

Jean-Baptiste BESNARD

PHD Student
CEA, DAM, DIF

F-91297 Arpajon, FRANCE

Summary

- MPC Framework
- Fighting Complexity
- ■MPC Trace Library:
 - Overview
 - Architecture
 - Tools:
 - » MPC Trace Debugger
 - » MPC Trace Analyzer
 - Performance
- Conclusion/Perspectives

MPC Framework

- Unified parallel runtime
 - MPI 1.3 fully supporting MPI_THREAD_MULTIPLE
 - » Thread Based
 - » Various interconnects (IB, TCP, SHM)
 - OpenMP 2.5
 - Tested on petaflopic range clusters (~100k cores)
 - Successfully ported to Intel MIC architecture
- The MPC Framework Provides ...
 - User level MxN thread library and scheduler
 - Numa aware parallel Allocator
 - Patched GCC for OpenMP and automatic privatization
 - Patched libthread_db for GDB
 - Optimized support for Hierarchical Local Storage
 - [...]
 - ... and soon a parallel trace-based debugger and profiler

energie atomique • energies alternatives

MPC Framework

MPC Framework

- The MPC framework involves 14 People working on ...
 - MPI Communication
 - Developer tools for debugging and optimization:
 - » Static Analysis
 - » Post-Mortem / Online
 - Programming models:
 - » OpenMP
 - » Accelerators
 - » Code optimization
 - » Upcoming models
 - Runtime services:
 - » Parallel allocator
 - » Hierarchical Local Storage
 - » Threading model and scheduler
- Available at mpc.sourceforge.net

Fighting Complexity

"Intelligibility of complicatedness is obtained by simplification [...] Intelligibility of complexness is obtained by modelization"

Jean-Louis le Moigne (translated) in La Modélisation des systèmes complexes (p.10)

Fighting Complexity

Explanation (disjunction)

"Intelligibility of complicatedness is obtained by simplification [...]
Intelligibility of complexness is obtained by modelization"

Understanding (conjunction)

Jean-Louis le Moigne (translated) in La Modélisation des systèmes complexes (p.10)

energie atomique · energies alternatives

Fighting Complexity

The tetralogic loop

Edgar Morin (translated) in La méthode Tome 1 (p.56)

Fighting Complexity

- Still no unified representation of a parallel computation:
 - ► Handle every entities and interactions:
 - » Combinatory → Large trace
 - Projection of behaviours on lower level rules:
 - » A "point of view" problem
 - » No abstraction → complexity
- Which organization can abstract the combination of programming models ?[...]??
 - For now we can only focus on what we know:
 - » Project on individual existing models
 - » Observe on the real substrate
 - → Optimization is then a trial and error process

energie atomique • energies alternative

Overview

- Part of the MPC Framework
- Includes the whole instrumentation chain:
 - Instrumentation (MPI, libc, pthread)
 - » MPC + MPI
 - Hierarchical trace format:
 - » Simplifies meta-data handling
 - » Event-centric
 - Parallel trace reader:
 - » Compact interface
 - » Abstracts parallelism and meta-data handling
 - Analysis tools:
 - » All relying on the trace reader
- Intended for both debugging and profiling

Architecture

Generic Event Representation

Allows a compact event submission interface:

void Submit Event(struct Gen Event t *event, struct m Trace Module *m module)

MPC Trace: user defined generic events

nergie atomique • energies alternative

```
struct event_A a;
struct event_B b;
struct event_C c;

memset( &a, 0, sizeof( struct event_A ) );
memset( &b, 1, sizeof( struct event_B ) );
memset( &c, 2, sizeof( struct event_C ) );

MPC_Trace_generic_event( (void *)&a, sizeof( struct event_A ), 0, NULL );
MPC_Trace_generic_event( (void *)&b, sizeof( struct event_B ), 1, NULL );
MPC_Trace_generic_event( (void *)&c, sizeof( struct event_C ), 2, NULL );
```


Meta-data handling

Meta-data handling after DFS

Global identifiers are computed on the fly by adding to each "job" local ids its container id.

MPC Trace reader

- MPI + PThread based parallelism:
 - Simple dispatch of event files over processing ranks.
 - Also handles meta-data retrieval and dispatch
- Event are sent to the analysis tool via handlers:
 - Using a single handler footprint: void (*handler)(struct Gen_Event_t *evt, void *arg)
 - Possibility to register multiple handlers on the same type of event.
 - Possibility to register an handler on every events
 - Only event files with associated handlers are processed.

