
Performance analysis & tuning
case studies

Brian Wylie & Markus Geimer
Jülich Supercomputing Centre

scalasca@fz-juelich.de
April 2012

Additional Live-DVD example experiments

● Example experiment archives provided for examination:
■ jugene_sweep3d

► 294,912 & 65,536 MPI processes on BG/P (trace)
■ jump_zeusmp2

► 512 MPI processes on p690 cluster (summary & trace)
■ marenostrum_wrf-nmm

► 1600 MPI processes on JS21 blade cluster, solver extract
► summary analysis with 8 PowerPC hardware counters
► trace analysis showing NxN completion problem on some blades

■ neptun_jacobi
► 12 MPI processes, or 12 OpenMP threads, or 4x3 hybrid

parallelizations implemented in C, C++ & Fortran on SGI Altix
■ ranger_smg2000

► 12,288 MPI processes on Sun Constellation cluster, solve extract

Scalasca NPB-BT experiments

● Comparison of NPB-BT class A in various configurations
run on a single dedicated 16-core cluster compute node
■ 16 MPI processes

► optionally built using MPI File I/O (e.g., SUBTYPE=full)
► optionally including PAPI counter metrics in measurement

(e.g., EPK_METRICS=PAPI_FP_OPS:DISPATCH_STALLS)
■ 16 OpenMP threads
■ 4 MPI processes each with 4 OpenMP threads (MZ-MPI)

● NPB-BT-MZ class B on Cray XT5 (8-core compute nodes)
■ 32 MPI processes with OMP_NUM_THREADS=8

► More threads created on some processes (and fewer on others)
as application attempts to balance work distribution

● NPB-MPI-BT on BlueGene/P with 144k processes
■ 1536x1536x1536 gridpoints distributed on 384x384 processes

Concurrency & Computation: Practice & Experience 22(6):702-719 (2010)

16-process trace analysis

16-process summary analysis with HWC metrics

EPK_METRICS = PAPI_TOT_CYC:PAPI_TOT_INS:PAPI_FP_OPS:DISPATCH_STALLS

16-process summary analysis: MPI File I/O time

BT-MPI SUBTYPE=full
using collective MPI file I/O
has imbalance during read

MPI file statistics

16-process summary analysis: MPI File I/O time

BT-MPI SUBTYPE=simple
using individual MPI file I/O
is balanced but much slower

MPI file statistics

16-thread summary analysis: Execution time

Thread 15 finishes
its work fastest ...

16-thread summary analysis: Implicit barrier time

... but must then wait
longest at end of loop

16-thread summary analysis: Thread fork time

Less than 1% overhead
for thread management

16-thread summary analysis: Idle threads time

99.74% of execution time
found in parallel regions

4x4 summary analysis: Execution time

Fourth thread in team
generally has lighter load

4x4 summary analysis: OpenMP time

9% OpenMP time mostly
found at implicit barriers

4x4 summary analysis: Idle threads time

9% of total time wasted
with idle/unused threads

4x4 summary analysis: MPI time

2.75% MPI time only
found on master threads

4x4 combined summary & trace analysis

32x8 summary analysis: Excl. execution time

Generally good process
and thread load balance

32x8 summary analysis: Limited parallelism

Even through a number
of threads are never used

32x8 summary analysis: Idle threads time

However, serial execution
sections are prevalent ...

32x8 summary analysis: MPI communication time

... typically while master
thread communicating

32x8 summary analysis: Implicit barrier time

Thread imbalance also
results in substantial loss

32x8 summary analysis: Thread management

Thread management cost
high with over-subscription

32x8 summary analysis: Critical section time

Atomic statements during
verification are efficient

NPB-MPI-BT on BlueGene/P case study

● 3D solution of unsteady, compressible Navier-Stokes eqs
■ NASA NAS parallel benchmark suite Block-Tridiagonal solver
■ series of ADI solve steps in X, Y & Z dimensions
■ ~9,500 lines (20 source modules), mostly Fortran77

● Run on IBM BlueGene/P in VN mode with 144k processes
■ Good scaling when problem size matched to architecture

► 1536x1536x1536 gridpoints mapped onto 384x384 processes
■ Measurement collection took 53 minutes
■ 38% dilation for summarization measurement compared to

uninstrumented execution (using 10 function filter)
■ MPI trace size would be 18.6TB
■ 25% of time in ADI is point-to-point communication time

► 13% copy_faces, 23% x_solve, 33% y_solve, 31% z_solve
■ 128s for a single MPI_Comm_split during setup!

