
Technische Universität München

Cache Performance Analysis
with Callgrind and KCachegrind

VI-HPS Tuning Workshop 8
September 2011, Aachen

Josef Weidendorfer

Computer Architecture I-10, Department of Informatics
Technische Universität München, Germany

Technische Universität München

Outline

•  Background

•  Callgrind and {Q,K}Cachegrind
–  Measurement
–  Visualization

•  Hands-On
–  Example: Matrix Multiplication

Weidendorfer: Callgrind / Kcachegrind

Technische Universität München

Single Node Performance: Cache Exploitation is Important

•  „Memory Wall“

•  Acess Latencies:

–  modern x86 processors: ~ 200 cycles è 400 FLOP wasted…

Weidendorfer: Callgrind / KCachegrind

10

100

1000

10000

1991
 2000
 2010

CPU Peak Performance (clock & cores)

+ 40% / year

Main Memory Performance

+7% / year

Growing

Gap

Technische Universität München

Caches do their Job transparently...

•  Caches work because all programs expose access locality
–  temporal (hold recently used data) / spatial (work on blocks of memory)
–  The “Principle of Locality” is not enough... è “Cache optimization”

Reasons for Performance Loss for SPEC2000

 [Beyls/Hollander, ICCS 2004]

Technische Universität München

How to do Cache Optimization on Parallel Code

•  Analyse sequential code phases
–  optimization of sequential phases should always improve runtime
–  does not need to strip down to sequential program

•  Influences of threads/tasks on cache exploitation
–  on multicore: higher bandwidth requirement to main memory
–  use of shared caches:

cores compete for space vs. cores prefetch for each other
–  slowdown because of “false sharing”
–  not easy to get with hardware performance counters

•  better use simulation vs. impractical because of huge slowdown
•  research topic (worst case false sharing / OpenMP record/replay)

Weidendorfer: Callgrind / KCachegrind

Technische Universität München

Go Sequential (just for a few minutes)...

•  sequential performance bottlenecks
–  logical errors (unneeded/redundant function calls)
–  bad algorithm (high complexity or huge “constant factor”)
–  bad exploitation of available resources

•  how to improve sequential performance
–  use tuned libraries where available
–  check for above obstacles è always by use of analysis tools

Technische Universität München

Sequential Performance Analysis Tools

•  count occurrences of events
–  resource exploitation is related to events
–  SW-related: function call, OS scheduling, ...
–  HW-related: FLOP executed, memory access, cache miss, time spent

for an activity (like running an instruction)

•  relate events to source code
–  find code regions where most time is spent
–  check for improvement after changes
–  „Profile data“: histogram of events happening at given code positions
–  inclusive vs. exclusive cost

Weidendorfer: Callgrind / KCachegrind

Technische Universität München

How to measure Events (1)

•  target
–  real hardware

•  needs sensors for interesting events
•  for low overhead: hardware support for event counting
•  difficult to understand because of unknown micro-architecture, overlapping and

asynchronous execution

–  machine model
•  events generated by a simulation of a (simplified) hardware model
•  no measurement overhead: allows for sophisticated online processing
•  simple models relatively easy to understand

•  both methods (real vs. model) have advantages & disadvantages,
but reality matters in the end

Technische Universität München

How to measure Events (2)

•  SW-related
–  instrumentation (= insertion of measurement code)

•  into OS / application, manual/automatic, on source/binary level
•  on real HW: always incurs overhead which is difficult to estimate

•  HW-related
–  read Hardware Performance Counters

•  gives exact event counts for code ranges
•  needs instrumentation

–  statistical: Sampling
•  event distribution over code approximated by checking every N-th event
•  hardware notifies only about every N-th event è Influence tunable by N

Technische Universität München

Back to the Memory Wall

•  Solution for
–  access latency

•  exploit fast caches: improve locality of data
•  prefetch data (automatically / SW prefetching) [on BG/P: sequential accesses]
•  memory controller on chip (standard today on modern x86, also BG/P)

–  low bandwidth (not so much a problem on BG/P)
•  share data in caches among cores
•  keep working set in cache (temporal locality)
•  use good data layout (spatial locality)

Weidendorfer: Callgrind / KCachegrind

Technische Universität München

Cache Optimization: Reordering Accesses

•  Blocking

•  Also in multiple dimensions
•  Data dependencies of algorithm have to be maintained
•  Multi-core: consecutive iterations on cores with shared cache

