your parallel code executes and when / where it's necessary to work on correctness and performance issues.

VI-HPS training & Tuning Workshops

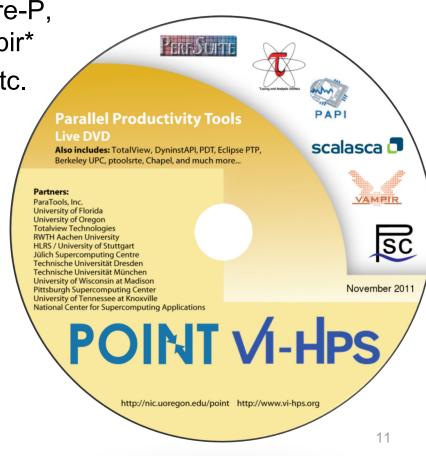
Goals

- Give an overview of the programming tools suite
- Explain the functionality of individual tools
- Teach how to use the tools effectively
- Offer hands-on experience and expert assistance using tools
- Receive feedback from users to guide future development
- For best results, bring & analyze/tune your own code(s)!
- VI-HPS Hands-on Tutorial series
 - SC'08, ICCS'09, SC'09, Cluster'10, SC'10, SC'11, EuroMPI'12,
 XSEDE'13 (San Diego)
- VI-HPS Tuning Workshop series
 - 2008 (Aachen & Dresden), 2009 (Jülich & Bremen),
 2010 (Garching & Amsterdam/NL), 2011 (Stuttgart & Aachen),
 2012 (St-Quentin/F & Garching), 2013 (Saclay/F & Jülich)

Upcoming events

- ISC Extreme Scale Tools Tutorial (16 Jun 2013, Leipzig)
- EuroPar VI-HPS Tools Tutorial (26 Sep 2013, Aachen)
- 12th VI-HPS Tuning Workshop (7-11 Oct 2013, Jülich)
 - Hosted by Jülich Supercomputing Centre, FZJ, Germany
 - Using PRACE Tier-0 Juqueen BlueGene/Q system
 - Score-P, Scalasca, Vampir, TAU, Periscope, MUST, ...
- Further events to be determined
 - (one-day) tutorials
 - With guided exercises usually using a Live-DVD
 - (multi-day) training workshops
 - With your own applications on actual HPC systems
- Check <u>www.vi-hps.org/training</u> for announced events
- Contact us if you might be interested in hosting an event

VI-HPS Linux Live DVD/ISO



- Bootable Linux installation on DVD (or USB memory stick)
- Includes everything needed to try out our parallel tools on an 64-bit x86-architecture notebook computer

 VI-HPS tools: MUST, PAPI, Score-P, Periscope, Scalasca, TAU, Vampir*

Also: Eclipse/PTP, TotalView*, etc.

- * time/capability-limited evaluation licences provided for commercial products
- GCC (w/ OpenMP), OpenMPI
- Manuals/User Guides
- Tutorial exercises & examples
- Produced by U. Oregon PRL
 - Sameer Shende

VI-HPS Linux Live ISO

- ISO image approximately 4GB
 - download latest version from website
 - http://www.vi-hps.org/training/livedvd
 - optionally create bootable DVD or USB drive
- Boot directly from disk
 - enables hardware counter access and offers best performance, but no save/resume
- Boot within virtual machine
 - faster boot time and can save/resume state,
 but may not allow hardware counter access
- Boots into Linux environment for HPC
 - supports building and running provided MPI and/or OpenMP parallel application codes
 - and experimentation with VI-HPS (and third-party) tools