
Periscope
Tutorial Exercise

NPB-MPI/BT
M. Gerndt, Y. Oleynik, V. Petkov
Technische Universität München

periscope@in.tum.de
September 2011

NPB-BT Exercise

● Intermediate-level tutorial example

● Available in MPI, OpenMP, hybrid OpenMP/MPI variants
■ also MPI File I/O variants (collective & individual)

● Automatic performance properties search with Periscope:
■ Source code instrumentation

► Loops, MPI & application function calls
■ Automatic search for slow MPI communication patterns
■ Results exploration with Eclipse based GUI

● Manual instrumentation optimization

0. Configuration of Periscope

1. Program instrumentation: psc_instrument

2. Periscope analysis: psc_frontend

3. Performance properties exploration: Periscope GUI

Exercise steps

● Before first use of Periscope, one has to create the
configuration file .periscope in the home directory.
Configuration could be copied from $PERISCOPE_ROOT:

● It should look like:

● Install GUI into eclipse from http://www.lrr.in.tum.de/periscope/eclipse/ or use
the eclipse with pre-installed GUI available with module load periscope

% cp $PERISCOPE_ROOT/etc/periscope.sample ~/.periscope

Configuring Periscope

MACHINE = localhost // hostname
SITE = VIHPS
REGSERVICE_HOST = cluster-beta // host where the registry is running
REGSERVICE_PORT = 50001 // please choose a random port!
APPL_BASEPORT = 51000 // first port for application
AGENT_BASEPORT = 50002 // first port agent hierarchy

http://www.lrr.in.tum.de/periscope/eclipse/

● The Periscope agents and the application processes
register with a registry. It is started in batch via:

● To enable performance measurement, the program has to
be instrumented. This is done with psc_instrument:

Instrumenting application

% psc_instrument
Periscope Source-to-Source Instrumentation Wrapper
Usage: psc_instrument [-t regions] [-n] [-s sir] [-v] [-d] compiler

[options] file [libs]
-t Types of regions to instrument separated by spaces

(e.g. -t "user loop call")
-s Filename for the resulting SIR file (default: appl.sir)
-v Verbose output
-d Debug mode: keeps the instrumented source files

after the compilation
-n Prints each step of the compilation instead of executing them
-i Force Intel compilers

% psc_regsrv &

● Substitute compile/link commands in Makefile definitions
(config/make.def) with psc_instrument:

MPIF77 = psc_instrument -i -s ${PROGRAM}.sir -t user,mpi mpif77
FLINK = $(MPIF77)
FFLAGS = -O

mpi-bt: $(OBJECTS)
 $(FLINK) $(FFLAGS) -o mpi-bt $(OBJECTS)
.f.o:
 $(MPIF77) $(FFLAGS) -c $<

Instrumenting NPB-MPI-BT

NPB-MPI-BT instrumentation and build

● Return to root directory and clean-up

● Re-build BT with the original command (B or W version)

● Change directory to bin.periscope

% make clean

% make bt CLASS=B NPROCS=16
 ===
 = NAS Parallel Benchmarks 3.3 =
 = MPI/F77/C =
 ===
cd BT; make NPROCS=16 CLASS=B SUBTYPE= VERSION=
make[1]: Entering directory `BT'
...
psc_instrument -i -s ... -t user,mpi mpif77 -c -O -g bt.f
psc_instrument -i -s ... -t user,mpi mpif77 -c -O -g make_set.f
…
psc_instrument -i -s ... -t "user loop call" mpif77 -O \
-o ../bin.periscope/bt_B.16 bt.o ...
Built executable ../bin.periscope/bt_B.16
make[1]: Leaving directory `BT'

% cd bin.periscope

● Periscope is started via the frontend. It automatically starts
 application and hierarchy of analysis agents.

● Run psc_frontend --help for brief usage information
% psc_frontend --help
Usage: psc_frontend <options>
 [--help] (displays this help message)
 [--quiet] (do not display debug messages)
 [--registry=host:port] (address of the registry service, optional)
 [--port=n] (local port number, optional)
 [--maxfan=n] (max. number of child agents, default=4)
 [--timeout=secs] (timeout for startup of agent hierarchy)
 [--delay=n] (search delay in phase executions)
 [--appname=name]
 [--apprun=commandline]
 [--mpinumprocs=number of MPI processes]
 [--ompnumthreads=number of OpenMP threads]
…
 [--strategy=name]
 [--sir=name]
 [--phase=(FileID,RFL)]
 [--debug=level]

Running Periscope

● Run Periscope analysis by executing psc_frontend with
the following command in the batch script psc.lsf/.msub

● Frontend will write the detected properties into the file
properties_MPI_<PID>.psc in the current directory. It
should be copied into the BT source directory

% bsub < psc.lsf or msub psc.msub
Check the job output:
% bpeek
[psc_frontend][DBG0:fe] Agent network UP and RUNNING. Starting search.