25

NPB-MPI-BT on jugene@144k summary analysis

Highest waiting times
in corners and along
edges of BG/P torus

26

NPB-MPI-BT on jugene@144k summary analysis

Regular grid pattern
with curious crossover
along middle partition

AMMP on Altix case study

● Molecular mechanics simulation
■ original version developed by Robert W. Harrison

● SPEC OMP benchmark parallel version
■ ~14,000 lines (in 28 source modules): 100% C

● Run with 32 threads on SGI Altix 4700 at TUD-ZIH
■ Built with Intel compilers
■ 333 simulation timesteps for 9,582 atoms

● Scalasca summary measurement
■ Minimal measurement dilation
■ 60% of total time lost in synchronization with lock API
■ 12% thread management overhead

28

ammp on jupiter@32 OpenMP lock analysis

OpenMP
metrics
reworked
with v1.2

Lots of explicit lock
synchronization is a
scalability inhibitor

29

ammp on jupiter@32 OpenMP fork analysis

OpenMP
metrics
reworked
with v1.2

Thread management
costs vary by parallel
region & num_threads

GemsFDTD case study

● Computational electromagnetics solver
■ originates from KTH General ElectroMagnetics Solvers project
■ finite-difference time-domain method for Maxwell equations

● MPI parallel versions in SPEC MPI2007 benchmark suite
■ original v1.1 (113.GemsFDTD) “medium” size
■ revised v2.0 (145.lGemsFDTD) “large” size
■ built with PGI 9.0.4 Fortran90 compiler (21k lines of code)

► typical benchmark optimization: -fastsse -O3 -Mipa=fast,inline

● Both run on 'hector' Cray XT4 at EPCC
■ using “ltrain” dataset from v2.0 benchmark (50 timesteps)
■ default Scalasca instrumentation for measurements

► 9 of 90 application user-level source routines specified in filter
determined by scoring initial summary experiment

Proc. 10th Int'l Workshop PARA (Reykjavík, Iceland, 2010)

• Solver iterations appear to scale very reasonably

• Execution time increases exponentially
• Due to very expensive initialization

• Scalability of the initial benchmark version (v1) was disappointing
 and prevented execution at larger scales.
• Motivated comprehensive performance analysis to isolate
 scalability problems, and ultimately re-engineering to resolve them.

['ltrain' runs
on CrayXT4
HECToR]

GemsFDTD v1 scalability on Cray XT4

['ltrain' runs
on CrayXT4
HECToR]

GemsFDTD v1 & v2 scalability on Cray XT4

• Performance & scalability of
 solver iterations also improved

• Much better initialization time benefits entire code
• but still relatively expensive compared to solver

Time for initialization broadcasts (v1.1)

• Over 92% of total time for broadcasts
 distributing parameters & working set

• 37,464 broadcasts in total
(most of them only 4 byes)
from rank 0

Computation time in solver transforms (v1.1)

• Each solver component routine has
a different imbalance, in severe cases
leaving some processes without work

GemsFDTD case study

● Initialization originally dominated by numerous broadcasts
and expensive serial multiblock partition by rank 0
■ Re-engineered implementation of scalable partition routine,

aggregation of multiple data values into larger messages, and
postpones allocations until all block information in broadcast
► Initialization time reduced to less than 2% of total time

● Solver iterations using blocking communication manifests
as Late Sender waiting originating from imbalance in local
computation time (due to different computations)
■ Re-engineered implementation uses non-blocking comms and

re-uses communication pattern used to exchange blocks
(as well as 2 of 256 processes unintentially idled throughout)
► computation & communication time both improved more than 25%

