Contents

1 Curie's Manual

2 Curie's Configuration

3 System Access

o 3.1 How to reach the system
o 3.2 File transfer
o 3.3 Available File Systems

4 Environment

o 4.1 Operating System
4.2 Available shells

4.3 Passwords

4.4 Restore lost files
4.5 Text editors

4.6 "module" command

O 0O 0 0 ©O

5 Compiling / Basis Porting

o 5.1 Available compilers
s 5.1.1 Compiler flags
s 5.1.1.1 C/C++
s 5.1.1.2 Fortran

s 5.1.2 GNU

o 5.2 Available numerical libraries
s 5.2.1 MKL Library
s 5.2.2 Other libraries

o 5.3 Parallel Programming
s 5.3.1 MPI|
s 5.3.1.1 Available MPI Implementations
s 5.3.1.1.1 Bullxmpi

s 5.3.1.2 Compiling MPI program

= 5.3.2 OpenMP
s 5.3.3 GPU
s 5.3.3.1 CUDA

s 5.3.3.2 OpenCL

e 6 Job submission

o 6.1 "ccc_mprun" command
o 6.2 Script examples
s 6.2.1 Sequential job
6.2.2 Parallel MPI job
6.2.3 Parallel OpenMP/Multithreaded job
6.2.4 Parallel hybrid OpenMP/MP| or Multithre ade d/MPI
6.2.5 GPU job
6.2.6 MPMD job

6.3 "ccc_msub" command

6.4 Choosing between Curie's three architectures
6.5 Test QoS

6.6 Multi Step job

6.7 Job monitoring and control

6.8 libccc_user

O 0 0 0 0O

e 7 Debugqging

o 7.1 Compiler flags
s 7.1.1 GNU
s 7.1.1.1 Gnu fortran compiler :gfortran

s 7.1.2 Intel fortran compiler : ifort

o 7.2 Available Debuggers
s 7.2.1 DDT

e 8 PRACE infrastructure

o 8.1 Connect to a remote PRACE supercomputer
o 8.2 Connect to curie from a remote PRACE supercomputer
o 8.3 Transfer data between PRACE supercomputers

Curie's Manual

If you have suggestions or remarks, please contact us : hotline.tgcc@cea.fr

Curie's Configuration

Curie is composed of three different architecture :

e Curie fat nodes :
o Curie fat consists in 360 nodes which contains 4 eight cores CPU Nehalem-EX clocked at 2.27 GHz, let
32 cores / node and 11520 cores for the full fat configuration
o Each node has 128 Go of memory, let 4 Go / core by default

e Curie thin nodes (not available) :
o Curie thin consists in 5040 nodes which contains 2 eight cores CPU Sandy Bridge clocked at 2.3 GHz
(AVX), let 16 cores / node and 80640 cores for the full thin configuration
o Each node has 64 Go of memory, let 4 Go / core by default

e Curie hybrid nodes :

o Curie hybrid consists in 144 nodes which contains 2 GPU Nvidia M2090 coupled to 2 four cores CPU
Westmere-EP clocked at 2.67 GHz, let 8 cores and 2 GPU / node and 1152 cores and 288 GPU for the
full hybrid configuration

o Each node has 24 Go of memory, let 3 Go / core by default, and each GPU has 6 Go

System Access

How to reach the system

From your local machine, you need to use the ssh command to access curie. ssh is a program for logging into a
remote machine and for executing commands on it.

-ba sh-4.1$ ssh login@curie .ccc.ce a .fr
pa ssword: *#k*

If you need a graphical environment you have to use the -X option :
-ba sh-4.1$ ssh -X login@curie .ccc.ce a .fr

To log out from Curie, you can use the Ctrl-d command, or exit

If you have problems for authentifying, you can try -Y option.

File transfer

To transfert files between Curie and your local machine, you can use the scp command.
Create an archive with the directories you want to copy (it will be faster to transfer) :

-bash4.1$tar-cvzf archive name.tgz dire ctoryna me 1 dire ctoryna me 2

or in case of a file :

-bash4.1$tar-cvzf archive name .tgz file na me

Transfer the archive to Curie :

-bash4.1$scparchive na me .taz login@curie .ccc.ce a .fr:/ccc/cont***/home /login

Uncompress the archive in your target directory :

-bash4.1$tar-xvzf archive na me.tgz de stina tiondire ctory

Available File Systems

Four file systems are available :

e HOME :

o 1/0O perf: slow (NFS)
o Quota: 3GB per user
o Use:sources , job submission scripts, parameter files...
o Commentary: Data are saved
o Reachable from all resources of the center
o Environment variable: $HOME
e SCRATCH :

o /O perf: fastest (Lustre)

o Quota: 20 TB and 2 000 000 files or directories per user

o Use: Data, Code output,...

o Commentary: SCRATCH can be purged if the global free space is too small. However, a minimum
lifetime is guaranteed (except hardware failure).

Local to Curie

Environment variable: $SCRATCHDIR

Bandwidth : 150 GB/s

o 0o

e WORK:

I/0O perf: fast (Lustre via routers)

Quota: 1 TB and 500 000 files or directories per user

Use: commonly used file (Source code, Binary,...)

Commentary: WORK's size is smaller than SCRATCH, it's only managed through quota. There is no
purge and no save.

