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Additional Live-DVD example experiments

● Example experiment archives provided for examination:
■ jugene_sweep3d

► 294,912 & 65,536 MPI processes on BG/P (trace)
■ jump_zeusmp2

► 512 MPI processes on p690 cluster (summary & trace)
■ marenostrum_wrf-nmm

► 1600 MPI processes on JS21 blade cluster, solver extract
► summary analysis with 8 PowerPC hardware counters
► trace analysis showing NxN completion problem on some blades

■ neptun_jacobi
► 12 MPI processes, or 12 OpenMP threads, or 4x3 hybrid 

parallelizations implemented in C, C++ & Fortran on SGI Altix
■ ranger_smg2000

► 12,288 MPI processes on Sun Constellation cluster, solve extract



Scalasca NPB-BT experiments

● Comparison of NPB-BT class A in various configurations 
run on a single dedicated 16-core cluster compute node
■ 16 MPI processes

► optionally built using MPI File I/O (e.g., SUBTYPE=full)
► optionally including PAPI counter metrics in measurement

(e.g., EPK_METRICS=PAPI_FP_OPS:DISPATCH_STALLS)
■ 16 OpenMP threads
■ 4 MPI processes each with 4 OpenMP threads (MZ-MPI)

● NPB-BT-MZ class B on Cray XT5 (8-core compute nodes)
■ 32 MPI processes with OMP_NUM_THREADS=8

► More threads created on some processes (and fewer on others) 
as application attempts to balance work distribution

● NPB-MPI-BT on BlueGene/P with 144k processes
■ 1536x1536x1536 gridpoints distributed on 384x384 processes

Concurrency & Computation: Practice & Experience 22(6):702-719 (2010)



16-process trace analysis



16-process summary analysis with HWC metrics

EPK_METRICS = PAPI_TOT_CYC:PAPI_TOT_INS:PAPI_FP_OPS:DISPATCH_STALLS



16-process summary analysis: MPI File I/O time

BT-MPI SUBTYPE=full
using collective MPI file I/O
has imbalance during read

MPI file statistics



16-process summary analysis: MPI File I/O time

BT-MPI SUBTYPE=simple
using individual MPI file I/O
is balanced but much slower

MPI file statistics



16-thread summary analysis: Execution time

Thread 15 finishes
its work fastest ...



16-thread summary analysis: Implicit barrier time

... but must then wait
longest at end of loop



16-thread summary analysis: Thread fork time

Less than 1% overhead
for thread management



16-thread summary analysis: Idle threads time

99.74% of execution time
found in parallel regions



4x4 summary analysis: Execution time

Fourth thread in team
generally has lighter load



4x4 summary analysis: OpenMP time

9% OpenMP time mostly
found at implicit barriers



4x4 summary analysis: Idle threads time

9% of total time wasted
with idle/unused threads



4x4 summary analysis: MPI time

2.75% MPI time only
found on master threads



4x4 combined summary & trace analysis



32x8 summary analysis: Excl. execution time

Generally good process
and thread load balance



32x8 summary analysis: Limited parallelism

Even through a number
of threads are never used



32x8 summary analysis: Idle threads time

However, serial execution
sections are prevalent ...



32x8 summary analysis: MPI communication time

... typically while master
thread communicating



32x8 summary analysis: Implicit barrier time

Thread imbalance also
results in substantial loss



32x8 summary analysis: Thread management

Thread management cost
high with over-subscription



32x8 summary analysis: Critical section time

Atomic statements during
verification are efficient



NPB-MPI-BT on BlueGene/P case study

● 3D solution of unsteady, compressible Navier-Stokes eqs
■ NASA NAS parallel benchmark suite Block-Tridiagonal solver
■ series of ADI solve steps in X, Y & Z dimensions
■ ~9,500 lines (20 source modules), mostly Fortran77

● Run on IBM BlueGene/P in VN mode with 144k processes
■ Good scaling when problem size matched to architecture

► 1536x1536x1536 gridpoints mapped onto 384x384 processes
■ Measurement collection took 53 minutes
■ 38% dilation for summarization measurement compared to 

uninstrumented execution (using 10 function filter)
■ MPI trace size would be 18.6TB
■ 25% of time in ADI is point-to-point communication time

► 13% copy_faces, 23% x_solve, 33% y_solve, 31% z_solve
■ 128s for a single MPI_Comm_split during setup!
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NPB-MPI-BT on jugene@144k summary analysis