MPC Trace reader: simple example

```
void comm handler(struct Gen Event t *event, void *dummy)
int main(int argc, char **argv)
    int pr;
    MPI Init thread(&argc, &argv, MPI THREAD MULTIPLE, &pr);
    MPC Trace reader init("./trace/", 100, 1024 * 1024 * 10, 1, NULL);
    MPC Trace handler attach( EVENT MPI, comm handler, NULL );
    MPC Trace read events();
    MPC Trace reader wait();
    MPC Trace reader release();
    MPI_Finalize();
```


energie atomique • energies alternatives

MPC Trace reader: topology informations

```
struct MPC Trace id infos
    uint64 t parent id;
    uint64 t id;
    uint64 t rank;
    uint64 t type;
    uint64 t node;
    uint64 t process;
    uint64 t vcpu;
    pid t pid;
    char hostname[200];
    uint64 t begin time;
    uint64 t end time;
    double ticks per second;
};
struct MPC Trace id infos *MPC Trace id infos(uint64 t id);
int MPC Trace id2rank(uint64 t id);
```


MPC Trace reader: symbol informations

```
struct MPC_Trace_func_infos
{
    char name[500];
    char source_ref[200];
    char lib_name[200];
};

struct MPC Trace func infos *MPC Trace func infos( uint64 t fid );
```


MPC Trace debugger: trace based backtrace

- 10 malloc at 0x10441f040 size 72
- 9 malloc at 0x10441f100 size 16
- 8 malloc at 0x10441f1e0 size 16
- 7 « Parameters::SetParameters()
- 6 » DomainDecomposition(Parameters&)
- 5 « DomainDecomposition(Parameters&)
- 4 » Parameters::AllocateTables()
- 3 » Parameters::AllocateTables()
- 2 « Parameters::AllocateTables()
- 1 BEGIN MPI_ALLREDUCE with MPI_COMM_WORLD
- 0 Process exited badly with signal Segmentation fault (11)

energie atomique • energies alternatives

MPC Trace debugger: deadlock detection

Deadlock detection: a simple coloration over the lock dependency graph generated from a trace-based crash-dump.

MPC Trace debugger: deadlock detection

Missing ranks in an MPI_Reduce over 4096 MPI processes

energie atomique • energies alternatives

MPC Trace debugger: deadlock detection

Deadlock on a 240 processes ring.

MPC Trace analyzer

- Based on the MPC Trace reader:
 - Immediate data parallelism
 - Trace processing at scale
- Produces configurable PDF reports:
 - Around 150 options
 - Implements 11 concurrent analysis
- Based on a simple "Map Reduce" approach
- Tested up to 4096 cores on real C++ codes
- Compatible with most MPI flavours and MPC.

nergie atomique • energies alternatives

MPC Trace analyzer

- First example **lbm**:
 - This year optimization project for our MIHPS students
 - Simulates a Kármán vortex street
 - Carefully desoptimized

Communication mapping on a voluntarily unbalanced benchmark

MPI_Send topology on a voluntarily unbalanced benchmark (128 tasks)

energie atomique • energies alternatives

Collectives time matrix on a voluntarily unbalanced benchmark (128 tasks)

energie atomique • energies alternatives

Time Matrix

MPI_Recv time matrix on a voluntarily unbalanced benchmark (128 tasks)

nergie atomique • energies alternatives

MPI Quadrant

MPI Quadrant on a voluntarily unbalanced benchmark (128 tasks)

MPC Trace analyzer

- Second example EulerMHD:
 - Middle sized C++ MPI code
 - Simulates Euler and ideal Magneto HydroDynamic equations at high order on a 2D Cartesian mesh.
 - Code scales pretty well thanks to its regular communication topology:
 - » Up to 80k cores with MPC

MPI Profile

nergie atomique • energies alternatives

Wall time	CPU time	First rank	Last rank	Avg Thread Time	Avg ticks
$1 \min 56 s$	20 hours 47 min 21 s	79	273	-	2802969903

MPI Operation	Hits	Time	Avg time	%	Datas	Avg Datas
MPI_Wait	40107520	1 hours 54 min 17 s	171 us	9.2	-	-
MPI_Allreduce	620160	24 min 53 s	2.409 ms	2	$4.77~\mathrm{MB}$	8 B
MPI_Isend	20053760	2 min 41 s	8.077 us	0.22	544.98 GB	$28.50~\mathrm{KB}$
MPI_Irecv	20053760	31.75 s	1.583 us	0.042	544.98 GB	$28.50~\mathrm{KB}$

Unbalanced case on 640 processes

energie atomique · energies alternatives

MPI_Send total size for an unbalanced case on 640 processes

energie atomique • energies alternatives

MPI Comm Matrix

MPI_Send total size for an unbalanced case on 640 processes

energie atomique • energies alternatives

MPI Time for an unbalanced case on 640 processes

MPI Quadrant respectively correlated and decorrelated cases for an unbalanced case on EulerMHD 640 processes

nergie atomique • energies alternative

Performances: MPC trace analyzer (128 tasks lbm)

Processing throughput

Performances: mpc trace analyzer (128 tasks lbm)

Total trace size processed

Performances: MPC trace analyzer (debug 1024 events)

EulerMHD

Conclusion / Perspectives

- MPC Trace library:
 - Compact interface
 - Parallel analysis
 - Tested up to 30 000 cores in trace and 4096 cores with the MPC trace analyzer
- Perspectives:
 - Model based approach
 - Code characterization
- Not open sourced for now might come in a next release of the MPC framework.

Jean-Baptiste BESNARD

PHD Student
CEA, DAM, DIF
F 91297 Arpajon, FRANCE