Reachable from all resources of the center

Environment variable: $CCCWORKDIR

o Bandwidth : 100 GB/s

O 0 0O

o o

e STORE :
o 1/O perf: fast (Lustre via routers + HPSS + Tape)
o Quota: 100 000 files or directories per user
o Use: data archiving for large files (direct computation allowed in that case) or packed data (tar files,
..)
o Important:
s Expected file size range 1Go-100Go
s Backup mechanism relies on file modification time: avoid using cp options like -p, -a,

o Reachable from all resources of the center
o Environment variable: $CCCSTOREDIR
o Bandwidth : 100 GB/s

Inappropriate usage might stop the production

ccc_quota gives information about your current usage of the filesystems:

ba sh-4.0$ $ ccc_quota
Disk quota s for use r xxxxxx (uid XXXxX):
VOLUME INODE
File syste m usage soft hard gra ce file s soft hard gra ce

home 3G 3G 3G = > > = =
work 903.68G ior 11T - 507K 500.0K 50LOK
store 4 4.0T 4.1T - 1 100.0K 10LOK

You have the size (VOLUME) and the number of files or directories (INODES).
Environment
Operating System
Operating system on Curie's nodes is Bullx Supercomputer Suite AE2.2, based on Red Hat Enterprise Linux 6.

Available shells

The default shell is bash. ksh, csh, tcsh and zsh are also available. We strongly recommand you to use bash shell
(Only bash and csh are supported by the support team).

Passwords

You will often need to change your password. This can be done thanks to the kpasswd command :

-ba sh-4.1$ kpa sswd
Cha nging pa s s word for us e r **.

Restore lost files

Contact hotline.tgcc@cea.fr or +33 177574242

Text editors

vi
emacs
nano
nedit
gedit

"module" command

module allows to change easily the shell environment by initializing, modifying or unsetting environment variables.
This option gives you a complete environment to launch a software or to link your code with a library.

The command line option list indicates the loaded modules in your environment:

-ba sh-4.1$ module list Curre ntly Loa de d Module file s: 1) inte [/12.0.084(de fa ult) 2) bullmpi/0.18.1(de fa uit)

The command line option avail gives all the available modules :

-ba sh-4.1$ modue avail
/usrfloca l/ccc_us e rs_e nv/module s /s oftwa re s —-------s-mmeeemmmeen e

abint/6.4.2 cpmd/3.13.2 espresso/4.2.1 ga ussia n/09-B01 groma cs/4.5.3 na md/2.7 satume/2.00 siesta/2.02 vasp/52.11
—————————————————————————————— /usrfloca l/ccc_us e rs_e nv/module s /de ve lopme Nt ------------mssmmmmeemmeeeeeee

cmake/2.83 ddd3.3.12 jd/1.6.023 pap/4.11 paraver/3.9 scalasca/l3.2 swig2.0.1 valgrind/3.6.0

Just/loca l/ccc_us e rs_e nv/module S /mpi —--—------mmmmmmmmme e

bullmpi/0.17.2 bullmpi/0. 18, 1(de fa uit)

- /usr/loca l/ccc_us e rs_e nv/module s /libra rie's -
3/3.2.2 hdf5/1.85 mumps/4.9.2 pa e ti
— Jusr/loca l/ccc_use rs_e nv/module s /compile s -
qce/4.5.1 inte /12.0.084 (de fa ult)

q/4.7.1fftw2/2.1.5 gsl1.14 metis/4.01 netcd/4.11 petsc/3.1 pts cotchy5.1.11 s cotchy5.1.11

The command line options load and unload respectively enable to load and unload a module:

-ba s h-4.1$ module list

Curre ntly Loa de d Module file s :

1) inte 1/12.0.084(de fa uit) 2) bullmpi/0.18.1(de fa ult)
-ba s h-4.1$ module unloa d bullmpi/0.18.1
-ba sh-4.1$ module list

Curre ntly Loa de d Module file s :

1) inte |/12.0.084 (de fa uit)

-ba s h-4.1$ module loa d bullmpi/0.17.2

-ba sh-4.1$ module list

Curre ntly Loa de d Module file s :

1) inte 1/12.0.084(de fa uit) 2) bullmpi/0.17.2

The command line option switch does the previous operation in one command line:

-ba sh-4.1$ module s witch bullmpi bullmpi/0.17.2
-ba s h+4.1$ module list

Curre ntly Loa de d Module file s :

1) inte |/12.0.084(de fa uit) 2) bullmpi/0.17.2

The command line option show indicates how the environment is changed by loading a module. The option help
gives information about the specified module.

-ba s h-4.1$ module he Ip gcc/4.5.1
——————————— Module S pe cific He Ip for ‘gcc/4.5.1" ——-----mmmmmm-

1 gec
De s cription : GNU C, C++ a nd Fortra n compile rs
Version :4.51

WebSite : http://gcc.gnu.org/

-ba sh-4.1$ module show gcc/4.5.1

Jusr/loca l/ccc_use rs_e nv/module s /compile rs /gcc/4.5.1:
module -wha tis GNU Compile r Colle ction

conflict gcc

pre pe nd-path PATH /us r/loca l/gcc-4.5.1/bin

pre pe nd-path LIBRARY_PATH /us r/loca l/gcc-4.5.1/lib

pre pe nd-path LD LIBRARY PATH /us r/loca l/gcc-4.5. 1/lib:/us rfloca V/gcc-4.5.1/lib64

pre pe nd-path MANPATH /us r/loca /gcc-4.5.1/ma n

pre pe nd-path INFOPATH /us r/loca l/gcc-4.5. Vinfo

pre pe nd-path CPATH /us r/loca l/gcc-4.5.1/include

pre pend-path FPATH /usr/loca l/gcc-4.5. /include

Advice :in most of modules, we set some environment variables like $MKL_LIBS or $FFTW3_INC_DIR which point to
library or path. We strongly recommand you to use them in your Makefile. For example when you switch between
newer modules, theses variables will be there (but they will point to another library or path).

