Contents

e 1 Curie's advanced usage manual
e 2 Optimization
o 2.1 Compilation options
s 2.1.1 Intel
s 2.1.1.1 Intel Sandy Bridge processors

s 2.1.2 GNU

e 3 Submission
o 3.1 Choosing or excluding nodes

e 4 MPI
o 4.1 Embarrassingly parallel jobs and MPMD jobs
o 4.2 BullxMPI

4.2.1 MPMD jobs

4.2.2 Tuning BullxMPI

4.2.3 Optimizing with BullxMPI

4.2.4 Debugging with BullxMPI

5 Process distribution, affinity and binding
o 5.1 Introduction
s 5.1.1 Hardware topology
s 5.1.2 Definitions
s 5.1.3 Process distribution
a
a

5.1.4 Why is affinity important for improving performance ?
5.1.5 CPU affinity mask

o 5.2 SLURM
m 5.2.1 Process distribution
s 5.2.1.1 Curie hybrid node

m 5.2.2 Process binding

o 5.3 BullxMPI
s 5.3.1 Process distribution
s 5.3.2 Process binding
s 5.3.3 Manual process management

e 6 Using GPU
o 6.1 Two sequential GPU runs on a single hybrid node

e 7 Profiling

o 7.1 PAPI

o 7.2 VampirTrace/Vampir
7.2.1 Basics
7.2.2 Tips
7.2.3 Vampirserver
7.2.4 CUDA profiling

o 7.3 Scalasca
s 7.3.1 Standard utilization
m 7.3.2 Scalasca + Vampir
m 7.3.3 Scalasca + PAPI

o 7.4 Paraver
s 7.4.1 Trace generation
s 7.4.2 Converting traces to Paraver format
s 7.4.3 Launching Paraver

Curie's advanced usage manual

If you have suggestions or remarks, please contact us : hotline.tgcc@cea.fr

Optimization

Compilation options

Compilers provides many options to optimize a code. These options are described in the following section.

Intel

e -opt_report: generates a report which describes the optimisation in stderr (-O3 required)

e -ip, -ipo : inter-procedural optimizations (mono and multi files). The command xiar must be used instead of
ar to generate a static library file with objects compiled with -ipo option.

e -fast: default high optimisation level (-O3 -ipo -static). + Carefull : This option is not allowed using MPI, the MPI
context needs to call some libraries which only exists in dynamic mode. This is incompatible with the -static
option. You need to replace -fast by -O3 -ipo

e -ftz : considers all the denormalized numbers (like INF or NAN) as zeros at runtime.

-fp-relaxed : mathematical optimisation functions. Leads to a small loss of accuracy.

e -pad : makes the modification of the memory positions operational (ifort only)

There are some options which allow to use specific instructions of Intel processors in order to optimize the code.
These options are compatible with most of Intel processors. The compiler will try to generate these instructions if
the processor allow it.

e -XSSE4.2 : May generate Intel® SSE4 Efficient Accelerated String and Text Processing instructions. May
generate Intel® SSE4 Vectorizing Compiler and Media Accelerator, Intel® SSSE3, SSE3, SSE2, and SSE
instructions.

e -XSSE4.1 : May generate Intel® SSE4 Vectorizing Compiler and Media Accelerator instructions for Intel

processors. May generate Intel® SSSE3, SSE3, SSE2, and SSE instructions.

-XSSSE3 : May generate Intel® SSSE3, SSE3, SSE2, and SSE instructions for Intel processors.

-XSSE3 : May generate Intel® SSE3, SSE2, and SSE instructions for Intel processors.

-XSSE2 : May generate Intel® SSE2 and SSE instructions for Intel processors.

-xHost : this option will apply one of the previous options depending on the processor where the compilation

is performed. This option is recommended for optimizing your code.

None of these options are used by default. The SSE instructions use the vectorization capability of Intel processors.

Intel Sandy Bridge processors

Curie thin nodes use the last Intel processors based on Sandy Bridge architecture. This architecture provides new
vectorization instructions called AVX for Advanced Vector eXtensions. The option -xAVX allows to generate a
specific code for Curie thin nodes.

Be careful, a code generated with -xAVX option runs only on Intel Sandy Bridge processors. Otherwise, you will get
this error message:

Fa ta | Error: This progra mwa s not buift to run in your syste m.
Ple ase verify tha t both the ope rating syste ma nd the proce ssor s upport Inte I(R) AVX.

Curie login nodes are Curie large nodes with Nehalem-EX processors. AVX codes can be generated on these
nodes through cross-compilation by adding -xAVX option. On Curie large node, the -xHost option will not generate a
AVX code. If you need to compile with -xHost or if the installation requires some tests (like autotools/configure), you
can submit a job which will compile on the Curie thin nodes.

GNU

There are some options which allow usage of specific set of instructions for Intel processors, in order to optimize
code behavior. These options are compatible with most of Intel processors. The compiler will try to use these
instructions if the processor allow it.

-mmmx / -mno-mmx : Switch on or off the usage of said instruction set.
-msse / -mno-sse : idem.

-msse2 / -mno-sse2 :idem.

-msse3 /-mno-sse3 :idem.

-mssse3 /-mno-ssse3 :idem.

-mssed4.l /-mno-ssed.l :idem.

-mssed4.2 /[-mno-ssed.2 :idem.

-mssed / -mno-sse4 :idem.

-mavx / -mno-avx : idem, for Curie Thin nodes partition only.

Submission

Choosing or excluding nodes

SLURM provides the possibility to choose or exclude any nodes in the reservation for your job.

To choose nodes:

#!/bi/ba sh

#MS UB-r MyJob Para # Reque st name

#M5 UB-n 32 # Numberof tasks touse

#MS UB-T 1800 # Hapsedtime limit inse conds

#MS UB-0 e xa mple _%l.0 # Standa rd output. %l is the job id

#M5UB-e example_%l.e # Error output. %l is the job id
#MS UB-A pa XXXX # Proje ct ID
#M5 UB-E -w curie [1000-1003] # Include 4 node s (curie 1000 to curie 1003)

set-x

cd ${BRIDGE_MS UB PWD}
€cc mprun ./a .out

To exclude nodes:

#!/bir/ba sh

#M5 UB-r MyJob_Pa ra # Re que st name

#MS UB-n 32 # Number of tasks touse

#MS UB -T 1800 # Hapsedtime limitinse conds
#M5 UB -0 e xa mple _%l.0 # Standa rd output. %l is the job id
#M5UB-e example_%l.e # Error output. %l is the job id
#M5 UB-A pa XxXXX # Proje ct ID

#MS UB-E x curie [1000-1003]' # Exclude 4 nodes (curie 1000 to curie 1003)
set-x

cd ${BRIDGE_MS5 UB PWD}
ccc mprun ./a .out

MPI

Embarrassingly parallel jobs and MPMD jobs

e An embarrassingly parallel job is a job which launch independent processes. These processes need few or
no communications

e A MPMD job is a parallel job which launch different executables over the processes. A MPMD job can be
parallel with MPl and can do many communications.

These two concepts are separate but we present them together because the way to launch them on Curie is
similar. An simple example in the Curie info page was already given.