● Scalabilty improved from 128 processes to more than 1024

COSMO-7/XE6 case study

● Regional climate and weather model
■ developed by Consortium for Small-scale Modeling (COSMO)

► DWD, MeteoSwiss and others
■ non-hydrostatic limited-area atmospheric model (6.6km grid)

● MPI parallel version 4.12 (Jan-2011)
■ built with PGI 10.9 Fortran90 compiler (222k lines of code)

● MeteoSwiss operational 24-hour forecast of 06-Dec-2010
■ Western Europe 393x338x60 resolution, 1440 timesteps

● Run with 984 processes on 'palu' Cray XE6 at CSCS
■ 28x35 compute grid + 4 dedicated I/O processes
■ used 41 Opteron compute nodes each with 24 cores
■ Scalasca trace measurement with 19 of 178 routines filtered
■ 44GB trace written in 23s and analyzed in 82s

Courtesy of Oliver Fuhrer (MeteoSwiss) & CSCS

COSMO/XE6 physics computation time

Distribution of
compute time
for 2 cabinets
[gray=unused]

4 ranks 980–983
dedicated for I/O

56% of total time is local computation,
of which 21% is in organize_physics

COSMO/XE6 physics computation time

56% of total time is local computation,
of which 21% is in organize_physics

Application's 28x35
MPI Cartesian topology

COSMO/XE6 physics computation imbalance

Refinement of origin of time
executing local computation

COSMO/XE6 computational overload (geo)

Geographical origin of some
computational overload ...

COSMO-7

COSMO/XE6 computational overload (hydro)

… but 5x more overload
moves with cloud and rain
computations of snowstorm

COSMO/XE6 collective wait at N x N time

~5% of total time blocked
waiting in MPI_Allreduces

COSMO/XE6 late sender waiting time

10% of total time blocked in
Late Sender communication
in exchg_boundaries ...

COSMO/XE6 late sender communications

… however, most instances
of Late Senders for receives
in organize_dynamics

COSMO-7/XE6 performance review

● 56% of total time in local computation
■ 32% in dynamics which is quite well balanced (11% std.dev)
■ 12% in physics is rather less well balanced (17% std.dev)
■ much of the imbalance is inherently physical/geographical

● 44% of total time in MPI
■ 5% collective synchronization (92% output_data)
■ 24% collective communication

► 14% for MPI_Gather operations in output_data
► 5% “Wait at NxN” mostly in dynamics check_cfl_horiz_advection

■ 15% point-to-point communication (91% exchg_boundaries)
► 10% “Late Sender” time (44% dynamics, 36% physics)
► 36% of receives are for “Late Senders” (95% in dynamics)

● Communication associated with file I/O was a major factor
■ the 4 dedicated I/O processes idle 95% of the time

WRF/MareNostrum case study

● Numerical weather prediction
■ public domain code developed by US NOAA
■ flexible, state-of-the-art atmospheric simulation
■ Non-hydrostatic Mesoscale Model (NMM)

● MPI parallel version 2.1.2 (Jan-2006)
■ >315,000 lines (in 480 source modules): 75% Fortran, 25% C

● Eur-12km dataset configuration
■ 3-hour forecast (360 timesteps) with checkpointing disabled

● Run with 1600 processes on MareNostrum
■ IBM BladeCenter cluster at BSC

● Scalasca summary and trace measurements
■ 15% measurement dilation with 8 hardware counters
■ 23GB trace analysis in 5 mins

Journal of Scientific Programming 16(2-3):167-181 (2008)

47

WRF on MareNostrum@1600 with HWC metrics

Distribution of
data load hits in
level 2 cache on
application MPI
2D grid topology

48

WRF on MareNostrum@1600 trace analysis

Imbalance
at exit from
Allreduce

MareNostrum
JS21 topology
shows blades

49

WRF on MareNostrum@1600 time-line extract

Some ranks require extra 1.75s
to complete 51st MPI_Allreduce

WRF/MareNostrum experience

● Limited system I/O requires careful management
■ Selective instrumentation and measurement filtering

● PowerPC hardware counter metrics included in summary
■ Memory/cache data access hierarchy constructed