Compiling /| Basis Porting

Available compilers

http://gcc.gnu.org/

The available compilers on the cluster are:

e Intel Compiler suite (icc, icpc, ifort)
e GNU compiler suite (gcc, g++, gfortran)
e PGI compiler suite (pgcc, pgCC, pgf90)

To know which version is installed, use the command

ba sh-4.1$ module avail

We strongly recommend you to use the Intel Compiler Suite which provides the best performances.
Compiler flags

CIC++

Intel compilers: icc and icpc. Compilation options are the same, except for the the C language behavior. icpc
manages all the source files as C++ files whereas icc makes a difference between both of them.

e Basic flags :
o -0 exe_file : names the executable exe_file
o -C :generates the correspondant object file. Does not create an executable.
o -g :compiles in a debugging mode - R.E. 'Debugging'.
o -l dir_name : specifies the path where the include files are located.
o -L dir_name : specifies the path where the libraries are located.
o -l bib :asks to link the libbib.a library

e Optimizations :
o -00, -01, -02, -0O3 : optimisation levels - default : -02

e Preprocessor :
o -E :preprocess the files and sends the result to the standard output
o -P:preprocess the files and sends the result in file.i
o -Dname=<value> : defines the "name" variable
o -M :creates a list of dependance

e Practical :
o -p : profiling with gprof (needed at the compilation)
o -mp, -mpl : IEEE arithmetic, mpl is a compromise between time and accuracy

Fortran

Intel compiler : ifort (Fortran compiler).

e Basic flags :

-0 exe_file : names the executable exe_file

o -C :generates the correspondant object file does not create an executable.
o -g :compiles in debugging mode - R.E. 'Debugging'

o -l dir_name : specifies the path where the include files are located

o

o

[e]

-L dir_name : specifies the path where the libraries are located
-1 bib :asks to link the libbib.a library

e Optimizations
o -00, -01, -02, -0O3 : optimization levels - default : -02

e Run-time check
o -C or -check : generates a code which ends up in 'run time error' (ex : segmentation fault)

e Preprocessor :
o -E : preprocess the files and sends the result to the standard output
o -P :preprocess the files and sends the resultin file.i
o -Dname=<value> : defines the "name" variable
o -M :creates a list of dependances
o -fpp : preprocess the files and compiles
e Practical :
-p : profiling with gprof (needed at the compilation)
-mp, -mpl : I[EEE arithmetic, mpl is a compromise between time and accuracy
-i8 : promotes integers on 64 bytes by default
-r8 : promotes reals on 64 bytes by default
-module <dir> : send/read the files *mod in the dir directory

[o]

0O 0 0O

o -fp-model strict : Tells the compiler to strictly adhere to value-safe optimizations when implementing
floating-point calculations and enables floating-point exception semantics. It might slow down your
program.

Should you wish further information, please refer to the 'man pages' of the compilers.

GNU

e Debugging :

o -Wall: Short for “warn about all,” this flag tells gfortran to generate warnings about many common
sources of bugs, such as having a subroutine or function with the same name as a built-in one, or
passing the same variable as an intent(in) and an intent(out) argument of the same subroutine.

o -Wextra: In conjunction with -Wall, gives warnings about even more potential problems. In particular, -
Wextra warns about subroutine arguments that are never used, which is almost always a bug.

o -w : Inhibits all warning messages (Not adviced)

o -Werror : Makes all warnings into errors.

Available numerical libraries

MKL Library

Intel MKL library is integrated in the Intel package and contains :

BLAS, SparseBLAS;

LAPACK, ScalLAPACK;

Sparse Solver, CBLAS ;

Discrete Fourier and Fast Fourier transform (contains the FFTW interface, R.E. FFTW).

If you don't need ScalLAPACK :

ifort -0 mye xe myobje ct.o ${MKL LIBS }

If you need ScaLAPACK :

mpif90 -0 mye xe myobje ct.o ${MKL S CA LIBS }

We provide multithreaded versions for compiling with MKL:

ifort -o mye xe myobje ct.o ${MKL_LIBS _MT}
mpif90 -o mye xe myobje ct.o ${MKL SCA LIBS MT}

To use multithreaded MKL, you have to set the OpenMP environment variable OMP_NUM_THREADS.

We strongly recommand you to use those variables.

Other libraries

Please see the other softwares section
Parallel Programming
MPI

Available MPI Implementations
Bullxmpi

The default MPI implementation is Bullxmpi, a library provided by Bull. It is based on OpenMPI.

curie 503 module is t
Curre ntly Loa de d Module file s :

1) os ca r-module s/1.0.3 3) fortra vinte /12.0.3.174 5)inte 1/12.0.3.174(de fa ult)
2) c/inte 12.0.3.174 4) mk/12.0.3.174 6)bulix mpi/1.1.8.1(de fa ult)
curie 50$ ompi info -a

The default version of Bullxmpi is given by the command module list.

