
Introduction to Performance Analysis

Yury Oleynik

oleynik@in.tum.de

Outline

• Motivation for performance tuning

• Performance optimization cycle

• Basics of performance analysis

• Performance analysis techniques

Motivation

• Goal of performance optimization
• Reduce resource consumption to the acceptable limit

or

• Produce more results under a given consumption limit

• Resources:
• Execution time

• Memory consumption

• Power consumption

• …

• Derive non-functional requirements

Motivation – Parallelism

Performance optimization challenges

• High complexity in parallel and distributed systems
• Application

• Algorithm, data structures

• Parallel programming interface

• Compiler, parallel libraries, communication, synchronization

• Operating system

• Process and memory management, IO

• Hardware

• CPU, memory, network

Outline

• Motivation for performance tuning

• Performance optimization cycle

• Basics of performance analysis

• Performance analysis techniques

Performance optimization cycle

Define
requirements

Prepare
experiment

Measure
performance

Analyze
bottlenecks

Tune
application

Validate
results

Defining requirements

• Identify performance optimization objective
• Execution time

• Memory footprint

• …

• Identify the target execution context
• Data set

• Environment configuration

• Algorithms

• Define the acceptance criteria
• Execution time below 4 hours

• Refine requirements if needed
• Consider abortion of the tuning to avoid wasting resources

Define
requirements

Preparing application

• Prepare the test configuration reflecting the

 target execution context

• Design performance experiment
• Execution aspect to be analyzed

• Performance analysis tool to be used

• …

• Instrument application
• Insertion of the probe functions

• Consider granularity vs overhead

• Manual or automatic

Prepare
experiment

Measuring performance

• Prepare execution environment
• Batch scripts

• Environment settings

• Start instrumented application using the selected
performance analysis tool

• Raw performance data is produced

Measure
performance

Analyzing performance

• Process raw performance data
• Visualize

• Compute derived metrics

• Identify application hotspots
• Against the target optimization criteria

• Relate hotspots back to the source code

• Compute severity of the hotspots

• Rank the hotspots, identify bottleneck

• Select hotspots for optimization

Analyze
bottlenecks

Tuning performance

• Identify possible bottleneck optimization recipes
• Compiler optimization

• Loop transformation

• Hardware specific pitfalls

• Choose better algorithms

• …

• Is done manually by application developer…

Tune
application

Validating achieved performance

• Check the acceptance criteria to be satisfied

• Check the correctness of the produced results

• Record the achieved performance and the applied tuning
actions

Validate
results

Outline

• Motivation for performance tuning

• Performance optimization cycle

• Basics of performance analysis

• Performance analysis techniques

Performance analysis, prediction and
benchmarking

• Performance analysis determines the performance on a
given machine.

• Performance prediction allows to evaluate programs for
a hypthetical machine. It is based on:
• runtime data of an actual execution

• machine model of the target machine

• analytical techniques

• simulation techniques

• Benchmarking determines the performance of a
computer system on the basis of a set of typical
applications.

Sequential vs parallel performance

• Factors which influence performance of parallel programs
• “Sequential” factors

• Computation

• Cache and memory

• Input / output

• “Parallel” factors

• Communication (Message passing)

• Threading

• Synchronization

Characterizing performance

• How to decide whether a code performs well:
• Comparison of measured MFLOPS with peak performance

• Comparison with a sequential version

• Estimate distance to ideal
time via overhead classes

• tmem

• tcomm

• tsync

• tred

• ...

1
1 #processors

s
p
e
e
d
u
p

2

2 

tmem

tcomm

tred

p

s

t

t
)p(speedup 

Amdahl's Law

• The speedup of a program using multiple processors in
parallel computing is limited by the time needed for the
sequential fraction of the program.

Source: Wikipedia

)n(t

)n(t
)p(speedup_scaled

pp

ps


Other Performance Metrics

• Scaled speedup
• Problem size grows with machine size

• Parallel efficiency: Percentage of ideal speedup

p*t

t
p/)p(speedup)p(efficiency

p

s

Outline

• Motivation for performance tuning

• Performance optimization cycle

• Basics of performance analysis

• Performance analysis techniques

Performance Engineering

• What the tools can offer?

Performance

Tuning

Performance

Diagnosis

Performance

Experimentation

Performance

Observation

• Instrumentation

• Measurement

• Analysis

• Visualization

Performance

Technology

• Experiment

management

• Performance

data storage

Performance

Technology

• Data mining

• Models

• Expert systems

Performance

Technology

Performance Observation

22

• Understanding performance requires observation of

performance properties.