● Automated trace analysis quantified impact of imbalanced
exit from MPI_Allreduce in “NxN completion time” metric
■ Intermittent but serious MPI library/system problem,

that restricts application scalability
■ Only a few processes directly impacted, however,

communication partners also quickly blocked
● Presentation using logical and physical topologies

■ MPI Cartesian topology provides application insight
■ Hardware topology helps localize system problems

Journal of Scientific Programming 16(2-3):167-181 (2008)

Hæmodynamic flow
pressure distributionPartitioned finite-element mesh

XNS on BlueGene/L case study

● CFD simulation of unsteady flows
■ developed by RWTH CATS group of Marek Behr
■ exploits finite-element techniques, unstructured 3D meshes,

iterative solution strategies
● MPI parallel version (Dec-2006)

■ >40,000 lines of Fortran & C
■ DeBakey blood-pump dataset (3,714,611 elements)

XNS-DeBakey on jubl@4096 summary analysis

Masses of
P2P synch
operations

Processes
all equally

responsible

Point-to-
point msgs
w/o data

Primarily
in scatter
& gather

Primarily
in scatter
& gather

XNS-DeBakey scalability on BlueGene/L

Original
performance
peaked at
132 ts/hr

3.5x overall
improvement
to 461 ts/hr

XNS on BlueGene/L experience

● Globally synchronized high-resolution clock facilitates
efficient measurement & analysis

● Restricted compute node memory limits trace buffer size and
analyzable trace size

● Summarization identified bottleneck due to unintended P2P
synchronizations (messages with zero-sized payload)

● 4x solver speedup after replacing MPI_Sendrecv operations
with size-dependant separate MPI_Send and MPI_Recv

● Significant communication imbalance remains due to mesh
partitioning and mapping onto processors

● MPI_Scan implementation found to contain implicit barrier
■ responsible for 6% of total time with 4096 processes
■ decimated when substituted with simultaneous binomial tree

Proc. 14th EuroPVM/MPI, LNCS 4757 (2007)

PEPC-B on BG/P & Cray XT case study

● Coulomb solver used for laser-plasma simulations
■ Developed by Paul Gibbon (JSC)
■ Tree-based particle storage with dynamic load-balancing

● MPI version
■ PRACE benchmark configuration, including file I/O

● Run on BlueGene/P in dual mode with 1024 processes
■ 2 processes per quad-core PowerPC node, 1100 seconds
■ IBM XL compilers, MPI library and torus/tree interconnect

● Run on Cray XT in VN (4p) mode with 1024 processes
■ 4 processes per quad-core Opteron node, 360 seconds
■ PGI compilers and Cray MPI, CNL, SeaStar interconnect

Proc. 52nd Cray User Group (Edinburgh, 2010)

PEPC@1024 on BlueGene/P: Wait at NxN time

Time waiting for last rank
to enter MPI_Allgather

PEPC@1024 on Cray XT4: Wait at NxN time

Time waiting for last rank
to enter MPI_Allgather

PEPC-B on BG/P & Cray XT experience

● Despite very different processor and network performance,
measurements and analyses can be easily compared
■ different compilers affect function naming & in-lining

● Both spend roughly two-thirds of time in computation
■ tree_walk has expensive computation & communication

● Both waste 30% of time waiting to enter MPI_Barrier
■ not localized to particular processes, since particles are

regularly redistributed
● Most of collective communication time is also time waiting

for last ranks to enter MPI_Allgather & MPI_Alltoall
■ imbalance for MPI_Allgather twice as severe on BlueGene/P,

however, almost 50x less for MPI_Alltoall
■ collective completion times also notably longer on Cray XT

Proc. 52nd Cray User Group (Edinburgh, 2010)

PFLOTRAN on BlueGene/P case study

● 3D reservoir simulator combining alternating
■ PFLOW non-isothermal, multiphase groundwater flow
■ PTRAN reactive, multi-component contaminant transport
■ developed by LANL/ORNL/PNNL

● MPI with PETSc, LAPACK, BLAS & HDF5 I/O libraries
■ ~80,000 lines (97 source files) Fortran9X
■ PFLOTRAN & PETSc fully instrumented by IBM XL compilers