Compiling MPI program

MPI runs using mpicc, mpic++, mpif77 and mpif90 wrappers for compiling and linking MPI programs.

curie 50$ mpicc -c test.c
curie 50$ mpicc -otest.e xe test.o

By default, those wrappers use Intel compilers. To use GNU compilers, you need to set the following environment
variables :

OMPI_CC for C
OMPI_CXX for C++
OMPI_F77 for fortran77
OMPI_FC for fortran90

For example :

curie 50$ module loa d gcc
curie 50$ module list
Curre ntly Loa de d Module file s :
1) osca r-module s/1.0.3 2) c/inte /12.0.3.174 3) fortra rvinte /12.0.3.174 4) mk/12.0.3.174 5) inte /12.0.3.174(de fa ut) 6) bullxmpi/1.1.10.1(de fa ult) 7) gcc/4.5.1
curie 503 mpicc -s how
icc -W/opt/mpi/bullx mpi/1. 1.8.1/include -pthre a d -L/opt/mpi/bulix mpi/1.1.8.1/lib -Impi -Idl -WI,--e x port-dy na mic -Ins | -lutil -Im -Idl
curie 50$ e x port OMPI_CC=gcc
curie 50$ mpicc -s how
gcc -Vopt/mpi/bullx mpi/1.1.8.1/include -pthre a d -L/opt/mpi/bullx mpi/1. 1.8. 1/lib -Impi -Idl -WI,--e x port-dy na mic -Ins | -lutil -Im -Idl

The -show option includes all the libraries and header needed to use MPI.

OpenMP

The Intel and GNU compilers support OpenMP. Intel compilers flags : -openmp

-ba s h-4.1$ ifort -ope nmp -0 prog.e xe prog.f90

GNU compilers flags : -fopenmp

-ba s h-4.1$ gcc -fope nmp -0 prog.e xe prog.c

GPU

CUDA

CUDA compiler is available on Curie/hybrid to compile GPU-accelerated programs.

curie 503 module loa d cuda

curie 503 module li
Curre ntly Loa de d Module file s :
1) c/inte /12.0.4.191 2) fortra rvinte /12.0.4.191 3) mki/12.0.4.191 4) inte /12.0.4.191 5) bullxmpi/1.1.10.1(de fa uit) 6) cuda /4.0

To compile a simple CUDA code:

curie 50$ nvcc -a rch=sm 20 -0 prog.e Xe prog.cu

To compile a hybrid CUDA code:

curie 503 Is
cuda.cu prog.c
curie 503 module loa d cuda
curie 50% icc -c prog.c
curie 50% nv cc -a rch=s m 20 --ccbin=icc -c cuda .cu
curie 50% icc -0 prog_cuda .e xe -L$(CUDA_ROOT)/lib64 -lcuda rt

The CUDA module sets environments variables (like CUDA_ROOT) which gives access to CUDA SDK for example:

curie 50$ module s how cuda

Jus rfloca l/ccc_us e rs_e nv/module s /compile rs /cuda /4.0:

module -wha tis NVIDIA Compute Unifie d De vice Archite cture

conflict cuda

pre pe nd-path PATH /us r/loca |/cuda -4.0/bin

pre pe nd-path PATH /us r/loca l/cuda -4.0/compute prof/bin
prepend-path LD_LIBRARY_PATH /us r/loca l/cuda -4.0/lib64

pre pend-path LD _LIBRARY_PATH /us rfloca l/cuda -4.0/compute prof/bin

setenv CUDA_LIB DR /us r/loca /cuda -4.0/lib64

setenv CUDA_ROOT /us r/loca l/cuda -4.0

setenv CUDA_S DK_ROOQT /us r/loca |/cuda -4.0/s dk/C

setenv NV_OPENCL_S DK_ROOT /us r/loca l/cuda -4.0/s dk/Ope nCL
setenv NV_OPENCL_INC_DIR /us r/loca l/cuda -4.0/s dk/Ope nCL/commonyinc

OpenCL

NVIDIA provides tools to compile OpenCL programs. It will be loaded with CUDA module.

curie 503 module loa d cuda
curie 50$ gcc -I${NV OPENCL INC DIR} -o prog ocl.e xe prog.c -lOpe nCL

Job submission

Job submissions, resources allocations and the jobs launching over the cluster are managed by SLURM. Special
commands prefixed by ccc_ are provided to execute these operations. To submit a batch job, you first have to write
a shell script which contains:

e a set of directives. These directives are lines beginning with #MSUB which describes needed resources for
your job.

e how to execute your code.

Then your job can be launched by submitting this script to SLURM. The job will enter into a batch queue. When
resources are available, the job will be launched over allocated nodes. Jobs can be monitored.

The following paragraphs describe ccc * commands and gives some examples of script for different types of jobs..

"ccc_mprun” command

ccc_mprun allows to launch parallel jobs over nodes allocated by resources manager:

€cc mprun ./a .out

By default, ccc_mprun takes information (number of nodes, number of processors, etc) from the resources
manager to launch the job. However, you can precise or change its behavior with the command line options:

-n nproc : number of tasks to run

-c ncore :number of cores per task

-N nnode : number of nodes to use

-M mem :required amount of memory per core in Mo

-T time : maximum walltime of the allocations in seconds

-x :requests exclusive usage of allocated nodes. This is the default configuration for jobs on more that 128

cores.

-E extra :extra parameters to pass directly to the underlying resource mgr

e -K :only allocates resources. If a program is defined it will be executed only once. It would contain
ccc_mprun calls to launch parallel commands using the allocated resources.

e -e 'options' :additional parameters to pass to the mpirun command

e -d ddt :launches the application in debug mode using DDT

Type ccc_mprun -h for an updated and complete documentation.

