
Introduction to
Parallel Performance Analysis

Brian J. N. Wylie
Jülich Supercomputing Centre

(with material taken from SC tutorials by
Bernd Mohr/JSC & Luiz de Rose/Cray)

Execution performance: an old problem

2

“The most constant difficulty in contriving
the engine has arisen from the desire to
reduce the time in which the calculations
were executed to the shortest which is
possible.”

Charles Babbage
1791 – 1871

Today: the “free lunch” is over

■ Moore's law is still in charge, but
■ Clock rates do no longer increase
■ Performance gains only through

increased parallelism

■ Optimizations of applications more
difficult

■ Increasing application complexity
■ Multi-physics
■ Multi-scale

■ Increasing machine complexity
■ Hierarchical networks / memory
■ More CPUs / multi-core

 Every doubling of scale reveals a new bottleneck!

3

Example: XNS

■ CFD simulation of unsteady flows
■ Developed by CATS / RWTH Aachen
■ Exploits finite-element techniques, unstructured 3D meshes,

iterative solution strategies

■ MPI parallel version
■ >40,000 lines of Fortran & C
■ DeBakey blood-pump data set (3,714,611 elements)

4

Hæmodynamic flow
pressure distributionPartitioned finite-element mesh

XNS wait-state analysis on BG/L (2007)

5

Performance factors of parallel applications

■ “Sequential” factors
■ Computation

 Choose right algorithm, use optimizing compiler

■ Cache and memory
 Tough! Only limited tool support, hope compiler gets it right

■ Input / output
 Often not given enough attention

■ “Parallel” factors
■ Communication (i.e., message passing)
■ Threading
■ Synchronization

 More or less understood, good tool support

6

Tuning basics

■ Successful tuning is a combination of
■ The right algorithms and libraries
■ Compiler flags and directives
■ Thinking !!!

■ Measurement is better than guessing
■ To determine performance bottlenecks
■ To validate tuning decisions and optimizations

 After each step!

7

However…

■ It's easier to optimize a slow correct program than to
debug a fast incorrect one

 Nobody cares how fast you can compute the wrong answer...

8

“We should forget about small efficiencies,
say 97% of the time: premature optimization

is the root of all evil.”

C. A. R. Hoare

Performance analysis workflow

9

■ Prepare application,
insert extra code (probes/hooks)

■ Collection of data relevant to
performance analysis

■ Calculation of metrics, identification
of performance metrics

■ Visualization of results in an
intuitive/understandable form

■ Elimination of performance problems

Preparation

Measurement

Analysis

Presentation

Optimization

The 80/20 rule

■ Programs typically spend 80% of their time in 20% of
the code

■ Programmers typically spend 20% of their effort to get
80% of the total speedup possible for the application

 Know when to stop!

■ Don't optimize what does not matter
 Make the common case fast!

10

“If you optimize everything,
you will always be unhappy.”

Donald E. Knuth

Metrics of performance

■ What can be measured?
■ A count of how many times an event occurs

■ E.g., the number of MPI point-to-point messages sent

■ The duration of some time interval
■ E.g., the time spent these send calls

■ The size of some parameter
■ E.g., the number of bytes transmitted by these calls

■ Derived metrics
■ E.g., rates / throughput
■ Needed for normalization

11

Example metrics

■ Execution time
■ Number of function calls
■ CPI

■ Clock ticks per instruction

■ MFLOPS
■ Millions of floating-point operations executed per second

12

“math” Operations?
 HW Operations?
 HW Instructions?

 32-/64-bit? …

Execution time

■ Wall-clock time
■ Includes waiting time: I/O, memory, other system activities
■ In time-sharing environments also the time consumed by other

applications

■ CPU time
■ Time spent by the CPU to execute the application
■ Does not include time the program was context-switched out

■ Problem: Does not include inherent waiting time (e.g., I/O)
■ Problem: Portability? What is user, what is system time?

■ Problem: Execution time is non-deterministic
■ Use mean or minimum of several runs

13

■ Inclusive
■ Information of all sub-elements aggregated into single value

■ Exclusive
■ Information cannot be split up further

Inclusiv
e

Inclusive vs. Exclusive values

Exclusive

14

int foo()
{
 int a;
 a = 1 + 1;

 bar();

 a = a + 1;
 return a;
}

Classification of measurement techniques

■ When are performance measurements triggered?
■ Sampling
■ Code instrumentation

■ How is performance data recorded?
■ Profiling / Runtime summarization
■ Tracing

15

Sampling

16

■ Running program is interrupted periodically

■ Timer interrupt, OS signal, or HWC overflow

■ Service routine examines return-address stack

■ Addresses are mapped to routines using
symbol table information

■ Statistical inference of program behaviour

■ Not very detailed information on highly
volatile metrics

■ Requires long-running applications

■ Works with unmodified executable, but symbol
table information is generally recommended

Time

t
1 t

2
t
3

t
4

t
5

t
6

t
7

t
8

t
9

main foo(0) foo(1) foo(2)

int main()
{
 int i;

 for (i=0; i < 3; i++)
 foo(i);

 return 0;
}

void foo(int i)
{

 if (i > 0)
 foo(i – 1);

}

Measurement

Instrumentation

17

Time

Measurement

■ Measurement code is inserted such that
every interesting event is directly captured

■ Can be done in various ways

■ Advantage:

■ Much more detailed information

■ Disadvantage:

■ Processing of source-code / executable
necessary

■ Large relative overheads for small functions

int main()
{
 int i;

 for (i=0; i < 3; i++)
 foo(i);

 return 0;
}

void foo(int i)
{

 if (i > 0)
 foo(i – 1);

}

Time

t
1

t
2

t
3

t
4

t
5

t
6

t
7

t
8

t
9

t
10 t

11
t
12

t
13

t
14

main foo(0) foo(1) foo(2)

Enter(“main”);

Leave(“main”);

Enter(“foo”);

Leave(“foo”);

Instrumentation techniques

■ Static instrumentation
■ Program is instrumented prior to execution

■ Dynamic instrumentation
■ Program is instrumented at runtime

■ Code is inserted
■ Manually
■ Automatically

■ By a preprocessor / source-to-source translation tool
■ By a compiler
■ By linking against a pre-instrumented library / runtime system
■ By binary-rewrite / dynamic instrumentation tool

18

Critical issues

■ Accuracy
■ Perturbation

■ Measurement alters program behavior
■ E.g., memory access pattern

■ Intrusion overhead
■ Measurement itself needs time and thus lowers performance

■ Accuracy of timers & counters

■ Granularity
■ How many measurements?
■ How much information / work during each measurement?

 Tradeoff: Accuracy vs. Expressiveness of data

19

Classification of measurement techniques

■ When are performance measurements triggered?
■ Sampling
■ Code instrumentation

■ How is performance data recorded?
■ Profiling / Runtime summarization
■ Tracing

20

Profiling / Runtime summarization

■ Recording of aggregated information
■ Time
■ Counts

■ Function calls
■ Hardware counters

■ Over program and system entities
■ Functions, call sites, basic blocks, loops, …
■ Processes, threads

 Profile = summation of events over time

21

Types of profiles

■ Flat profile
■ Shows distribution of metrics per function / instrumented region
■ Calling context is not taken into account

■ Call-path profile
■ Shows distribution of metrics per call path
■ Sometimes only distinguished by partial calling context

(e.g., two levels)

■ Special-purpose profiles
■ Focus on specific aspects, e.g., MPI calls or OpenMP

constructs

22

Tracing

■ Recording information about significant points (events)
during execution of the program

■ Enter / leave of a region (function, loop, …)
■ Send / receive a message, …

■ Save information in event record
■ Timestamp, location, event type
■ Plus event-specific information (e.g., communicator,

sender / receiver, …)

■ Abstract execution model on level of defined events

 Event trace = Chronologically ordered sequence of
event records

23

Event tracing

void foo() {

 ...

 send(B, tag, buf);
 ...

}

Process A

void bar() {

 ...
 recv(A, tag, buf);

 ...

}

Process B

MONITOR

MONITOR

sy
nc

hr
on

i z
e

(d
)

Global trace

merge

unify

58 ENTER 1

62 SEND B

64 EXIT 1

...

...

Local trace A

Local trace B

foo1

...

bar1

...

60 ENTER 1

68 RECV A

69 EXIT 1

...

...

Example: Time-line visualization

25

1 foo

2 bar

3 ...

58 A ENTER 1

60 B ENTER 2

62 A SEND B

64 A EXIT 1

68 B RECV A

...

69 B EXIT 2

...

main
foo
bar

58 60 62 64 66 68 70

B

A

Tracing vs. Profiling

■ Tracing advantages

■ Event traces preserve the temporal and spatial relationships
among individual events ( context)

■ Allows reconstruction of dynamic application behavior on any
required level of abstraction

■ Most general measurement technique
■ Profile data can be reconstructed from event traces

■ Disadvantages

■ Traces can become very large
■ Writing events to file at runtime causes perturbation
■ Writing tracing software is complicated

■ Event buffering, clock synchronization, ...

26

Typical performance analysis procedure

■ Do I have a performance problem at all?
■ Time / speedup / scalability measurements

■ What is the main bottleneck (computation /
communication)?

■ MPI / OpenMP / flat profiling

■ Where is the main bottleneck?
■ Call-path profiling, detailed basic block profiling

■ Why is it there?
■ Hardware counter analysis, trace selected parts to keep trace

size manageable

■ Does my code have scalability problems?
■ Load imbalance analysis, compare profiles at various sizes

function-by-function

27

No single solution is sufficient!

28

 A combination of different methods, tools and techniques is
typically needed!

■ Measurement
■ Sampling / instrumentation, profiling / tracing, ...

■ Instrumentation
■ Source code / binary, manual / automatic, ...

■ Analysis
■ Statistics, visualization, automatic analysis, data mining, ...

	Introduction to Performance Engineering
	Performance analysis: an old problem
	Today: the “free lunch” is over
	Example: XNS
	XNS wait-state analysis on BG/L (2007)
	Performance factors of parallel applications
	Tuning basics
	However…
	Performance analysis workflow
	The 80/20 rule
	Metrics of performance
	Example metrics
	Execution time
	Inclusive vs. Exclusive values
	Classification of measurement techniques
	Sampling
	Instrumentation
	Instrumentation techniques
	Critical issues
	Slide 20
	Profiling / Runtime summarization
	Types of profiles
	Tracing
	Folie 24
	Example: Time-line visualization
	Tracing vs. Profiling
	Typical performance analysis procedure
	No single solution is sufficient!