In the following example, we use ccc_mprun to launch the job. srun can be used too. We want to launch bin0O on the
MPI rank O, binl on the MPI rank 1 and bin2 on the MPI rank 2. We have first to write a shell script which describes
the topology of our job:

launch_exe.sh:

#!/bir/ba sh
if [$5 LURM PROCID -e q 0]
then
./bin0
fi
if [$SLURM PROCID -e q 1]
then
./binl
fi
if [$5 LURM PROCID -eq 2]
then
./bin2
fi

We can then launch our job with 3 processes:

ccc mprun-n 3 /launch exe.sh

The script launch_exe.sh must have execute permission. When ccc_mprun launches the job, it will initialize some
environment variables. Among them, SLURM_PROCID defines the current MPI rank.

BullxMPI

MPMD jobs

BullxMPI (or OpenMPI) jobs can be launched with mpirun launcher. In this case, we have other ways to launch MPMD
jobs (see embarrassingly parallel jobs section).

We take the same example in the embarrassingly parallel jobs section. There are then two ways for launching
MPMD scripts

e We don't need the launch_exe.sh anymore. We can launch directly the job with mpirun command:

mpirun -np 1 ./bin0 : -np 1 ./binl : -np 1 ./bin2

e In the launch_exe.sh, we can replace SLURM_PROCID by OMPI_COMM_WORLD_RANK:

launch_exe.sh:

#!/biVba sh
if [${OMPL_COMM WORLD_RANK} -eq 0]
then

./bin0
fi
if [${OMP COMM WORLD RANK} -eq1]
then

./binl
fi
if [${OMPL_COMM WORLD_RANK} -eq2]
then

./bin2
fi

We can then launch our job with 3 processes:

mpirun -np 3 ./la unch e xe .sh

Tuning BullxMPI

BullxMPI is based on OpenMPI. It can be tuned with parameters. The command ompi_info -a gives you a list of all
parameters and their descriptions.

curie 50$ ompi_info -a
o))
MCA mpi: pa ra me te r "mpi_show_mca _params" (curre nt va lue : <none >, data source: de fautt value)

Whe the rto show allMCA parametervalues during MPLINIT or not (good for re produca biity of MPI jobs for de bug purpose s). Acce ptedvalues are all, defa ul, file, a pi, a nd e nvironme nt
-ora comma de limite d combina tion of the m

Theses parameters can be modified with environment variables set before the ccc_mprun command. The form of
the corresponding environment variable is OMPI_MCA_xxxxx where xxxxx is the parameter.

#!/birvba s h

#MS UB-r MyJob Para # Reque st name

#Ms UB-n 32 # Numberof tasks touse

#MS UB-T 1800 # Hapsedtime limitinse conds

#M5 UB-0 e xa mple _%l.0 # Standard output. %lis the job id
#M5UB-e example_%l.e # Error output. %l is the job id
#MS UB-A pa XXXX # Proje ct ID

set-x

cd ${BRIDGE_M5 UB PWD}

e xport OMPl_ MCA_mpi show_mca _params=all
€cc mprun ./a .out

Optimizing with BullxMPI

You can try theses parameters in order to optimize BullxMPI:

e xport OMPl MCA mpi leave pinne d=1

This setting improves the bandwidth for communication if the code uses the same buffers for communication during
the execution.

e xport OMPI MCA btl ope nib use eager rdma =1

This parameter optimizes the latence for short messages on Infiniband network. But the code will use more
memory.

Be careful, theses parameters are not set by default. They can have influences on the behaviour of your codes.

Debugging with BullxMPI

Sometimes, BullxMPI codes can hang in any collective communication for large jobs. If you find yourself in this case,
you can try this parameter:

e xport OMPI MCA coll=""ghc, tune d"

This setting disables optimized collective communications: it can slow down your code if it uses many collective
operations.

Process distribution, affinity and binding

Introduction

Hardware topology

Machine (128GB)
| NUMANods P#0 (32GE) |
Socket P40
| L3 [24MB) |
| L2 (256KE) | | L2 (256K8) | | L2 (256KB) | | L2 (256K8) | | L2 (256KB) | | L2 (256KE) | | L2 (256K8) | | L2 256KE) |
| L1 (32KB) | | L1 (32KB) | | L1 (32KB) | | L1 (32KB) | | L1 (32KB) | | L1 (32KE) | | L1 (32KB) | | L1 (32KB) |
GCom P#0 Core P#8 Com P2 GCor P#I0 Com P#l Com P#0 Com P#3 GCom P#I1
| PUPE0 | | PUPE4 | | PU P#8 | | PUP#I2 | | PU P#16 | | PU P#20 | | PU P£24 | | PU P#28 |
| NUMANods P#1 (32GE) |
Socket P#2
| L3 [24MB) |
| L2 (256KE) | | L2 (256K8) | | L2 (256KB) | | L2 (256K8) | | L2 (256KB) | | L2 (256KE) | | L2 (256K8) | | L2 256KE) |
| L1 (32KB) | | L1 (32KB) | | L1 (32KB) | | L1 (32KB) | | L1 (32KB) | | L1 (32KE) | | L1 (32KB) | | L1 (32KB) |
GCom P#0 Core P#8 Com P2 GCor P#I0 Com P#l Com P#0 Com P#3 GCom P#I1
| PUPH | | PU P#5 | | PU P#0 | | PUP#3 | | PU P#IT | | PU PE21 | | PU P£25 | | PU P#20 |
| NUMANods P#2 (32GE) |
Socket P#1
| L3 (24MB) |
| L2 (256KE) | | L2 (256K8) | | L2 (256KB) | | L2 (256K8) | | L2 (256KB) | | L2 (256KE) | | L2 (256K8) | | L2 256KE) |
| L1 (32KB) | | L1 (32KB) | | L1 (32KB) | | L1 (32KB) | | L1 (32KB) | | L1 (32KB) | | L1 (32KB) | | L1 (32KB) |
GCom P#0 Core P#8 Com P2 GCor P#I0 Com P#l Com P#0 Com P#3 GCom P#I1
| PUP#2 | | PUP#s | | PUP#I0 | | PUP#4 | | PUP# 8 | | PU P#22 | | PU P#28 | | PU P#30 |
| HUMANode P#3 (32GE) |
Socket P#3
| L3 (24MB) |
| L2 (256KE) | | L2 (256K8) | | L2 (256KB) | | L2 (256K8) | | L2 (256KB) | | L2 (256KE) | | L2 (256K8) | | L2 256KE) |
| L1 (32KB) | | L1 (32KB) | | L1 (32KB) | | L1 (32KB) | | L1 (32KB) | | L1 (32KB) | | L1 (32KB) | | L1 (32KB) |
GCom P#0 Core P#8 Com P2 GCor P#I0 Com P#l Com P#0 Com P#3 GCom P#I1
| PUP#3 | | PU P#7 | | PUP#I1 | | PUP#5 | | PUP#I9 | | PUP#23 | | PU P#27 | | PU P#31 |

Hardware topology of a Curie fat node

The hardware topology is the organization of cores, processors, sockets and memory in a node. The previous
image was created with hwloc. You can have access to hwloc on Curie with the command module load hwloc.