Script examples

Sequential job
#!/bi/ba sh
#MS UB -r My Job # Re que st name
#MSUB-n1 # Numberof tasks touse
#MS UB-T 600 # Ela pse dtime limitinse conds of the job (de fa uft: 1800)

#MS UB-0 e xa mple _%l.0 # Standa rd output. %l is the job id

#M5UB-e example_%l.e # Emor output. %!l is the job id

#MS UB-A ra XXXX # Proje ct ID

#M5 UB-q la rge # Choosing la rge node s

##M5 UB-@ nore ply @ce a .fr.e nd # Uncomme nt this line for be ing notifie d a t the e nd of the jobby sendinga mailatthe gvenaddess

set-x
cd ${BRIDGE_Ms UB PWD} # BRIDGE_M5 UB PWD is a e nvironme nt va ria ble which conta ins the dire ctory whe re the script wa's s ubmitte d
€CcC_mprun ./a .out

Parallel MPI job

#!/bi/ba sh

#MS UB-r MyJob Para # Reque st name

#M5 UB-n 32 # Number of tasks touse

#MS UB-T 1800 # Hapsedtime limit inse conds

#MS UB-0 e xa mple _%l.0 # Sta nda rd output. %l is the job id
#M5 UB-e e xample _%le # Emor output. %lis the job id
#M5 UB-q sta nda rd

#MS UB-A pa XXXX # Proje ct ID

set-x

cd ${BRIDGE_MS UB PWD}
ccc_mprun ./a .out

#or

ccc_mprun-n 32 ./a .out
#or

ccc_mprun -n ${BRIDGE_MS UB_ NPROC} ./a .out
BRIDGE MS UB NPROC re pre se nts the numbe r of ta sks

Parallel OpenMP/Multithreaded job

#!/bi/ba sh

#MS UB-r MyJob Para
#MSUB-n1

#M5 UB-c 16

#MS UB -T 1800

#M5 UB-0 e xa mple _%l.0
#M5UB-e example_%l.e
#MS UB-q sta nda rd

#M5 UB-A ra xxxx

set-x
cd ${BRIDGE_MS UB PWD}

e xport OMP_NUM THREADS =

ccc_mprun ./a .out

#!/birvba s h

#M5 UB -r MyJob_Pa ra
#MSUB-n1

#Ms UB-c 16

#M5 UB -T 1800

#M5 UB-0 e xa mple _%l.0
#MSUB-e example %le
#MS UB-q la rge

#MS UB-A ra XxxXxx

set-x
cd ${BRIDGE_MS UB PWD}

e xport OMP_NUM THREADS =

€cc mprun ./a .out

Warning : an OpenMP/Multithreaded program can only run inside a node. If you ask more threads than available

Re que st name
Numbe r of tasks touse
Numberof threads pertasktouse
Hapsedtime limitinse conds
Standard output. %l is the job id
Error output. %l is the job id
Choos ing s ta nda rd node s
Proje ct ID

16

Re que st name
Numberof tasks touse
Numberof threads pertasktouse
Hapsedtime limitinse conds
S ta nda rd output. %! is the job id
Error output. %l is the job id
Choosing la rge node s
Proje ct ID

${BRIDGE_MS UB_ NCORE} # BRIDGE_MS UB NCORE re pre se nts the numbe r of core de dicatedpertask

cores in a node, your submission will be rejected.

Parallel hybrid OpenMP/MPI or Multithreaded/MPI

#!/bi/ba sh

#MS5 UB-r MyJob Para Hyb
#M5UB-n8

#M5 UB-c 4

#MS UB -T 1800

#M5 UB-0 e xa mple _%l.0
#M5UB-e example_%l.e
#MS UB-q sta nda rd

#M5 UB-A pa XxXXX

set-x
cd ${BRIDGE_MS UB PWD}

Re que st name
Tota | numbe r of ta sks touse
Numberof threads pertasktouse
Hapsedtime limitinse conds
Standard output. %l is the job id
Error output. %l is the job id
Choos ing s ta nda rd node s
Proje ct ID

e xport OMP_NUM THREADS =4
ccc mprun ./a .out # This s cript will la unch 8 MPIta sks. Ea chta sk willhave 4 OpenMPthreads.

You can ask the number of nodes you need:

#!/bi/ba sh

#MS UB-r MyJob Para Hyb
#M5UB-n4

#Ms UB-c 16

#M5 UB-N 4

#M5 UB-T 1800

#MS UB-0 e xa mple _%l.0
#M5 UB-e e xample _%le
#M5 UB-q la rge

#MS UB -A pa XXXX

set-x
cd ${BRIDGE_MS UB PWD}

© xport OMP_NUM THREADS =

Re que st name
Tota | numbe r of tasks to use
Numberofthreads pertasktouse
Numbe r of node s
Hapsedtime limitinse conds
S ta nda rd output. %! is the job id
Emor output. %l is the job id
Choosing la rge node s
Proje ct ID

16

ccc mprun ./a .out # This s cript will la unch 4 MPItasks over4 nodes (.ie. one task MPlpernode). Eachta sk wil have 16 Ope nVP threads.

GPU job

Simple one GPU job:

#!/bir/ba sh

#M5 UB-r GPU_job
#M5UB-n1

#M5 UB -T 1800

#M5 UB -0 e xa mple _%l.0
#MSUB-e example_%l.e
#M5 UB -q hy brid

#M5 UB-A pa XXXX

set-x

cd ${BRIDGE_MS UB PWD}
module loa d cuda
€CC_mprun ./a .out

Requestname
Tota | numbe r of ta sks to use
Hapsedtime limtinse conds
Standard output. %l is the job id
Error output. %! is the job id
Hybrid pa rtition of GPU node s
Proje ct ID

You should use ccc_mprun to run your GPU code because ccc_mprun manages the binding of processes (see
Advanced usage page, section process binding).

