
VAMPIR & VAMPIRTRACE
INTRODUCTION AND OVERVIEW

8th VI-HPS Tuning Workshop at RWTH Aachen

September, 2011

Tobias Hilbrich and Joachim Protze
Slides by: Andreas Knüpfer, Jens Doleschal,

ZIH, Technische Universität Dresden

2

Overview

Part I: Welcome to the Vampir Suite
•  Introduction
•  Event Trace Visualization
•  Vampir & VampirServer
•  The Vampir Displays

•  Timeline
•  Process Timeline with Performance Counters
•  Summary Display
•  Message Statistics

•  VampirTrace
•  Instrumentation & Run-Time Measurement

Part II: Hands On

3

Introduction

Why bother with performance analysis?
•  Well, why are you here after all?
•  Efficient usage of expensive and limited resources
•  Scalability to achieve next bigger simulation

Profiling and Tracing
•  Have an optimization phase

–  just like testing and debugging phase
•  Use tools!
•  Avoid do-it-yourself-with-printf solutions, really!

4

Event Trace Visualization

Trace Visualization
•  Alternative and supplement to automatic analysis
•  Show dynamic run-time behavior graphically
•  Provide statistics and performance metrics

–  Global timeline for parallel processes/threads
–  Process timeline plus performance counters
–  Statistics summary display
–  Message statistics
–  more

•  Interactive browsing, zooming, selecting
–  Adapt statistics to zoom level (time interval)
–  Also for very large and highly parallel traces

5

Vampir Toolset Architecture

Vampir
Trace

Vampir
Trace

Trace
File

(OTF)

Vampir 7

Trace
Bundle

VampirServer

CPU CPU

CPU CPU CPU CPU

CPU CPU

Multi-Core
Program

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

Many-Core
Program

Usage order of the Vampir Performance
Analysis Toolset

1.  Instrument your application with VampirTrace
2. Run your application with an appropriate test set

3. Analyze your trace file with Vampir
•  Small trace files can be analyzed on your local

workstation
1.  Start your local Vampir
2.  Load trace file from your local disk

•  Large trace files should be stored on the cluster file
system
1.  Start VampirServer on your analysis cluster
2.  Start your local Vampir
3.  Connect local Vampir with the VampirServer on the analysis

cluster
4.  Load trace file from the cluster file system

7

Vampir Displays

The main displays of Vampir:

•  Master Timeline (Global Timeline)
•  Process and Counter Timeline
•  Function Summary
•  Message Summary
•  Process Summary
•  Communication Matrix
•  Call Tree

8

Vampir 7: Displays for a WRF Trace with 64
Processes

9

 Master Timeline (Global Timeline)

Master
Timeline

 Process and Counter Timeline

Process
Timeline

Counter
Timeline

 Function Summary

Function
Summary

 Message Summary

13

 Process Summary

Process
Summary

 Communication Matrix

Communication
Matrix

 Call Tree

16

Introduction: Profiling & Tracing

Program Instrumentation
•  Detect run-time events (points of interest)
•  Pass information to run-time measurement library
Profile Recording
•  Collect aggregated information (Time, Counts, …)
•  About program and system entities

–  functions, loops, basic blocks
–  application, processes, threads, …

Trace Recording
•  Save individual event records together with precise

timestamp and process or thread ID
•  Plus event specific information

17

Instrumentation & Measurement

•  What do you need to do for it?
–  Use VampirTrace

•  Instrumentation (automatic with compiler wrappers)

•  Re-compile & re-link
•  Trace Run (run with appropriate test data set)

•  More details later

CC=vtcc

CXX=vtcxx

F90=vtf90

MPICC=vtcc -vt:cc mpicc

CC=icc

CXX=icpc

F90=ifc

MPICC=mpicc

18

Instrumentation & Measurement

What does VampirTrace do in the background?

•  Instrumentation:

–  Via compiler wrappers
–  By underlying compiler with specific options
–  MPI instrumentation with replacement lib
–  OpenMP instrumentation with Opari
–  Also binary instrumentation with Dyninst
–  Also source2source instrumentation with PDT (Tau)
–  Partial manual instrumentation

19

Instrumentation & Measurement

What does VampirTrace do in the background?

•  Trace Run:

–  Event data collection
–  Precise time measurement
–  Parallel timer synchronization
–  Collecting parallel process/thread traces
–  Collecting performance counters (from PAPI, memory usage,

POSIX I/O calls and fork/system/exec calls, and more …)
–  Filtering and grouping of function calls

20

Summary

•  Vampir & VampirServer
–  Interactive trace visualization and analysis
–  Intuitive browsing and zooming
–  Scalable to large trace data sizes (100GByte)
–  Scalable to high parallelism (2000 processes)

•  Vampir for Linux, Windows and MacOS

•  VampirTrace
–  Convenient instrumentation and measurement
–  Hides away complicated details
–  Provides many options and switches for experts

•  VampirTrace is part of Open MPI since version 1.3

21

•  Event Tracing in General

Vampir & VampirTrace

22

Common Event Types

•  Enter/leave of function/routine/region
–  time stamp, process/thread, function ID

•  Send/receive of P2P message (MPI)
–  time stamp, sender, receiver, length, tag, communicator

•  Collective communication (MPI)
–  time stamp, process, root, communicator, # bytes

•  Hardware performance counter values
–  time stamp, process, counter ID, value

•  etc.

23

Profiling and Tracing

•  Tracing Advantages
–  Preserve temporal and spatial relationships
–  Allow reconstruction of dynamic behavior on any required

abstraction level
–  Profiles can be calculated from traces

•  Tracing Disadvantages
–  Traces can become very large
–  May cause perturbation
–  Instrumentation and tracing is complicated

•  Event buffering, clock synchronization, …

24

Instrumentation

•  Instrumentation: Process of modifying programs to
detect and report events

•  There are various ways of instrumentation:

–  Manually
•  Large effort, error prone
•  Difficult to manage

–  Automatically
•  Via source to source translation
•  Via compiler instrumentation
•  Program Database Toolkit (PDT)
•  OpenMP Pragma And Region Instrumenter (Opari)

25

Open Trace Format (OTF)‏

•  Open source trace file format
•  Available at http://www.tu-dresden.de/zih/otf
•  Includes powerful libotf for reading/parsing/writing in

custom applications
•  Multi-level API:

–  High level interface for analysis tools
–  Low level interface for trace libraries

•  Actively developed by TU Dresden in cooperation with
the University of Oregon and the Lawrence Livermore
National Laboratory

26

Practical Instrumentation

•  Instrumentation with VampirTrace
–  Hide instrumentation in compiler wrapper
–  Use underlying compiler, add appropriate options

•  Test Run
–  User representative test input
–  Set parameters, environment variables, etc.
–  Perform trace run

•  Get Trace

CC = mpicc

CC = vtcc –vt:cc mpicc

27

Source Code Instrumentation

manually or automatically

int foo(void* arg) {

 enter(7);

 if (cond) {

 leave(7);

 return 1;

 }

 leave(7);

 return 0;

}

int foo(void* arg) {

 if (cond) {

 return 1;

 }

 return 0;

}