Definitions

We define here some vocabulary:

e Binding : a Linux process can be bound (or stuck) to one or many cores. It means a process and its threads
can run only on a given selection of cores. For example, a process which is bound to a socket on a Curie fat
node can run on any of the 8 cores of a processor.

e Affinity : it represents the policy of resources management (cores and memory) for processes.

e Distribution : the distribution of MPI processes describes how theses processes are spread accross the
core, sockets or nodes.

On Curie, the default behaviour for distribution, affinity and binding are managed by SLURM, precisely the ccc_mprun
command.

Process distribution

We present here some example of MPI processes distributions.

../images/Curie_fat_topo.png
http://www.open-mpi.org/projects/hwloc/

e block or round : this is the standard distribution. From SLURM manpage: The block distribution method will
distribute tasks to a node such that consecutive tasks share a node. For example, consider an allocation of
two nodes each with 8 cores. A block distribution request will distribute those tasks to the nodes with tasks 0
to 7 on the first node, task 8 to 15 on the second node.

o] [2] || [{L=] [=]
2] 2]

L] [s]f| || (2] 23]
[T [7]]| | |[2a]

Block distribution by core

e cyclic by socket: from SLURM manpage, the cyclic distribution method will distribute tasks to a socket such
that consecutive tasks are distributed over consecutive socket (in a round-robin fashion). For example,
consider an allocation of two nodes each with 2 sockets each with 4 cores. A cyclic distribution by socket
request will distribute those tasks to the socket with tasks 0,2,4,6 on the first socket, task 1,3,5,7 on the
second socket. In the following image, the distribution is cyclic by socket and block by node.

[22]

o] [2]
][]
ENENa
[sTL7]] | [[22] [2s]

[£]

Cyclic distribution by socket

e cyclic by node: from SLURM manpage, the cyclic distribution method will distribute tasks to a node such that
consecutive tasks are distributed over consecutive nodes (in a round-robin fashion). For example, consider
an allocation of two nodes each with 2 sockets each with 4 cores. A cyclic distribution by node request will
distribute those tasks to the nodes with tasks 0,2,4,6,8,10,12,14 on the first node, task 1,3,5,7,9,11,13,15 on
the second node. In the following image, the distribution is cyclic by node and block by socket.

o] (2]} | fL2}]z=]
[a][e] || (] [7]

5] [

Block distribution by node

Why is affinity important for improving performance ?

Curie nodes are NUMA (Non-Uniform Memory Access) nodes. It means that it will take longer to access some
regions of memory than others. This is due to the fact that all memory regions are not physically on the same bus.

../images/Round_bycore.png
../images/Cyclic_bysocket.png
../images/Cyclic_bynode.png

L] &
Blalgla
|]

Memory Module 1

[~] []

Memory Module 0

NUMA node : Curie hybrid
node

In this picture, we can see that if a data is in the memory module 0, a process running on the second socket like
the 4th process will take more time to access the data. We can introduce the notion of local data vs remote data. In
our example, if we consider a process running on the socket 0, a data is local if it is on the memory module 0. The
data is remote if it is on the memory module 1.

We can then deduce the reasons why tuning the process affinity is important:

e Data locality improve performance. If your code use shared memory (like pthreads or OpenMP), the best
choice is to regroup your threads on the same socket. The shared datas should be local to the socket and
moreover, the datas will potentially stay on the processor's cache.

e System processes can interrupt your process running on a core. If your process is not bound to a core or to
a socket, it can be moved to another core or to another socket. In this case, all datas for this process have
to be moved with the process too and it can take some time.

e MP| communications are faster between processes which are on the same socket. If you know that two
processes have many communications, you can bind them to the same socket.

e On Curie hybrid nodes, the GPUs are connected to buses which are local to socket. Processes can take
longer time to access a GPU which is not connected to its socket.

GLEG

(2] [=]] |[s]{]
] [

| Memory Module O

GPU O GPU 1

[Memory Module 1

NUMA node : Curie hybrid node with GPU

For all theses reasons, it is better to know the NUMA configuration of Curie nodes (fat, hybrid and thin). In the
following section, we will present some ways to tune your processes affinity for your jobs.

CPU affinity mask

The affinity of a process is defined by a mask. A mask is a binary value which length is defined by the number of
cores available on a node. By example, Curie hybrid nodes have 8 cores: the binary mask value will have 8 figures.
Each figures will have 0 or 1. The process will run only on the core which have 1 as value. A binary mask must be
read from right to left.

For example, a process which runs on the cores 0,4,6 and 7 will have as affinity binary mask: 11010001

SLURM and BullxMPl use theses masks but converted in hexadecimal number.

e To convert a binary value to hexadecimal:

$ e cho "iba se =2;0ba s e =16;11010001"| bc
21202

e To convert a hexadecimal value to binary:

$ e cho "ibase =160ba se =2;21202"| bc
11010001

../images/Numa.png
../images/GPU.png

The numbering of the cores is the PU number from the output of hwloc.
SLURM

SLURM is the default launcher for jobs on Curie. SLURM manages the processes even for sequential jobs. We

recommend you to use ccc_mprun. By default, SLURM binds processes to a core. The distribution is block by node
and by core.

The option -E '--cpu_bind=verbose' for ccc_mprun gives you a report about the binding of processes before the run:

$ ccc_mprun -E --cpu_bind=ve rbose ' -q hybrid -n 8 ./a .out
cpu_bind=MASK - curie 7054, task 3 3 [3534]: mask Ox8set
cpu_bind=MAS K - curie 7054, task 0 0[3531]: maskOx1lset
cpu_bind=MASK - curie 7054, task 1 1[3532]: maskOx2 set
cpu_bind=MASK - curie 7054, task 2 2 [3533]: mask Ox4 set
cpu_bind=MAS K - curie 7054, task 4 4 [3535]: maskOx10set
cpu_bind=MASK - curie 7054, task 5 5[3536]: mask Ox20set
cpu_bind=MAS K - curie 7054, task 7 7 [3538]: mask 0x80set
cpu bind=MASK - curie 7054, task 6 6[3537]: mask Ox40set

In this example, we can see the process 5 has 20 as hexadecimal mask or 00100000 as binary mask: the 5th
process will run only on the core 5.

Process distribution

To change the default distribution of processes, you can use the option -E '-m' for ccc_mprun. With SLURM, you have
two levels for process distribution: node and socket.

e Node block distribution:

«ccc mprun -E -m block' ./a .out

e Node cyclic distribution:
ccc mprun -E “m cyclic' ./a .out

By default, the distribution over the socket is block. In the following examples for socket distribution, the node
distribution will be block.

e Socket block distribution:

«ccc mprun -E -m block:block' ./a .out

e Socket cyclic distribution:

«ccc mprun -E -m block:cy clic' ./a .out

Curie hybrid node

On Curie hybrid node, each GPU is connected to a socket (see previous picture). It will take longer for a process to
access a GPU if this process is not on the same socket of the GPU. By default, the distribution is block by core.
Then the MPI rank 0 is located on the first socket and the MPI rank 1 is on the first socket too. The majority of GPU

codes will assign GPU 0 to MPI rank 0 and GPU 1 to MPI rank 1. In this case, the bandwidth between MPI rank 1 and
GPU 1 is not optimal.