Hybrid MPI/GPU job:

#!/bir/ba sh

#M5 UB -r MP_GPU_jJob # Re que st name

#M5UB-n 8 # Tota | numbe r of ta sks touse
#M5 UB-N 4 # Tota | numbe r of node s to use
#MS UB-T 1800 # Hapsedtime limit inse conds

S ta nda rd output. %! is the job id
Emor output. %l is the job id
Hybrid pa rtition of GPU node s

#MS UB-0 e xa mple _%l.0
#M5UB-e example_%l.e
#MS UB-q hybrid

#M5 UB-A pa XxXXX # Proje ct ID
set-x

cd ${BRIDGE_MS UB PWD}
€cc mprun ./a .out

Curie hybrid nodes have 2 GPUs per node. This script launches 8 MPI processes over 4 nodes. Don't forget to load
cuda module before submitting your job.

#!/bi/ba sh

#MS UB -r MPL_GPU_Job # Re que st name

#M5UB-n8 # Tota | numbe r of tasks touse

#M5 UB-c 4 # lsocketis reservedfor 1 MPlprocess
#MS UB -T 1800 # Hapsedtime limitinse conds

#M5 UB -0 e xa mple _%l.0 # Standa rd output. %l is the job id
#M5UB-e example_%l.e # Error output. %l is the job id

#M5 UB -q hy brid # Hybrid pa rtition of GPU node s

#M5 UB-A pa XXXX # Proje ct ID

set-x

cd ${BRIDGE_MS UB PWD}
ccc mprun ./a .out

See Advanced usage page, section process binding for more precisions.

MPMD job

A MPMD job (for Multi Program Multi Data) is a parallel job which launch different executables over the processes.

#!/bi/ba sh

#MS UB-r MyJob Para # Re que st name

#M5 UB-n 32 # Tota | numbe r of tasks touse

#MS UB-T 1800 # Hapsedtime limitinse conds

#MS UB-0 e xa mple _%l.0 # Standa rd output. %l is the job id
#M5UB-e example_%l.e # Error output. %l is the job id
#MS UB-q sta nda rd # Choos ing s ta nda rd node s

#M5 UB-A pa XxXXX # Proje ct ID

set-x

cd ${BRIDGE_MS UB PWD}
cat << END > a pp.conf

1 ./binl # This s cript willlaunchthe 3 e xe cuta ble s
5 ./bin2 # respectively onl, 5and 26 cores
26 ./bin3

END
ccc mprun -f a pp.conf

"ccc_msub" command

The previous script have to be submitted to the resources manager with ccc msub command:

bash4.1$ catscriptsh
#!/bir/ba sh

#M5 UB-r MyJob Para # Reque st name

#MS UB-n 32 # Numbe r of tasks touse

#M5 UB -T 1800 # Bapsedtime limitinse conds

#M5 UB-0 e xa mple _%l.0 # Sta nda rd output. %l is the job id
#M5UB-e example %le # Error output. %l is the job id
#MS UB-q la rge # Choosing la rge node s

#MS UB-A ra XxXXx # Proje ct ID

set-x

cd ${BRIDGE_M5 UB PWD}
ccc_mprun ./a .out

ba sh-4.1$ ccc_msub script.sh
S ubmitte d Ba tch S e s sion 1556

Remark: #MSUB directive lines are not necessary. If a directive is not specified, a default value will be initialized.

Directive lines can be specified through command line options to ccc_msub. In this case, command line parameters
take precedence over script directives.

bash4.1$ catscript.sh

#!/bi/ba sh

#MS UB-r MyJob Para # Reque st name

#M5 UB-0 e xa mple _%l.0 # Standard output. %l is the job id
#M5UB-e example_%l.e # Error output. %l is the job id
#MS UB-q la rge # Choosing la rge node s

#M5 UB-A ra xxxx # Proje ct ID

set-x

cd ${BRIDGE_MS UB PWD}
ccc_mprun ./a .out

ba sh-4.1$ ccc_ms ub -n 32 -T 1800 s cript.s h
S ubmitte d Ba tch S e s sion 1557

If one of theses command line options like -n, -N, -c or -x is given, it cancels all effects of MSUB directives with -n, -
N, -c or -x.

We recommend to use the MSUB directives rather than the command line options. Here are some other command
line options for ccc_msub:

-0 output_file :standard output file (special character %I will be replaced by the job ID)
-e error_file :standard error file (special character %! will be replaced by the job ID)
-r reqname : job name

-n nprocs : number of tasks that will be used in parallel mode (default=1)

-c ncores : number of cores per parallel task to allocate (default=1)

-N nnodes : number of nodes to allocate for parallel usage

-T time limit : maximum walltime of the batch job in seconds (default=18000)

-M mem_limit : maximum memory amount required per allocated core in Mb

-x :request for exclusive usage of allocated nodes

-X :allow enables X11 forwarding (useful for DDT)

-A project : specify the projectid

-E "extra_parameters..." : extra parameters to pass directly to the underlying batch system
-q partition :requested type of node

-Q qos :requested QoS

-S starttime :requested start time using format like "HH:MM" or "MM/DD HH:MM"
-@ mailopts : mail options following the pattern mailaddr["begin|end|begin,end"]
exp: ccc_msub -@ jdoe@foo.com :begin,end will send a mail to jdoe at the begining
and the end of the job default behavior depends of the underlying batch system

Type ccc_msub -h for an updated and complete documentation.

Don't forget to specify your correct project ID with the -A option . Otherwise, you may use hours from another
project.

Choosing between Curie's three architectures

When you're submitting your job on Curie, you can choose on which of the three architectures available your job is
going to run:

e Curie's standard nodes, using the -q standard option.
e Curie's large nodes, using the -q large option.
e Curie's hybrid nodes, using the -q hybrid option.

This choice is exclusive : your job can only be submitted on one of those architecture at a time.