Highest waiting times
in corners and along
edges of BG/P torus
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NPB-MPI-BT on jugene@144k summary analysis

Regular grid pattern
with curious crossover
along middle partition



AMMP on Altix case study

● Molecular mechanics simulation
■ original version developed by Robert W. Harrison

● SPEC OMP benchmark parallel version
■ ~14,000 lines (in 28 source modules): 100% C

● Run with 32 threads on SGI Altix 4700 at TUD-ZIH
■ Built with Intel compilers
■ 333 simulation timesteps for 9,582 atoms

● Scalasca summary measurement
■ Minimal measurement dilation
■ 60% of total time lost in synchronization with lock API
■ 12% thread management overhead
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ammp on jupiter@32 OpenMP lock analysis

OpenMP
metrics
reworked
with v1.2

Lots of explicit lock
synchronization is a
scalability inhibitor
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ammp on jupiter@32 OpenMP fork analysis

OpenMP
metrics
reworked
with v1.2

Thread management
costs vary by parallel
region & num_threads



GemsFDTD case study

● Computational electromagnetics solver
■ originates from KTH General ElectroMagnetics Solvers project
■ finite-difference time-domain method for Maxwell equations

● MPI parallel versions in SPEC MPI2007 benchmark suite
■ original v1.1 (113.GemsFDTD) “medium” size
■ revised v2.0 (145.lGemsFDTD) “large” size
■ built with PGI 9.0.4 Fortran90 compiler (21k lines of code)

► typical benchmark optimization: -fastsse -O3 -Mipa=fast,inline

● Both run on 'hector' Cray XT4 at EPCC
■ using “ltrain” dataset from v2.0 benchmark (50 timesteps)
■ default Scalasca instrumentation for measurements

► 9 of 90 application user-level source routines specified in filter 
determined by scoring initial summary experiment

Proc. 10th Int'l Workshop PARA (Reykjavík, Iceland, 2010)



• Solver iterations appear to scale very reasonably

• Execution time increases exponentially
• Due to very expensive initialization

• Scalability of the initial benchmark version (v1) was disappointing
  and prevented execution at larger scales.
• Motivated comprehensive performance analysis to isolate
  scalability problems, and ultimately re-engineering to resolve them.

['ltrain' runs
on CrayXT4
HECToR]

GemsFDTD v1 scalability on Cray XT4



['ltrain' runs
on CrayXT4
HECToR]

GemsFDTD v1 & v2 scalability on Cray XT4

• Performance & scalability of
  solver iterations also improved

• Much better initialization time benefits entire code
• but still relatively expensive compared to solver



Time for initialization broadcasts (v1.1)

• Over 92% of total time for broadcasts
  distributing parameters & working set

• 37,464 broadcasts in total
(most of them only 4 byes)
from rank 0



Computation time in solver transforms (v1.1)

• Each solver component routine has
a different imbalance, in severe cases
leaving some processes without work



GemsFDTD case study

● Initialization originally dominated by numerous broadcasts 
and expensive serial multiblock partition by rank 0
■ Re-engineered implementation of scalable partition routine, 

aggregation of multiple data values into larger messages, and 
postpones allocations until all block information in broadcast
► Initialization time reduced to less than 2% of total time

● Solver iterations using blocking communication manifests 
as Late Sender waiting originating from imbalance in local 
computation time (due to different computations)
■ Re-engineered implementation uses non-blocking comms and 

re-uses communication pattern used to exchange blocks
(as well as 2 of 256 processes unintentially idled throughout)
► computation & communication time both improved more than 25%

● Scalabilty improved from 128 processes to more than 1024



COSMO-7/XE6 case study

● Regional climate and weather model
■ developed by Consortium for Small-scale Modeling (COSMO)

► DWD, MeteoSwiss and others
■ non-hydrostatic limited-area atmospheric model (6.6km grid)

● MPI parallel version 4.12 (Jan-2011)
■ built with PGI 10.9 Fortran90 compiler (222k lines of code)

● MeteoSwiss operational 24-hour forecast of 06-Dec-2010
■ Western Europe 393x338x60 resolution, 1440 timesteps