If your code does this, in order to obtain the best performance, you should :

e use the block:cyclic distribution

e if you intend to use only 2 MPI processes per node, you can reserve 4 cores per process with the directive
#MSUB -c 4. The two processes will be placed on two different sockets.

Process binding

By default, processes are bound to the core. For multi-threaded jobs, processes creates threads: these threads

will be bound to the assigned core. To allow these threads to use other cores, SLURM provides the option -c to
assign many cores to a process.

#!/bi/ba sh

#MS UB-r MyJob Para # Reque st name

#M5UB-n 8 # Numbe r of tasks touse

#MS UB-c 4 # Assign4 cores perproce ss

#MS UB-T 1800 # Hapsedtime limitinse conds

#M5 UB-0 e xa mple _%l.0 # Standard output. %lis the job id

#M5 UB-A pa XXXX # Proje ct ID

e xport OMP_NUM THREADS =4
€CcC_mprun ./a .out

In this example, our hybrid OpenMP/MPI code runs on 8 MPI processes and each process will use 4 OpenMP
threads. We give here an example for the output with the verbose option for binding:

$ ccc_mprun ./a .out

=MAS K - curie 1139, task 5 5[18761]: ma sk 0x40404040set
=MASK - curie 1139, task 0 0[18756]: ma sk 0x1010101set
cpu_bind=MAS K - curie 1139, task 1 1[18757]: mask 0x10101010se t
MASK - curie 1139, task 6 6[18762]: ma sk 0x8080808 se t
cpu_bind=MAS K - curie 1139, task 4 4 [18760]: ma sk 0x4040404 set
cpu_bind=MAS K - curie 1139, task 3 3 [18759]: ma sk 0x20202020set
cpu_bind=MAS K - curie 1139, task 2 2 [18758]: ma sk 0x2020202 set
cpu bind=MASK - curie 1139, task 7 7 [18763]: ma sk 0x80808080 s e t

We can see here the MPI rank 0 process is launched over the cores 0,8,16 and 24 of the node. These cores are all
located on the node's first socket.

Remark: With the -c option, SLURM will try to gather at best the cores to have best performances. In the previous
example, all the cores of a MPI process will be located on the same socket.

Another example:

$ ccc_mprun-n 1 -c 32 -E “-cpu_bind=ve rbose ' ./a .out
cpu_bind=MASK - curie 1017, task 0 0[34710]: ma sk Oxffffffff se t

We can see the process is not bound to a core and can run over all cores of a node.

BullxMPI

BullxMPI has its own process management policy. To use it, you have first to disable SLURM's process management
policy by adding the directive #MSUB -E '--cpu_bind=none' . You can then use BullxMPI launcher mpirun:

#!/bi/ba sh

#MS UB-r MyJob Para # Reque st name

#M5 UB-n 32 # Numberof tasks touse

#M5 UB -x # Require a exclusive node

#MS UB -T 1800 # Hapsedtime limtinse conds
#M5 UB -0 e xa mple _%l.0 # Standa rd output. %l is the job id
#MS UB-A pa XXXX # Proje ct ID

#M5 UB -E --cpu_bind=none ' # Disa ble de fa ult S LURM binding

mpirun -np 32 ./a .out

Note: In this example, BullxMPI process management policy can be effective only on the 32 cores allocated by
SLURM.

The default BullxMPI process management policy is:

e the processes are not bound
e the processes can run on all cores
e the default distribution is block by core and by node

The option --report-bindings gives you a report about the binding of processes before the run:

#!/bir/ba sh

#M5 UB-r MyJob Para # Reque st name

#MS UB-n 32 # Numbe r of tasks touse

#M5 UB -x # Require a exclusive node

#MS UB-T 1800 # Hapsedtime limitinse conds

#MS UB-0 e xa mple _%l.0 # Standa rd output. %l is the job id
#MS UB -A pa XXXX # Proje ct ID

#MS UB -E --cpu_bind=none * # Disa ble de fa uit S LURM binding

mpirun --re port-bindings --bind-to-s ocke t --cpus -pe r-proc 4 -np 8 ./a .out

And there is the output:

+ mpirun --bind-to-s ocke t --cpus -pe r-proc 4 -np 8 ./a .out

[curie 1342:19946] [[40080,0],0] odls :de fa ult:fork binding child [[40080,1],3] to socke t 1 cpus 22222222
[curie 1342:19946] [[40080,0],0] odls :de fa ult:fork binding child [[40080,1],4] to socke t 2 cpus 44444444
[curie 1342:1994 6] [[40080,0],0] odls :de fa ult:fork binding child [[40080,1],5] to socke t 2 cpus 44444444
[curie 1342:19946] [[40080,0],0] odls :de fa ult:fork binding child [[40080,1],6] to socke t 3 cpus 88888833
[curie 1342:19946] [[40080,0],0] odls :de fa uit:fork binding child [[40080,1],7] to socke t 3 cpus 88333388
[curie 1342:19946] [[40080,0],0] odls :de fa ult:fork binding child [[40080,1],0] to socke t 0 cpus 11111111
[curie 1342:19946] [[40080,0],0] odls :de fa ult:fork binding child [[40080,1],1] to socke t 0 cpus 11111111
[curie 1342:19946] [[40080,0],0] odls :de fa ult:fork binding child [[40080,1],2] to socke t 1 cpus 22222222

In the following paragraphs, we present the different possibilities of process distribution and binding. These options
can be mixed (if possible).

Remark: the following examples use a whole Curie fat node. We reserve 32 cores with #MSUB -n 32 and #MSUB -x
to have all the cores and to do what we want with them. This is only examples for simple cases. In others case,
there may be conflicts with SLURM.

Process distribution

Block distribution by core:

#!/bi/ba sh

#MS UB-r MyJob Para # Reque st name

#Ms UB-n 32 # Numberof tasks touse

#MS UB -x # Require a exclusive node

#M5 UB -T 1800 # Bapsedtime limitinse conds

#M5 UB-0 e xa mple _%l.0 # Sta nda rd output. %! is the job id
#MS UB-A pa XXXX # Proje ct ID

#M5 UB -E --cpu_bind=none ' # Disa ble de fa ult S LURM binding

mpirun --by core -np 32 ./a .out

Cyclic distribution by socket:

#!/bi/ba sh

#MS UB-r MyJob Para # Reque st name

#M5 UB-n 32 # Number of tasks touse

#MS UB -x # Re quire a exclusive node

#MS UB-T 1800 # Hapsedtime limitinse conds

#M5 UB-0 e xa mple _%l.0 # Standard output. %lis the job id
#M5 UB-A pa XXXX # Proje ct ID

#MS UB-E --cpu_bind=none ' # Disa ble de fa ult S LURM binding

mpirun --bys ocke t -np 32 ./a .out

Cyclic distribution by node:

#!/bir/ba sh

#M5 UB-r MyJob_Pa ra # Re que st name

#MS UB-n 32 # Numbe r of tasks touse

#M5 UB-N 16

#MS UB -x # Re quire e xclusive node s

#MS UB-T 1800 # Hapsedtime limitinse conds

#M5 UB-0 e xa mple _%l.0 # Standard output. %lis the job id
#M5 UB-A pa XXXX # Proje ct ID