Test QoS

To develop or debug your code, you may submit a job using the test QoS (Quality of Service) which will allow it to
be scheduled faster. This QoS is limited to two jobs of 30 minutes and each job is limited to 8 nodes. The cpu time
is accounted normally. To do this, simply add #MSUB -Q test in your submission script (see below).

#!/birvba s h

#MS UB -r My Job # Re que st name

#M5 UB-n 64 # Numbe r of tasks touse (256 ma x forte st QoS)

#MS UB -T 1800 # Ela pse dtime limitinse conds of the job (1800 ma x withte st QoS)
#M5UB-Qtest # QoS test

#M5 UB-0 e xa mple _%l.0 # Sta nda rd output. %l is the job id

#MSUB-e example %le # Emor output. %l is the job id

#MS UB-q sta nda rd # Choos ing s ta nda rd node s

#MS UB-A ra XXXx # Proje ct ID

€cC_mprun ./a .out

Multi Step job

To launch a multi step job like this:

JOB A ==> JOB B ==> JOB C

where JOB B can be launched only if JOB A is finished, then JOB C can be launched if JOB B is finished.
Here are the corresponding scripts:

JOB_Assh :

#!/bi/ba sh

#MS UB-r JOB A
#M5 UB-n 32
ccc_mprun ./a .out
ccc msub JOB Bsh

JOB_B.sh :

#!/bir/ba sh

#M5 UB-r JOB B
#Ms UB-n 16
ccc_mprun ./b.out
ccc msubJOB C.sh

JOB_C.sh :

#!/bi/ba sh
#MS UB-r JOB C
#M5UB-n 8
€cc_mprun ./c.out

Then, only JOB_A.sh has to be submitted. When it finishes, the script launches JOB B.sh, etc...

/"\ Be careful, if the job is killed or has reached his time allocation limit, all the job will be removed and the last

"ccc_msub" may not be launched. To avoid this case, you can use the ccc_tremain from libccc_user (described
below) or use the "#MSUB -w" directive like that:

#!/bi/ba sh

#MS UB-r JOB A
#M5 UB-n 32

#Ms UB-w
ccc_msub JOB Ash
ccc_mprun ./a .out

The directive "#MSUB -w" creates a dependance between jobs with the same name. If you submit two jobs with
the same name, the second will run only if the first has finished. In our case of multi-step jobs, you submit the next
script before ccc_mprun command, but the next will be launched after the current job will be done.

Job monitoring and control

ccc_mpp provides information about jobs on the cluster.

ba s h-3.0$ ccc_mpp

USER GROUP BATCHID NCPU QUEUE STATE RLM RUN SUSP OLD NAME NODES
logn s8 3117 36test RUN 300m 3.4m - 3.4mjob A cuie[22-23]
logn s8 3119 24 test PEN 300m - -3L0sjobB

Here are command line options for ccc_mpp:

-r :prints 'running' batch jobs

-s : prints 'suspended' batch jobs
-p :prints 'pending' batch jobs

-q queue :requested batch queue
-u user :requested user

-g group :requested group

-n : prints results without colors

ccc_mpeek gives information about a job during its run.

Here are command line options for ccc_mpeek:

-0 :prints the standard output
-e : prints the standard error output
-s :prints the job submission script
-t :same as -o in "tail -f* mode

ccc_mdel kills jobs:

ba sh-4.1$ ccc_mpp

USER GROUP BATCHID NCPU QUEUE STATE RLM RUN SUSP OLD NAME NODES
logn s8 3117 36test RUN 30.0m 3.4m - 3.4mjob A cuie[22-23]

ba sh-4.1$ ccc mde 13117

The command ccc_myproject gives information about the accounting of your project:

ba sh-4.1$ ccc_my proje ct
Accounting for proje ct XXXXXXX on Curie a t 2011-04-13

Login Time in hours
login01 ..75382.44
login02 ..0.00
Tota |

Alocated .

PercentUsed.

Proje ct de a dine 201X-0X-0X
You will find:

e consumed compute time per project's member
e total consumed compute time
e project's deadline

The accounting is updated once a day.

libccc user

We provide a library which allows to get information about job. An interesting functionnality is the subroutine
ccc_tremain which gives the execution time remaining in seconds before the job ends. For example, it is useful if
your code runs more than the duration allocated. Then, you can save restart files for a next job.

o C/C++:

#include "ccc_user.h"

double time _re ma in;
int e or;

emor= ccc_tre ma in(&time _re ma in);
if('e mor) printf("Time re ma ining be fore job e nds: %lIf s e conds\n", time _re ma in);

e Fortran:

&uUe pre cision :: time _re ma in

cal ccc_tre ma in(time _re ma in)
print*, Time re ma ining be fore jobe nds: ', time _remain, ' se conds*

We give here an example to compile a program using libccc_user:

$ module loa d libccc_use r
$ icc -0 prog.e xe prog.c ${CCC LIBCCC US ER LDFLAGS }

Debugging

Compiler flags

Before debugging, you need to compile your code with theses flags:

e - -g:Generates extra debugging information usable by GDB. -g3 includes even more debugging information.
This option is available for GNU and INTEL version to compile C/C++ and Fortran programs. - -O0 : Suppress
all optimizations.

GNU

Gnu fortran compiler :gfortran

e -fbacktrace: Specifies that if the program crashes, a backtrace should be produced if possible, showing what
functions or subroutines were being called at the time of the error.

e -fbounds-check: Add a check that the array index is within the bounds of the array every time an array
element is accessed. This substantially slows down a program using it, but is a very useful way to find bugs
related to arrays; without this flag, an illegal array access will produce either a subtle error that might not
become apparent until much later in the program, or will cause an immediate segmentation fault with very
little information about cause of the error.