 NAS Parallel Benchmarks 3.3 -- BT Benchmark
 [...]
 Time step 200
 BT Benchmark Completed.

End Periscope run! Search took 37.57 seconds (33.09 seconds for startup)

Running Periscope

% cp properties_MPI_*.psc ../BT

● Start Eclipse with Periscope GUI from console

● Or by double-click on Eclipse pictogram on the Desktop

% eclipse &

Starting Periscope GUI

open
perspective...

Choose Periscope

● File->New->Project... → Fortran->Fortran Project

Creating Fortran Project

Input
project
name

Unmark
“Use default

 location”
and provide

path to
BT

 folder

Press
Finish

Project
type

No

Loading properties

Expand BT project,
search for properties.psc

and
Right click->Periscope->

Load all properties

Periscope GUI

Periscope properties
 view

SIR outline view

Project explorer
view

Source code
view

● Multi-functional table is used in the GUI for Eclipse for the
visualization of bottlenecks
■ Multiple criteria sorting algorithm
■ Complex categorization utility
■ Searching engine using Regular Expressions
■ Filtering operations
■ Direct navigation from the bottlenecks to their precise source location using

the default IDE editor for that source file type (e.g. CDT/Photran editor).

● SIR outline view shows a combination of the standard intermediate
representation (SIR) of the analysed application and the distribution of
its bottlenecks. The main goals of this view are to assist the navigation
in the source code and attract developer's attention to the most
problematic code areas.

Periscope GUI report exploration features

● Clustering can effectively summarize displayed properties and identify
a similar performance behaviour possibly hidden in the large amount
of data

Properties clustering

Right-click->
Cluster properties using FCM

Properties clustering

Severity value
of the Cluster 1

Processes belonging
To the Cluster1

Region and property
where clustering performed

Select Cluster 1&2
Right-click, Plot Clusters

Plotting clusters

● Periscope performs multiple iterative performance measurement
experiments on the basis of Phases:
■ All measurements are performed inside phase
■ Begin and end of phase are global synchronization points

● By default phase is the whole program
■ Needs restart if multiple experiments required (single core performance analysis

strategies require multiple experiments)
■ Unnecessary code parts also measured

● User specified region marked with !$MON USER REGION and !$MON
END USER REGION will be used as phase:
■ Typically main loop of application → no need for restart, faster analysis
■ Unnecessary code parts are not measured → less measurements overhead
■ Severity value is normalized on the main loop iteration time → more precise

performance impact estimation

Periscope Phases

Initialization measurement phase Finalization

Analysis

 Main loop iteration

1. Search for “bt.f”
and double-click

2. Go to line 203 (CTRL+L)
 and

surround “call adi”
with

!$MON USER REGION
!$MON END USER REGION

3. Save file (^S)

Repeating Periscope analysis

● Return to root directory and clean-up

● Re-build BT with the original command

● Change directory into location of executable

% make clean

% cd bin.periscope

% make bt CLASS=B NPROCS=16

● Re-run Periscope analysis by submitting the script

● Only 1 iteration of BT required instead of 200 previous run!
● Frontend will overwrite the properties found into the file
properties_MPI_<PID>.psc in the current directory, which again
need to be copied into the BT source directory

● Re-load properties_MPI_<PID>.psc in Periscope GUI. Now
found properties should have more precise severities values

% bsub < psc.lsf or msub psc.msub
Check the job output:
% bpeek
[psc_frontend][DBG0:fe] Agent network UP and RUNNING. Starting search.
 NAS Parallel Benchmarks 3.3 -- BT Benchmark
 [...]
 Time step 1
 BT Benchmark Completed.

End Periscope run! Search took 37.2 seconds (33.3 seconds for startup)

Re-running Periscope

% cp properties_MPI_*.psc ../BT

	Exercise title
	NPB-BT intro
	Analysis steps
	Local setup
	Slide 5
	Slide 6
	BT-MPI skin
	Slide 8
	Slide 9
	BT-MPI square
	NPB-BT initial
	NPB-BT system
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