#MS UB-E --cpu_bind=none ' # Disa ble de fa ult S LURM binding

mpirun --by node -np 32 ./a .out

Process binding

No binding:

#!/bi/ba sh

#MS UB-r MyJob Para # Reque st name

#M5 UB-n 32 # Number of tasks touse

#MS UB -x # Re quire a exclusive node

#MS UB-T 1800 # Hapsedtime limitinse conds

#M5 UB-0 e xa mple _%l.0 # Standard output. %lis the job id
#M5 UB-A pa XXXX # Proje ct ID

#MS UB-E --cpu_bind=none ' # Disa ble de fa ult S LURM binding

mpirun --bind-to-none -np 32 ./a .out

Core binding:

#!/bir/ba sh

#M5 UB-r MyJob_Pa ra # Re que st name

#MS UB-n 32 # Numbe r of tasks touse

#MS UB -x # Require a exclusive node

#MS UB -T 1800 # Hapsedtime limit inse conds

#MS UB-0 e xa mple _%l.0 # Sta nda rd output. %l is the job id
#M5 UB-A pa XxXXX # Proje ct ID

#MS UB -E --cpu_bind=none ' # Disa ble de fa uit S LURM binding

mpirun --bind-to-core -np 32 ./a .out

Socket binding (the process and his threads can run on all cores of a socket):

#!/bi/bash

#MS UB-r MyJob Para # Reque st name

#M5 UB-n 32 # Numberof tasks touse

#M5 UB -x # Require a exclusive node

#MS UB -T 1800 # Hapsedtime limtinse conds
#M5 UB -0 e xa mple _%l.0 # Standa rd output. %l is the job id
#MS UB-A pa XXXX # Proje ct ID

#M5 UB -E --cpu_bind=none ' # Disa ble de fa ult S LURM binding

mpirun --bind-to-s ocke t -np 32 ./a .out

You can specify the number of cores to assign to a MPI process:

#!/bir/ba sh

#M5 UB-r MyJob Para # Reque st name

#MS UB-n 32 # Numbe r of tasks touse

#M5 UB -x # Require a exclusive node

#MS UB-T 1800 # Hapsedtime limitinse conds

#MS UB-0 e xa mple _%l.0 # Standa rd output. %l is the job id
#MS UB-A pa XXXX # Proje ct ID

#MS UB -E --cpu_bind=none * # Disa ble de fa ult S LURM binding

mpirun --bind-to-s ocke t --cpus -pe r-proc 4 -np 8 ./a .out

Here we assign 4 cores per MPI process.

Manual process management

BullxMPI gives the possibility to manually assign your processes through a hostfile and a rankfile. An example:

#!/bir/ba sh

#M5 UB-r MyJob_Pa ra # Re que st name

#MS UB-n 32 # Numbe r of tasks touse

#MS UB -x # Require a exclusive node

#MS UB-T 1800 # Hapsedtime limit inse conds
#MS UB -0 e xa mple _%l.0 # Sta nda rd output. %l is the job id
#M5 UB-A pa XxXXX # Proje ct ID

#MS UB -E --cpu_bind=none ' # Disa ble de fa uit S LURM binding

hostna me > hosftfile .txt

e cho "ra nk 0=${HOS TNAME} slot=0,1,2,3 "> ra nkfile .txt
e cho "ra nk 1=${HOS TNAME} s lot=8,10,12,14 " >> ra nkfile .txt
e cho "ra nk 2=${HOS TNAME} s lot=16,17,22,23" >> ra nkfile .txt
e cho "ra nk 3=${HOS TNAME} s lot=19,20,21,31" >> ra nkfile .txt
mpirun --hos tfile hos tfile .txt --ra nkfile ra nkfile .txt -np 4 ./a .out

In this example, there are many steps :

e You have to create a hostfile here hosftfile.txt where you put the hostname of all nodes your run will use

e You have to create a rankfile here rankfile.txt where you assign to each MPI rank the core where it can run.
In our example, the process of rank 0 will have as affinity the core 0,1,2 and 3, etc... Be careful, the
numbering of the core is different than the hwloc output: on Curie fat node, the eight first core are on the
first socket 0, etc...

e you can launch mpirun by specifying the hostfile and the rankfile.

Using GPU

Two sequential GPU runs on a single hybrid node

To launch two separate sequential GPU runs on a single hybrid node, you have to set the environment variable
CUDA_VISIBLE_DEVICES which enables GPUs wanted. First, create a script to launch binaries:

$catlaunch exe.sh

#!/bin/ba sh
set-x

e xport CUDA VIS IBLE_DEVICES =${S LURM PROCID} # the first process willsee only the first GPU andthe se cond process willse e only the se cond GPU.
if [$5 LURM PROCID -eq 0]
then

./bin_1 > job_${S LURM PROCID}.out

fi

if [$SLURM PROCID -e q 1]
the n
./bin_2 > job_${S LURM PROCID}.out
fi

/!\ To work correctly, the two binaries have to been sequential (not using MPI).
Then run your script, making sure to submit two MPI processes with 4 cores per process:

$ ca t multi_jobs_gpu.sh

#!/bir/ba sh

#M5 UB -1 jobs _gpu

#MSUB-n 2 # 2 tasks

#MSUB-N 1 # 1 node

#M5 UB-c 4 #eachtasktakes 4 cores
#M5 UB -q hy brid

#MS UB -T 1800

#MS UB -0 muiti_jobs _gpu_%].out

#MS UB-e mutti_jobs _gpu %l.out

set-x
cd $BRIDGE_MS UB PWD
e xport OMP_NUM THREADS =4

ccc_mprun -E--wa it=0'-n2 -c 4 ./launch e xe .sh
-E--wa it=0' s pe cify to s lum to not kill the job if one of the two proce sses is te rmina te d a nd not the se cond

So your first process will be located on the first CPU socket and the second process will be on the second CPU
socket (each socket is linked with a GPU).

$ ccc ms ub muti jobs gpu.sh

Profiling

PAPI

PAPI is an APl which allows you to retrieve hardware counters from the CPU. Here an example in Fortran to get the
number of floating point operations of a matrix DAXPY:

progra m ma in
implicit none
include 'f90pa pi.h'
!

integer, parameter:: size = 1000
integer, parameter:: ntimes = 10
double pre cision, dime nsion(size ,size) :: A,BC
integer::ijn
! Varia ble PAPI
integer, parameter:: max_event=1
inte ge r, dime nsion(ma x_event) :: event
integer:: num events, retval
inte ge r(kind=8), dime nsion(ma x_e vent) :: value s
! Init PAPI
ca Il PAPf_num_counte rs(num e ve nts)
print *, 'Numbe r of ha rdwa re counte rs s upporte d: ', num e ve nts
ca Il PAP_que ry_e ve nt(PAPLFP_INS, retval)
if (retva | .NE. PAP_OK) the n
event(l) = PAPTOT_INS
else
! Tota | floa ting point ope ra tions
event(l) = PAP_FP_INS
endif
! Init Ma trix
doi=lsize
doj=1size
C(i,j) = real(i+j,8)
-i+0.1%

end do

! Setupcounters

num events =1

ca ll PAPf_start_counters(event, num events, retval)
! Clearthe countervalues

ca ll PAPf_re a d_counte rs(va lue s, num e vents,retva)

doj=1size
A(ij) = 2.0%B(i,j) + C(i.j)
enddo
enddo
enddo
! Stopthe counters and putthe resutts inthe amay values
ca Il PAPIf_stop_counte rs (va lue s,num_e ve nts,re tva)
! Print re s ults
if (e ve nt(1) .EQ. PAPLTOT_INS) the n
print *, TOT Ins tructions : ',va lue s (1)
else
print *, 'FP Ins tructions : ',va lue s (1)
e
e nd progra m ma in