Intel fortran compiler : ifort

e -traceback : generate extra information to provide source file traceback at run time
e -check bounds : enables checking for array subscript expressions

Available Debuggers

e Gnu :GDB
e Intel : IDB
e DDT : Parallel debbugger from Allinea

To use gnu and intel debugger, use the command gdb or idb.
DDT

To use it, you need to load a module. For instance :

ba sh-4.1$ modue loa d ddt

Then use the command ddt. In case of parallel codes, in your submission script, you need to replace the line
mpirun -n 16 ./a .out

by :

dot -sta rt -n 16 ./a .out

Example of submission script:

ba sh-4.1$ ca t ddt.job
#!/birvba s h
#M5 UB-r Wlob Para # Re aue st name

#M5 UB-n 32 # Numberof tasks touse

#MS UB-T 1800 # Hapsedtime limitinse conds
#MS UB-0 e xa mple _%l.o # Standa rd output. %l is the job id
#M5UB-e example_%l.e # Error output. %l is the job id

set-x

cd ${BRIDGE_MS UB PWD}
ddt-start-n32 ./a.out

ba sh4.1$ ccc msub -X ddt.job

Note : you must submit with -X for ccc_msub, if you want X11 forwarding.

PRACE infrastructure

Curie is part of the PRACE infrastructure and access to the internal PRACE network and relative services are
available from Curie login nodes.

Note: PRACE services like GSI-SSH and GridFTP require an authorized X.509 grid certificate. To register your grid
certificate in CEA authorization database, please provide the Distinguished Name of your X.509 grid certificate to
hotline .tgcc@cea.fr.

Note: in-depth documentation of the PRACE services and their use will be soon provided on the PRACE-RI website. In
the mean time we provide you guidelines to perform most useful tasks.

Connect to a remote PRACE supercomputer

e To connect with SSH to a remote PRACE supercomputer with your login information for that system:

$ ssh juge ne 5d.za m.kfa -jue lich.de - <your fzj login>

e If you have a X.509 grid certificate, registered in the authorization database of the remote site you want to
connect to, you can also connect with GSI-SSH to that remote system once your grid credential is enabled on
Curie

$ gsissh juge ne 5d.za m.kfa -jue lich.de -p 2222

Note: Please see your grid Certification Authority documentation to learn how to enable your grid credential on
Curie and the remote site documentation to learn how to register your grid certificate at this remote site.

Connect to curie from a remote PRACE supercomputer

e From a remote PRACE supercomputer, you can connect with SSH to Curie login nodes with your Curie login
information

$ ssh curie -pra ce .ccc.ce a .fr -l <your cea login>

e If you have a X.509 grid certificate, registered in CEA authorization database, you can also connect to Curie
with GSI-SSH once your grid credential is enabled on remote site:

$ gsissh curie -pra ce .ccc.ce a .fr-p 2222

Note: please see your Grid Certification Authority documentation to learn how to enable your grid credential on
remote site.

Note: to register your grid certificate in CEA authorization database, please provide the Distinguished Name of your
X.509 grid certificate to hotline.tgcc@cea.fr.

Transfer data between PRACE supercomputers

To transfer data from/to Curie, you can use SCP with the login information on both local and remote
supercomputers:

e From a remote PRACE supercomputer
$scp myfile <your cea login>@curie -pra ce .ccc.ce a .fr:/pa th/to/copy
e From a Curie login node

$scp myfile <your fzj login>@)juge ne 5d.za m.kfa -jue lich.de :/pa th/to/copy

If you have a X.509 grid certificate, registered in both CEA and remote site authorization databases, you can also

transfer data with GridFTP:
e From a remote PRACE supercomputer

$ globus -url-copy gs iftp://juge ne 5d.za m.kfa -jue lich.de :2812/pa th/to/s ource file gs iftp://ga rbin-pra ce .e ole .ccc.ce a .fr:2812/pa thto/de s tdir/

e From a Curie login node
$ globus -url-copy gs iftp://ga rbin-pra ce .e ole .ccc.ce a .fr:2812/pa thito/s ource file gs iftp://juge ne 5d.za m.kfa -jue lich.de :2812/pa thto/de s tdir/

Note: to register your grid certificate in CEA authorization database, please provide the Distinguished Name of your
X.509 grid certificate to hotline.tgcc@cea.fr.

	Contents
	Curie's Manual
	Curie's Configuration
	System Access
	How to reach the system
	File transfer
	Available File Systems

	Environment
	Operating System
	Available shells
	Passwords
	Restore lost files
	Text editors
	"module" command

	Compiling / Basis Porting
	Available compilers
	Compiler flags
	C/C++
	Fortran

	GNU

	Available numerical libraries
	MKL Library
	Other libraries

	Parallel Programming
	MPI
	Available MPI Implementations
	Compiling MPI program

	OpenMP
	GPU
	CUDA
	OpenCL

	Job submission
	"ccc_mprun" command
	Script examples
	Sequential job
	Parallel MPI job
	Parallel OpenMP/Multithreaded job
	Parallel hybrid OpenMP/MPI or Multithreaded/MPI
	GPU job
	MPMD job

	"ccc_msub" command
	Choosing between Curie's three architectures
	Test QoS
	Multi Step job
	Job monitoring and control
	libccc_user

	Debugging
	Compiler flags
	GNU
	Gnu fortran compiler :gfortran

	Intel fortran compiler : ifort

	Available Debuggers
	DDT

	PRACE infrastructure
	Connect to a remote PRACE supercomputer
	Connect to curie from a remote PRACE supercomputer
	Transfer data between PRACE supercomputers