● Run with 984 processes on 'palu' Cray XE6 at CSCS
■ 28x35 compute grid + 4 dedicated I/O processes
■ used 41 Opteron compute nodes each with 24 cores
■ Scalasca trace measurement with 19 of 178 routines filtered
■ 44GB trace written in 23s and analyzed in 82s

Courtesy of Oliver Fuhrer (MeteoSwiss) & CSCS



COSMO/XE6 physics computation time

Distribution of
compute time
for 2 cabinets
[gray=unused]

4 ranks 980–983
dedicated for I/O

56% of total time is local computation,
of which 21% is in organize_physics



COSMO/XE6 physics computation time

56% of total time is local computation,
of which 21% is in organize_physics

Application's 28x35
MPI Cartesian topology



COSMO/XE6 physics computation imbalance

Refinement of origin of time
executing local computation



COSMO/XE6 computational overload (geo)

Geographical origin of some
computational overload ...

COSMO-7



COSMO/XE6 computational overload (hydro)

… but 5x more overload
moves with cloud and rain
computations of snowstorm



COSMO/XE6 collective wait at N x N time

~5% of total time blocked
waiting in MPI_Allreduces



COSMO/XE6 late sender waiting time

10% of total time blocked in
Late Sender communication
in exchg_boundaries ...



COSMO/XE6 late sender communications

… however, most instances
of Late Senders for receives
in organize_dynamics



COSMO-7/XE6 performance review

● 56% of total time in local computation
■ 32% in dynamics which is quite well balanced (11% std.dev)
■ 12% in physics is rather less well balanced (17% std.dev)
■ much of the imbalance is inherently physical/geographical

● 44% of total time in MPI
■ 5% collective synchronization (92% output_data)
■ 24% collective communication

► 14% for MPI_Gather operations in output_data
► 5% “Wait at NxN” mostly in dynamics check_cfl_horiz_advection

■ 15% point-to-point communication (91% exchg_boundaries)
► 10% “Late Sender” time (44% dynamics, 36% physics)
► 36% of receives are for “Late Senders” (95% in dynamics)

● Communication associated with file I/O was a major factor
■ the 4 dedicated I/O processes idle 95% of the time



WRF/MareNostrum case study

● Numerical weather prediction
■ public domain code developed by US NOAA
■ flexible, state-of-the-art atmospheric simulation
■ Non-hydrostatic Mesoscale Model (NMM)

● MPI parallel version 2.1.2 (Jan-2006)
■ >315,000 lines (in 480 source modules): 75% Fortran, 25% C

● Eur-12km dataset configuration
■ 3-hour forecast (360 timesteps) with checkpointing disabled

● Run with 1600 processes on MareNostrum
■ IBM BladeCenter cluster at BSC

● Scalasca summary and trace measurements
■ 15% measurement dilation with 8 hardware counters
■ 23GB trace analysis in 5 mins

Journal of Scientific Programming 16(2-3):167-181 (2008)
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WRF on MareNostrum@1600 with HWC metrics

Distribution of
data load hits in
level 2 cache on
application MPI
2D grid topology
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WRF on MareNostrum@1600 trace analysis

Imbalance
at exit from
Allreduce

MareNostrum
JS21 topology
shows blades
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WRF on MareNostrum@1600 time-line extract

Some ranks require extra 1.75s
to complete 51st MPI_Allreduce



WRF/MareNostrum experience

● Limited system I/O requires careful management
■ Selective instrumentation and measurement filtering

● PowerPC hardware counter metrics included in summary
■ Memory/cache data access hierarchy constructed

● Automated trace analysis quantified impact of imbalanced 
exit from MPI_Allreduce in “NxN completion time” metric
■ Intermittent but serious MPI library/system problem,

that restricts application scalability
■ Only a few processes directly impacted, however, 

communication partners also quickly blocked
● Presentation using logical and physical topologies 

■ MPI Cartesian topology provides application insight
■ Hardware topology helps localize system problems

Journal of Scientific Programming 16(2-3):167-181 (2008)



Hæmodynamic flow
pressure distributionPartitioned finite-element mesh

XNS on BlueGene/L case study

● CFD simulation of unsteady flows
■ developed by RWTH CATS group of Marek Behr
■ exploits finite-element techniques, unstructured 3D meshes, 

iterative solution strategies
● MPI parallel version (Dec-2006)

■ >40,000 lines of Fortran & C
■ DeBakey blood-pump dataset (3,714,611 elements)