To compile, you have to load the PAPI module :

ba sh-4.00 $ module loa d pa pi4.1.3

ba sh4.00 $ ifort -5{PAPLINC_DIR} pa pi.f90 ${PAPI LIES }
bash4.00%./a.out

Numbe r of ha rdwa re courte rs s upporte d: 7
FP Ins tructions : 10046163

To get the available hardware counters, you can type "papi_avail" commande.
This library can retrieve the MFLOPS of a certain region of your code:

progra m ma in
implicit none
include 'f90pa pi.h'
1

integer, parameter:: size = 1000

integer, parameter:: ntimes = 100

double pre cision, dme nsion(size ,size) :: A,BC
integer:ijn

! Varia ble PAPI

integer:retval

re a l(kind=4) :: proc_time , mflops, re a | _time
inte ge r(kind=8) :: flpins

! Init PAPI

retval = PAPVER_CURRENT
ca Il PAPIf_libra ry _init(re tva I)
if (re tva LNE.PAP_VER_CURRENT) the n
print*, 'PAPI libra ry_init', re tva |
endif
ca ll PAPIf_que ry_e ve nt(PAPI_FP_INS, re tva)
! Init Ma trix
doi=lsize
doj=1size
C(ij) = re al(i+j,8)
B(ij) = -i+0.1%

enddo
! Setup Counte r
ca |l PAPK_flips (re a |_time , proc_time , flpins, mflops, retval)
! DAXPY
do n=1,ntime s
doi=lsize
doj=Lsize
A(ij) = 2.0%B(i.j) + C(i.))
enddo

enddo
enddo
! Colle ct the data intothe Varables passedin
ca |l PAPKf_flips (re a |_time , proc_time , flpins, mflops, retval)
! Print re s ults
print *, Real time: ', real time
print *, ' Proc_time : ', proc_time
print *, * Tota | flpins : *, fipins
print *, ' MFLOPS : ', nrflops
1

e nd progra m ma in

and the output:

ba sh-4.00 $ module loa d pa pi/4.1.3
ba sh-4.00 $ ifort -I${PAPI_INC_DIR} pa pi_flops .f90 ${PAPI_LIBS }
bash4.00%./a.out
Real time: 6.1250001E-02
Proc_time : 5.1447589E-02
Tota | fipins : 100056592
MFLOPS : 1944.826

If you want more precisions, you can contact us or visit PAPI website.

VampirT race/Vampir

VampirTrace is a library which let you profile your parallel code by taking traces during the execution of the
program. We present here an introduction of Vampir/Vampirtrace.

Basics

First, you must compile your code with VampirTrace compilers. In order to use VampirTrace, you need to load the
vampirtrace module:

ba sh-4.00 $ module loa d va mpirtra ce
ba sh-4.00 $ vtcc -c prog.c
ba sh-4.00 $ vtcc -0 prog.e xe prog.o

Available compilers are :

e vtcc : C compiler
e vitc++, viCC et vicxx : C++ compilers
e vitf77 et vtf90 : Fortran compilers

To compile a MPI code, you should type :

ba sh-4.00 $ vtcc -vt:cc mpicc -g -c prog.c
ba sh-4.00 $ vtcc -vt:cc mpicc -g -0 prog.e Xxe prog.o

For others languages you have :

e vtcc -vt:cc mpicc : MPI C compiler
e vic++ -vt:cxx mpic++, vtCC -vt:cxx mpiCC et vicxx -vt:cxx mpicxx : MPI C++ compilers
e vitf77 -vt:f77 mpif77 et vtf90 -vt:f90 mpif90 : MPI Fortran compilers

By default, VampirTrace wrappers use Intel compilers. To change for another compiler, you can use the same
method for MPI:

ba sh4.00 $ vtce -vt:cc gec -O2 -¢ prog.c
ba sh4.00 $ vtcc -vt:cc gec -O2 -0 prog.e Xxe prog.o

To profile an OpenMP or a hybrid OpenMP/MPI application, you should add the corresponding OpenMP option for the
compiler:

ba sh-4.00 $ vtcc -ope nmp -O2 -c prog.c
ba sh-4.00 $ vtcc -ope nmp -O2 -0 prog.e Xxe prog.o

Then you can submit your job. Here is an example of submission script:

#!/birvba sh

#MS UB-r MyJob Para # Re que st name

#Ms UB-n 32 # Numberof tasks touse

#MS UB-T 1800 # Hapsedtime limitinse conds

#M5 UB -0 e xa mple _%l.0 # Standa rd output. %l is the job id
#M5UB-e example_%l.e # Error output. %l is the job id
set-x

cd ${BRIDGE_M5 UB PWD}
ccc mprun ./prog.e xe
At the end of execution, the program generates many profiling files :

bash4.00$Is
a.outa.out.0.def.z a.out.levents.z ... a.out.off

To visualize those files, you must load the vampir module:

ba sh-4.00 $ module loa d va mpir
ba sh-4.00 $ va mpir a .out.otf

7 Vampir - [irace View - Al [Stream_cuda. exe_5403.otf (sur bulbi20) P o)|

N/ Fle Edi Chan Fiter Window Hep T
es (B

ErkEe3Ti

0s 20

Prcess0

o -

Prcess 1

250955 me [VT_API
<100 me VT CUDA

CUDALY 111

Prcess2

cubAp) 2:1

Prcess3

CTOVER

Prcess 4

CUDAp) 451

Prcess5

cUDA[sit

Gl 0]

Vampir window

If you need more information, you can contact us.

../images/Vampir_cuda.png

Tips

Vampirtrace allocate a buffer to store its profiling information. If the buffer is full, Vampirtrace will flush the buffer
on disk. By default, the size of this buffer is 32MB per process and the maximum number of flushes is only one
time. You can increase (or reduce) the size of the buffer: your code will also use more memory. To change the
size, you have to initialize an environment variable :

e xport VT_BUFFER_S IZ E=64M
€CC_mprun ./prog.e xe

In this example, the buffer is set to 64 MB. We can increase the maximum number of flushes:

e xport VT_MAX_FLUS HES =10
€CC_mprun ./prog.e xe

If the value for VT_MAX_FLUSHES is 0, the number of flushes is unlimited.

By default, Vampirtrace will first store profiling information in a local directory (/tmp) of process. These files can be
very large and fill the directory. You have to change this local directory with another location:

e xport VT PFORM LDIR=$S CRATCHDIR

There are more Vampirtrace variables which can be used. See User Manual for more precisions.