► filter produced listing 856 USR routines (leaving 291 COM)
► 1732 unique callpaths (399 in FLOW, 375 in TRAN)
► 633 MPI callpaths (121 in FLOW, 114 in TRAN)

▬ 29 distinct MPI routines recorded (excludes 15 misc. routines)

● Run on IBM BlueGene/P with '2B' input dataset (10 steps)
■ Scalasca summary & trace measurements (some with PAPI)
■ 22% dilation of FLOW, 10% dilation of TRAN [8k summary]

Proc. 53rd Cray User Group (Fairbanks, 2011)

PFLOTRAN jugene@smp8192 trace analysis

73% of calculation time
is in TRAN solver on
almost all processes

mailto:jugene@smp8192

PFLOTRAN jugene@smp8192 trace analysis

Distribution of floating-
point operations is
almost identical

mailto:jugene@smp8192

PFLOTRAN jugene@smp8192 trace analysis

Significant underload
for a relatively small
number of processes

mailto:jugene@smp8192

PFLOTRAN jugene@smp8192 trace analysis

… results in extended
communication times
(11% of execution)

mailto:jugene@smp8192

PFLOTRAN jugene@smp8192 trace analysis

… most of which is
actually waiting time
(7.5% of execution)

mailto:jugene@smp8192

Geology of DOE Hanford 300 area (WA, USA)

Hanford sands and gravels

Ringold fine-grained silts

Ringold gravels

Z

Y

X
Columbia River hyporheic zone

Computational imbalance
(and associated waiting time)
correlate to inactive grid cells

(6-7% of total) within river

Image from Glenn Hammond (PNNL)

PFLOTRAN jugene@smp8192 trace analysis

MPI File I/O reading
input dataset amounts
to 1% of total time

mailto:jugene@smp8192

PFLOTRAN jugene@smp8192 trace analysis

MPI_Comm_dup calls
inside PETSc & HDF5
require >1% of time

mailto:jugene@smp8192

PFLOTRAN on BlueGene/P experience

● Initialization phase dominates at larger scales
■ 10% of total execution time spent duplicating communicators

with 128k processes on Cray XT5
■ otherwise collective MPI File I/O relatively efficient
■ typically amortized in long simulation runs

● Solver scaled well to 64k processes before degrading
■ similar computation/communication patterns in FLOW & TRAN

► callpath profiles distinguish costs
► MPI_Allreduce collective communication becomes a bottleneck
► communication overhead explodes for smaller FLOW problem

▬ TRAN problem is 15x larger due to 15 chemical species

■ inactive processes induce clear computational imbalance
► and are associated with large amounts of MPI waiting time
► however, they constitute a relatively small minority

Proc. 53rd Cray User Group (Fairbanks, 2011)

Sweep3d on BlueGene/P case study

● 3D neutron transport simulation
■ ASC benchmark
■ direct order solve uses diagonal sweeps through grid cells
■ 'fixups' applied to correct unphysical (negative) fluxes

● MPI parallel version 2.2b using 2D domain decomposition
■ ~2,000 lines (12 source modules), mostly Fortran77

● Run on IBM BlueGene/P in VN mode with 288k processes
■ 7.6TB trace written in 17 minutes, analyzed in 10 minutes

► of which 10 minutes for SIONlib open/create of 576 physical files
► (compared to 86 minutes just to open/create a file per MPI rank)

■ Mapping of metrics onto application's 576x512 process grid
reveals regular pattern of performance artifacts
► computational imbalance originates from 'fixup' calculations
► combined with diagonal wavefront sweeps amplifies waiting times

Proc. IPDPS Workshop on Large-Scale Parallel Processing (2010)

70

sweep3d on jugene@288k trace analysis

Computation time of
86.71±1.8% seconds
shown by BG/P rack

71

sweep3d on jugene@288k trace analysis

Computation time
presented using
application's 2D grid

72

sweep3d on jugene@288k trace (wait) analysis

Late Receiver time
complements sweep
computation time

Sweep3d on Cray XT5 case study

● 3D neutron transport simulation
■ ASC benchmark
■ direct order solve uses diagonal sweeps through grid cells
■ 'fixups' applied to correct unphysical (negative) fluxes