XNS-DeBakey on jubl@4096 summary analysis

Masses of
P2P synch
operations

Processes
all equally

responsible

Point-to-
point msgs
w/o data

Primarily
in scatter
& gather

Primarily
in scatter
& gather



XNS-DeBakey scalability on BlueGene/L

Original
performance
peaked at 
132 ts/hr

3.5x overall
improvement
to 461 ts/hr



XNS on BlueGene/L experience

● Globally synchronized high-resolution clock facilitates 
efficient measurement & analysis

● Restricted compute node memory limits trace buffer size and 
analyzable trace size

● Summarization identified bottleneck due to unintended P2P 
synchronizations (messages with zero-sized payload)

● 4x solver speedup after replacing MPI_Sendrecv operations 
with size-dependant separate MPI_Send and MPI_Recv

● Significant communication imbalance remains due to mesh 
partitioning and mapping onto processors

● MPI_Scan implementation found to contain implicit barrier
■ responsible for 6% of total time with 4096 processes
■ decimated when substituted with simultaneous binomial tree

Proc. 14th EuroPVM/MPI, LNCS 4757 (2007)



PEPC-B on BG/P & Cray XT case study

● Coulomb solver used for laser-plasma simulations
■ Developed by Paul Gibbon (JSC)
■ Tree-based particle storage with dynamic load-balancing

● MPI version
■ PRACE benchmark configuration, including file I/O

● Run on BlueGene/P in dual mode with 1024 processes
■ 2 processes per quad-core PowerPC node, 1100 seconds
■ IBM XL compilers, MPI library and torus/tree interconnect

● Run on Cray XT in VN (4p) mode with 1024 processes
■ 4 processes per quad-core Opteron node, 360 seconds
■ PGI compilers and Cray MPI, CNL, SeaStar interconnect

Proc. 52nd Cray User Group (Edinburgh, 2010)



PEPC@1024 on BlueGene/P: Wait at NxN time

Time waiting for last rank
to enter MPI_Allgather



PEPC@1024 on Cray XT4: Wait at NxN time

Time waiting for last rank
to enter MPI_Allgather



PEPC-B on BG/P & Cray XT experience

● Despite very different processor and network performance, 
measurements and analyses can be easily compared
■ different compilers affect function naming & in-lining

● Both spend roughly two-thirds of time in computation
■ tree_walk has expensive computation & communication

● Both waste 30% of time waiting to enter MPI_Barrier
■ not localized to particular processes, since particles are 

regularly redistributed
● Most of collective communication time is also time waiting 

for last ranks to enter MPI_Allgather & MPI_Alltoall
■ imbalance for MPI_Allgather twice as severe on BlueGene/P, 

however, almost 50x less for MPI_Alltoall
■ collective completion times also notably longer on Cray XT

Proc. 52nd Cray User Group (Edinburgh, 2010)



PFLOTRAN on BlueGene/P case study

● 3D reservoir simulator combining alternating
■ PFLOW non-isothermal, multiphase groundwater flow
■ PTRAN reactive, multi-component contaminant transport
■ developed by LANL/ORNL/PNNL

● MPI with PETSc, LAPACK, BLAS & HDF5 I/O libraries
■ ~80,000 lines (97 source files) Fortran9X
■ PFLOTRAN & PETSc fully instrumented by IBM XL compilers

► filter produced listing 856 USR routines (leaving 291 COM)
► 1732 unique callpaths (399 in FLOW, 375 in TRAN)
► 633 MPI callpaths (121 in FLOW, 114 in TRAN)

▬ 29 distinct MPI routines recorded (excludes 15 misc. routines)

● Run on IBM BlueGene/P with '2B' input dataset (10 steps)
■ Scalasca summary & trace measurements (some with PAPI)
■ 22% dilation of FLOW, 10% dilation of TRAN [8k summary]

Proc. 53rd Cray User Group (Fairbanks, 2011)



PFLOTRAN jugene@smp8192 trace analysis

73% of calculation time
is in TRAN solver on
almost all processes

mailto:jugene@smp8192


PFLOTRAN jugene@smp8192 trace analysis

Distribution of floating-
point operations is
almost identical

mailto:jugene@smp8192


PFLOTRAN jugene@smp8192 trace analysis

Significant underload
for a relatively small
number of processes

mailto:jugene@smp8192


PFLOTRAN jugene@smp8192 trace analysis

… results in extended
communication times
(11% of execution)

mailto:jugene@smp8192


PFLOTRAN jugene@smp8192 trace analysis

… most of which is
actually waiting time
(7.5% of execution)

mailto:jugene@smp8192


Geology of DOE Hanford 300 area (WA, USA) 