Vampirserver

Traces generated by Vampirtrace can be very large: Vampir can be very slow if you want to visualize these traces.
Vampir provides Vampirserver: it is a parallel program which uses CPU computing to accelerate Vampir
visualization. Firstly, you have to submit a job which will launch Vampirserver on Curie nodes:

$catvampirserver.sh

#!/bi/ba sh

#MS UB-rvampirserver # Re que st name

#M5 UB-n 32 # Numbe r of ta sks touse
#MS UB-T 1800 # Ela psedtime limit in se conds

#MS UB-0ovampirserver %l.o # Sta nda rd output. %l is the job id
#M5 UB-e vampirserver %le # Ermor output. %l is the job id

ccc_mprun vngd

$ module loa d va mpir
$ ccc msubvampirserver.sh

When the job is running, you will obtain this ouput:

$ ccc_mpp

USER ACCOUNT BATCHID NCPU QUEUE PRIORMY STATE RLIM RUN/START SUSP OLD NAME NODES
toto ge XXX 234481 32 large 210332 RUN 30.0m 1.3m - 1.3m vampirserver cure 1352
$ ccc_mpe e k 234481

Found lice ns e file : /us r/loca /va mpir-7.3/birVlic.da t

Running 31analysis processes... (a bort with Ctrl-C or vngd-s hutdown)

Serverliste ns on: curie 1352:30000

In our example, the Vampirserver master node is on curiel352. The port to connect is 30000. Then you can launch
Vampir on front node. Instead of clicking on Open, you will click on Remote Open:

A4 [=JEnEE]

Fle Window Hep

Emsifem [

Sewer |cuieiasz

Port: |30000

Connecting to Vampirserver
Fill the server and the port. You will be connected to vampirserver. Then you can open an OTF files and visualize it.

Notes:

e You can ask any number of processors you want: it will be faster if your profiling files are big. But be careful,
it consumes your computing times.
e Don't forget to delete the Vampirserver job after your analyze.

CUDA profiling

Vampirtrace can collect profiling data from CUDA programs. As previously, you have to replace compilers by
Vampirtrace wrappers. NVCC compiler should be replaced by vtnvcc. Then, when you run your program, you have to
set an environment variable:

|export e xport VT_CUDARTTRACE=ye s |
ccc_mprun ./prog.e xe

Scalasca

Scalasca is a set of software which let you profile your parallel code by taking traces during the execution of the
program. This software is a kind of parallel gprof with more information. We present here an introduction of
Scalasca.

Standard utilization

First, you must compile your code by adding Scalasca tool before your call of the compiler. In order to use Scalasca,
you need to load the scalasca module:

ba sh-4.00 $ module loadscalasca
bash4.00$scalasca -instrume nt mpicc -c prog.c
bash4.00$scalasca -instrume nt mpicc -0 prog.e xe prog.o

or for Fortran :

../images/Vampirserver.png

ba sh-4.00 $ module loadscalasca
bash4.00$scalasca -instrume nt mpif90 -c prog.f90
bash4.00$scalasca -instrume nt mpif90 -o prog.e xe prog.o

You can compile for OpenMP programs:

bash4.00$scalasca -instrume nt ifort -ope nmp -c prog.f90
bash4.00$scalasca -instrume nt ifort -ope nmp -o prog.e xe prog.o

You can profile hybrid programs:

bash4.00$scalasca -instrume nt mpif90 -ope nmp -03 -c prog.f90
bash4.00$scalasca -instrume nt mpifd0 -ope nmp -O3 -0 prog.e xe prog.o

Then you can submit your job. Here is an example of submission script:

#!/bi/ba sh

#MS UB-r MyJob Para
#M5 UB-n 32

#M5 UB-T 1800

Re que st name
Number of tasks touse
Hapsedtime limit inse conds

#MS UB -0 e xa mple _%l.0
#M5 UB-e e xample _%le

S ta nda rd output. % s the job id
Ermor output. %l is the job id

set-x
cd ${BRIDGE_MS UB PWD}

e xport SCAN_MPI LAUNCHER=ccc_mprun
scalasca -analyze ccc mprun./prog.e xe

At the end of execution, the program generates a directory which contains the profiling files :

bash4.00$Is epk *

To visualize those files, you can type:

bash4.00$scalasca -e xamine epk *

O 515117 epik. 0 ltitane997) BEE
Ele Display Topology Help
[Absole] [own rootpercent] [Absote]
Wericee | TCatves | Flatvew | Systemiee | Topology0
0000 Time =] & EmesmAN_ [+ &0 Lucinel [l
L 8.0 Execiiion oo MPLint O- ttane1s15
B+ 687 WPl L DoooTraciNG
1000 Synchronizaton L0000 L intiatzed
L @013 Collctive: -0 0.00 MPI_Comm_dup
01000 Commurication - 01 000 M Alreduce
I 45.11 Pointto-pont - 01 000 MPL_Comm_rark
I 63.20 Colective -0 000 ML Comm_size.
I 126.76 Ini/Ext [O ocompLBeast
652 Overhead -0 000 MPL_Comm_free
b o 587 vists I B 035 sub_wriemesh_
0 Synchronizatons I 8 002 sub_remum2_
IO Painto-paint
I 208 Sends
I 208 Receives
I 252 Colective
[0 Commuricatins [11.27 sub_defmassmat_
10 Pointto-point L @ 0.00 phisdorder3_
I 5.98e4 Sends 3007 sub_shshelmholz_
I 5.98e4 Receives
00 Colectue
I 6340 Exchange imhokz_
969 As saurce
I 15564 As destnation 3 000 phdorders._
0 Bytes wransferred L0000 WP Recy
10 Painto-paint F 0000 MPLirecy
t 012999 Sent -0 0.00 MPI_Waftany - 295 Process 22
[0 2596 Receved -0 000 MPL_Comm_group L 3.5 Process 23
00 Colectve -0 000 MPLGroup_inct O- tane1s21
0 26269 Outgong -0 000 Pt Comm_c I8 273 Process 24
(0 26269 Incoming -0 000 MPL_Group_free IH 273 Process 25
] 000 Computatonalmbalance: 01 000 MPL_Comm_spit IH 256 Process 26
[6.44 Overload F- 0000 Pt Reduce. I8 231 Process 27
L @235 Single partcipant 01 0.00 MPL_Aloall
[6.44 Underload -0 000 Pt Barrier
1000 Non-particpation -0 000 wP_send
L @235 Singulary -0 000 MPI_Wattal
F- 0000 mPLisend
-0 000 MPLTest
£ 000 MPLiprobe
F O oco e wat
£ 0000 wPprobe
[0 000 MPLTestal
- 0000 P Ssend
8 181 sub_wrkeunstruct_
1000 MPLFinalze
LOocoTracinG
Gl [| |G [| |G

fo.c0 88.80 (27.12%) 32740‘ ‘um 8298 Jmm‘ ‘um

Scalasca

If you need more information, you can contact us.