● MPI parallel version 2.2b using 2D domain decomposition
■ ~2,000 lines (12 source modules), mostly Fortran77

● Run on Cray XT5 with 192k processes
■ 0.5TB trace written in 10 minutes, analyzed in 4 minutes

► 6 minutes to open/create trace file for each rank
► 25s for timestamp correction, 93s for parallel event replay

■ Mapping of metrics onto application's 512x384 process grid
reveals regular pattern of performance artifacts
► computational imbalance originates from 'fixup' calculations
► combined with diagonal wavefront sweeps amplifies waiting times

Parallel Processing Letters 20(4):397-414 (2010)

Regular imbalance in
excl. execution time
for sweep computation

sweep3d on jaguar@192k trace analysis

Acknowledgements

● The application and benchmark developers who generously
provided their codes and/or measurement archives

● The facilities who made their HPC resources available and
associated support staff who helped us use them effectively
■ ALCF, BSC, CINECA, CMM, CSC, CSCS, DKRZ, EPCC,

HLRN, HLRS, ICM, IMAG, JSC, KSL, KTH, LLNL, LRZ, NCAR,
NCCS, NICS, RWTH, RZG, SARA, TACC, TGCC, ZIH
► Access & usage supported by European Union, German and other

national funding organizations

● The Scalasca users for their comprehensive problem reports
and improvement requests
■ as well as sharing reports of their analysis & tuning successes

● The Scalasca development team

76

Scalable performance analysis
 of large-scale parallel applications
■ toolset for scalable performance measurement & analysis

of MPI, OpenMP & hybrid parallel applications
■ supporting most popular HPC computer systems
■ available under New BSD open-source license
■ sources, documentation & publications:

► http://www.scalasca.org
► mailto: scalasca@fz-juelich.de

http://www.scalasca.org/
mailto:scalasca@fz-juelich.de

	Case studies title
	Epik examples
	NPB-BT expts
	BT-MPI
	BT-MPI +HWC
	BT-MPI-full
	BT-MPI-simple
	BT-OMP exec
	BT-OMP ibarr
	BT-OMP fork
	BT-OMP idle
	BT-MZ exec
	BT-MZ OMP
	BT-MZ idleth
	BT-MZ MPI
	BT-MZ combo
	BT-MZ.B exec
	BT-MZ.B limpar
	BT-MZ.B idleth
	BT-MZ.B MPI
	BT-MZ.B ibarr
	BT-MZ.B mgmt
	BT-MZ.B atomic
	npb-mpi-bt.144k study
	bt@144k.hw
	bt@144k.app
	AMMP study
	ammp.lockAPI
	ammp.fork
	GemsFDTD study
	GemsFDTD v1 scalability
	GemsFDTD v2 scalability
	GemsFDTD init bottleneck
	GemsFDTD solver
	GemsFDTD review
	COSMO study
	COSMO machine
	COSMO computation
	COSMO imbalance
	COSMO overload geo
	COSMO overload hydro
	COSMO wait NxN
	COSMO late sender time
	COSMO late senders
	COSMO review
	WRF study
	wrf@mano.sum
	wrf@mano.trace
	Allreduce anomoly
	WRF summary
	XNS study
	xns@jubl.4096.sum
	XNS scalability
	XNS experience
	PEPC study
	PEPC.jugene.1024
	PEPC.jaguar.1024
	PEPC experience
	PFLOTRAN study
	PFLOTRAN exec
	PFLOTRAN FPops
	PFLOTRAN imbalance
	PFLOTRAN collcomm
	PFLOTRAN waiting
	Hanford 300 geometry
	PFLOTRAN File I/O
	PFLOTRAN Comm_dup
	PFLOTRAN experience
	sweep3d.288k study
	sweep3d@288k.hw
	sweep3d@288k.ex
	sweep3d@288k.lr
	sweep3d.192k study
	sweep3d.192k imbalance
	Acknowledgements
	Further information