• Performance tools and methodologies are primarily

distinguished by what observations are made and how.

– How application program is instrumented

– What performance data are obtained

• Tools and methods cover broad range.

Direct Performance Observation

23

• Execution actions exposed as events
– In general, actions reflect some execution state

• presence at a code location or change in data

• occurrence in parallelism context (thread of execution)

– Events encode actions for observation

• Observation is direct
– Direct instrumentation of program code (probes)

– Instrumentation invokes performance monitoring

– Measurement = event + performance data + context

Direct Observation: Instrumentation

24

• Static instrumentation
– Program instrumented prior to execution

• Dynamic instrumentation
– Program instrumented at runtime

• Manual and automatic mechanisms

• Tools required for automatic support
– Source time: preprocessor, translator, compiler

– Link time: wrapper library

– Execution time: binary rewrite, dynamic

• Advantages / disadvantages

Indirect Performance Observation

25

• Events are actions external to program code

• Program code instrumentation is not used

• Performance is observed indirectly
– Execution is interrupted

• can be triggered by different events

– Execution state is queried (sampled)
• different performance data measured

• Performance attribution is inferred
– Determined by execution context (state)

– Observation resolution determined by interrupt period

– Performance data associated with context for period

Direct / Indirect Comparison

26

• Direct performance observation
 Measures performance data exactly

 Links performance data with application events

 Requires instrumentation of code

 Measurement overhead can cause execution
intrusion and possibly performance perturbation

• Indirect performance observation
 Argued to have less overhead and intrusion

 Can observe finer granularity

 No code modification required (may need symbols)

 Inexact measurement and attribution without
hardware support

Critical issues

27

• Accuracy
– Timing and counting accuracy depends on resolution

– Any performance measurement generates overhead
• Execution on performance measurement code

– Measurement overhead can lead to intrusion

– Intrusion can cause perturbation
• alters program behavior

• Granularity
– How many measurements are made

– How much overhead per measurement

• Tradeoff (general wisdom)
– Accuracy is inversely correlated with granularity

Measurement Techniques

28

• How are measurements made?
– Profiling

• summarizes performance data during execution

• per process / thread and organized with respect to context

– Tracing
• trace record with performance data and timestamp

• per process / thread

Profiling

29

• Recording of aggregated information

– Counts, time, …

• … about program and system entities

– Functions, loops, basic blocks, …

– Processes, threads

• Methods

– Event-based sampling (indirect, statistical)

– Direct measurement (deterministic)

Flat and Callpath Profiles

30

• Flat profile
– Performance metrics for when event is active

– Exclusive and inclusive

• Callpath profile
– Performance metrics for calling path (event chain)

– Differentiate performance with respect to program
execution state

– Exclusive and inclusive

inclusive
duration

exclusive
duration

int foo()
{
 int a;
 a = a + 1;

 bar();

 a = a + 1;
 return a;
}

Inclusive and Exclusive Profiles

31

• Performance with respect to code regions

• Exclusive measurements for region only

• Inclusive measurements includes child regions

void master {

 ...

 send(B, tag, buf);
 ...

}

Process A:

void slave {

 ...
 recv(A, tag, buf);

 ...

}

Process B:

void worker {

 ...
 recv(A, tag, buf);

 ...

}

void master {

 ...

 send(B, tag, buf);
 ...

} 58 A ENTER 1

60 B ENTER 2

62 A SEND B

64 A EXIT 1

68 B RECV A

...

69 B EXIT 2

...

1 master

2 worker

3 ...

 trace(ENTER, 1);

 trace(SEND, B);

 trace(EXIT, 1);

 trace(ENTER, 2);

 trace(RECV, A);

 trace(EXIT, 2);

MONITOR

Trace File Generation

1 master

2 worker

3 ...

58 A ENTER 1

60 B ENTER 2

62 A SEND B

64 A EXIT 1

68 B RECV A

...

69 B EXIT 2

...

main

master

worker

58 60 62 64 66 68 70

B

A

Trace Analysis and Visualization

Profiling / Tracing Comparison

34

• Profiling
 Finite, bounded performance data size

 Applicable to both direct and indirect methods

 Loses time dimension (not entirely)

 Lacks ability to fully describe process interaction

• Tracing
 Temporal and spatial dimension to performance data

 Capture parallel dynamics and process interaction

 Some inconsistencies with indirect methods

 Unbounded performance data size (large)

 Complex event buffering and clock synchronization

Thank you!

Questions?