Scalasca + Vampir

Scalasca can generate OTF tracefile in order visualize it with Vampir. To activate traces, you can add -t option to
scalasca when you launch the run. Here is the previous modified script:

#!/bir/ba sh

#M5 UB-r MyJob_Pa ra # Re que st name

#MS UB-n 32 # Numbe r of tasks touse
#MS UB -T 1800 # Hapsedtime limtinse conds

#M5 UB -0 e xa mple _%l.0
#M5UB-e example_%l.e

S ta nda rd output. % s the job id
Ermor output. %l is the job id

set-x
cd ${BRIDGE_MS UB PWD}

../images/Scalasca.png

scalasca -analyze -t mpirun./prog.e xe

At the end of execution, the program generates a directory which contains the profiling files :

bash4.00$Is epk *

To visualize those files, you can visualize them as previously. To generate the OTF trace files, you can type:

bash4.00$Is e pik *
bash4.00$ e lg2otf e pk *

It will generate an OTF file under the epik_* directory. To visualize it, you can load Vampir:

ba sh-4.00 $ module loa d va mpir
ba sh-4.00 $ va mpir e pk */a .otf

Scalasca + PAPI

Scalasca can retrieve the hardware counter with PAPI. For example, if you want retrieve the number of floating
point operations :

#!/bi/ba sh

#MS UB-r MyJob Para # Reque st name

#M5 UB-n 32 # Numberof tasks touse

#MS UB-T 1800 # Hapsedtime limit inse conds

#MS UB-0 e xa mple _%l.0 # Standa rd output. %l is the job id
#M5UB-e example_%l.e # Error output. %l is the job id

set-x
cd ${BRIDGE_MS UB PWD}

e xport EPK_METRICS =PAPI_FP_OPS
scalasca -analyze mpirun./prog.e xe

Then the number of floating point operations will appear on the profile when you visualize it. You can retrieve only 3
hardware counters at the same time on Curie. The the syntax is:

e xport EPK METRICS ="PAPI FP OPS :PAPI TOT CYC"

Paraver

Paraver is a flexible performance visualization and analysis tool that can be used to analyze MPI, OpenMP,
MPI1+OpenMP, hardware counters profile, Operating system activity and many other things you may think of!

In order to use Paraver tools, you need to load the paraver module:

ba sh-4.00 $ module loadparaver
ba sh-4.00 $ module show paraver

Jus r/loca l/ccc_use rs_e nv/module s /de ve lopme nt/pa ra ve r/4.1.1:

module -whatis Paraver

conflict paraver

pre pe nd-pa th PATH /us r/loca /pa ra ve r-4.1. I/bin

pre pe nd-pa th PATH /us r/loca |/e xtra e -2.1.1/bin

pre pe nd-pa th LD_LIBRARY_PATH /us r/loca /pa ra ve r-4.1.1/lib
pre pe nd-pa th LD _LIBRARY_PATH /us r/loca l/e xtra e -2.1.1/lib
module loa d pa pi

setenv PARAVER HOME /usr/loca /paraver4.1.1

setenv EXTRAE HOME /usr/loca l/e xtrae-2.1.1

setenv EXTRAE LIB DR /usr/loca /e xtra e -2.1.1/lib
setenv MPI_TRACE_LIBS /usr/loca /e xtra e -2.1.1/liy/lbmpitra ce .s 0

Trace generation

The simpliest way to activate mpi instrumentation of your code is to dynamically load the library before execution.
This can be done by adding the following line to your submission script:

e xport LD PRELOAD=$LD PRELOAD:$MPI TRACE LIBS

The instrumentation process is managed by Extrae and also need a configuration file in xml format. You will have to
add next line to your submission script.

e xport EXTRAE CONFIG FILE=./e xtra e config file .xml

All detailled about how to write a config file are available in Extrae's manual which you can reach at
$EXTRAE_HOME/doc/user-guide.pdf. You will also find many examples of scripts in $EXTRAE_HOME/examples/LINUX
file tree.

You can also add some manual instrumentation in your code to add some specific user event. This is mandatory if
you want to see your own functions in Paraver timelines.

If trace generation succeed during computation, you'll find a directory set-0 containing some .mpit files in your
working directory. You will also find a TRACE. mpits file which lists all these files.

Converting traces to Paraver format

Extrae provides a tool named mpi2prv to convert mpit files into a .prv which will be read by Paraver. Since it can be
a long operation, we recommend you to use the parallel version of this tool, mpimpi2prv. You will need less
processes than previously used to compute. An example script is provided below:

ba sh-4.00$ ca t re build.sh
#M5 UB-r me rge
#M5UB-n8

#MS UB -T 1800

set-x
cd $BRIDGE_MS UB PWD
CCC_mprun mpimpi2prv -syn -e pa th to your bina ry -f TRACE. mpits -o file to be analysed.prv

Launching Paraver

You just now have to launch "paraver file_to_be_analysed.prv". As Paraver may ask for high memory & CPU usage,
it may be better to launch it through a submission script (do not forget then to activate the -X option in ccc_msub).

For analyzing your data you will need some configurations files available in Paraver's browser under
$PARAVER_HOME/cfgs directory.

(g Paraver (sur curie50) ()
Ells Hslp

|
PO R E X4

Wi browze

/scrateh/cant000/s8/danmi/termX _bench3D/T estitraces_term_small.prv.

I= User calls

% Instructions per cycle

< MPI call ativity

| Total MPI activity profite
£ MPI call curation

1= MPIcall B
| MPI call duration 3

1= o —

|= 1/0 begin

I= 170 end

150 end

|= Instantaneous paralielism profile

Fils & Window Prepstiss

- X I = o . P IS

® [abinit_test2
b [BENCHS_GPUS
b B cudado
b B3 extrae2.1.1-p2
b [tiburwind-1.0.1 What / Where T\mmg‘ Cn\nrs‘
4 magma_1.0.0

B magma_ Semantic Events Communications Previous / Next Text

[my_Extrae
b B3 My_vasp Object: THREAD 1.9.4 Click time: 7,993,045 us
b 3 paraver-source
< B wwparaversa MPI_irecy Duration: 22.47 us

b bin

E End Duration: 753.91 us
oo MPI_Waitall Duration: 763.75 us

Paraver window

../images/Capture_paraver.png

	Contents
	Curie's advanced usage manual
	Optimization
	Compilation options
	Intel
	Intel Sandy Bridge processors

	GNU

	Submission
	Choosing or excluding nodes

	MPI
	Embarrassingly parallel jobs and MPMD jobs
	BullxMPI
	MPMD jobs
	Tuning BullxMPI
	Optimizing with BullxMPI
	Debugging with BullxMPI

	Process distribution, affinity and binding
	Introduction
	Hardware topology
	Definitions
	Process distribution
	Why is affinity important for improving performance ?
	CPU affinity mask

	SLURM
	Process distribution
	Curie hybrid node

	Process binding

	BullxMPI
	Process distribution
	Process binding
	Manual process management

	Using GPU
	Two sequential GPU runs on a single hybrid node

	Profiling
	PAPI
	VampirTrace/Vampir
	Basics
	Tips
	Vampirserver
	CUDA profiling

	Scalasca
	Standard utilization
	Scalasca + Vampir
	Scalasca + PAPI

	Paraver
	Trace generation
	Converting traces to Paraver format
	Launching Paraver