Hanford sands and gravels

Ringold fine-grained silts

Ringold gravels

Z

Y

X
Columbia River hyporheic zone

Computational imbalance
(and associated waiting time)
correlate to inactive grid cells

(6-7% of total) within river

Image from Glenn Hammond (PNNL)



PFLOTRAN jugene@smp8192 trace analysis

MPI File I/O reading
input dataset amounts
to 1% of total time

mailto:jugene@smp8192


PFLOTRAN jugene@smp8192 trace analysis

MPI_Comm_dup calls
inside PETSc & HDF5
require >1% of time

mailto:jugene@smp8192


PFLOTRAN on BlueGene/P experience

● Initialization phase dominates at larger scales
■ 10% of total execution time spent duplicating communicators 

with 128k processes on Cray XT5
■ otherwise collective MPI File I/O relatively efficient
■ typically amortized in long simulation runs

● Solver scaled well to 64k processes before degrading
■ similar computation/communication patterns in FLOW & TRAN

► callpath profiles distinguish costs
► MPI_Allreduce collective communication becomes a bottleneck
► communication overhead explodes for smaller FLOW problem

▬ TRAN problem is 15x larger due to 15 chemical species

■ inactive processes induce clear computational imbalance
► and are associated with large amounts of MPI waiting time
► however, they constitute a relatively small minority

Proc. 53rd Cray User Group (Fairbanks, 2011)



Sweep3d on BlueGene/P case study

● 3D neutron transport simulation
■ ASC benchmark
■ direct order solve uses diagonal sweeps through grid cells
■ 'fixups' applied to correct unphysical (negative) fluxes

● MPI parallel version 2.2b using 2D domain decomposition
■ ~2,000 lines (12 source modules), mostly Fortran77

● Run on IBM BlueGene/P in VN mode with 288k processes
■ 7.6TB trace written in 17 minutes, analyzed in 10 minutes

► of which 10 minutes for SIONlib open/create of 576 physical files
► (compared to 86 minutes just to open/create a file per MPI rank)

■ Mapping of metrics onto application's 576x512 process grid 
reveals regular pattern of performance artifacts
► computational imbalance originates from 'fixup' calculations
► combined with diagonal wavefront sweeps amplifies waiting times

Proc. IPDPS Workshop on Large-Scale Parallel Processing (2010)



70

sweep3d on jugene@288k trace analysis

Computation time of
86.71±1.8% seconds
shown by BG/P rack
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sweep3d on jugene@288k trace analysis

Computation time
presented using 
application's 2D grid
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sweep3d on jugene@288k trace (wait) analysis

Late Receiver time
complements sweep
computation time



Sweep3d on Cray XT5 case study

● 3D neutron transport simulation
■ ASC benchmark
■ direct order solve uses diagonal sweeps through grid cells
■ 'fixups' applied to correct unphysical (negative) fluxes

● MPI parallel version 2.2b using 2D domain decomposition
■ ~2,000 lines (12 source modules), mostly Fortran77

● Run on Cray XT5 with 192k processes
■ 0.5TB trace written in 10 minutes, analyzed in 4 minutes

► 6 minutes to open/create trace file for each rank
► 25s for timestamp correction, 93s for parallel event replay

■ Mapping of metrics onto application's 512x384 process grid 
reveals regular pattern of performance artifacts
► computational imbalance originates from 'fixup' calculations
► combined with diagonal wavefront sweeps amplifies waiting times

Parallel Processing Letters 20(4):397-414 (2010)



Regular imbalance in
excl. execution time
for sweep computation

sweep3d on jaguar@192k trace analysis
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Scalable performance analysis
 of large-scale parallel applications
■ toolset for scalable performance measurement & analysis

of MPI, OpenMP & hybrid parallel applications
■ supporting most popular HPC computer systems
■ available under New BSD open-source license
■ sources, documentation & publications:

► http://www.scalasca.org
► mailto: scalasca@fz-juelich.de

http://www.scalasca.org/
mailto:scalasca@fz-juelich.de
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