Weidendorfer: Cache Analysis and Optimization

Address

time

Address

time

Address

time

Technische Universität München

Callgrind

Cache Simulation with Call-Graph Relation

Weidendorfer: Callgrind / KCachegrind

Technische Universität München

•  based on Valgrind
–  runtime instrumentation infrastructure (no recompilation needed)
–  dynamic binary translation of user-level processes
–  Linux/AIX/OS X on x86, x86-64, PPC32/64, ARM (VG 3.6),

not (yet) with binaries for BG/P nodes

–  correctness checking & profiling tools on top
–  “memcheck”: accessibility/validity of memory accesses
–  “helgrind” / ”drd”: race detection on multithreaded code
–  “cachegrind”/”callgrind”: cache & branch prediction simulation
–  “massif”: memory profiling

–  Open source (GPL), www.valgrind.org

Callgrind: Basic Features

Technische Universität München

Callgrind: Basic Features

•  part of Valgrind (since 3.1)
–  Open Source, GPL
–  extension of the VG tool

cachegrind (dynamic call graph,
simulator extensions, more control)

•  measurement
–  profiling via machine simulation (simple cache model)
–  instruments memory accesses to feed cache simulator
–  hook into call/return instructions, thread switches, signal handlers
–  instruments (conditional) jumps for CFG inside of functions

•  presentation of results: callgrind_annotate / {Q,K}Cachegrind

Weidendorfer: Callgrind / KCachegrind

Profile

Binary

2-level $ Simulator

Memory
Accesses
 Event Counters

Debug Info

Technische Universität München

•  usage of Valgrind
–  driven only by user-level instructions of one process
–  slowdown (call-graph tracing: 15-20x, + cache simulation: 40-60x)

•  “fast-forward mode”: 2-3x
ü  allows detailed (mostly reproducable) observation
ü  does not need root access / can not crash machine

•  cache model
–  “not reality”: synchronous 2-level inclusive cache hierarchy

(size/associativity taken from real machine, always including LLC)
ü  easy to understand / reconstruct for user
ü  reproducible results independent on real machine load
ü  derived optimizations applicable for most architectures

Pro & Contra (i.e. Simulation vs. Real Measurement)

Technische Universität München

Callgrinds Cache Model vs. JUROPA / BGP

•  Cachegrind
–  basic parameters adjustable: size, line size, associativity

(for time estimation in KCachegrind: editable formula for latencies)
–  dedicated 2 levels, all fixed LRU
–  write back vs. write through does not matter for hit/miss counts
–  optional L2 stream prefetcher

•  JUROPA: Intel Xeon X5570 (Nehalem, 4 cores)
–  inclusive, L1 D/I 32kB, L2 256 kB, L3 shared 8 MB
–  Callgrind only simulates L1 and L3 (= LLC), L3 hit count too high

•  BG/P
–  L1/L2 use FIFO replacement (L2 mainly buffers for prefetching),

L3 shared among 4 cores
–  Recommendation: look at LLC behavior in simulation

Weidendorfer: Callgrind / KCachegrind

Technische Universität München

Callgrind: Advanced Features

•  interactive control (backtrace, dump command, …)
•  “fast forward”-mode to quickly get at interesting code phases
•  application control via “client requests” (start/stop, dump)

•  avoidance of recursive function call cycles
–  cycles are bad for analysis (inclusive costs not applicable)
–  add dynamic context into function names (call chain/recursion depth)

•  best-case simulation of simple stream prefetcher
•  byte-wise usage of cache lines before eviction
•  branch prediction (since VG 3.6)
•  optionally measures time spent in system calls (useful for MPI)

Technische Universität München

•  valgrind –tool=callgrind [callgrind options] yourprogram args

•  cache simulator: --cache-sim=yes
•  branch prediction simulation (VG 3.6): --branch-sim=yes

•  enable for machine code annotation: --dump-instr=yes
•  start in “fast-forward”: --instr-atstart=yes

–  switch on event collection: callgrind_control –i on
•  spontaneous dump: callgrind_control –d [dump identification]
•  current backtrace of threads (interactive): callgrind_control –b
•  separate dumps per thread: --separate-threads=yes
•  jump-tracing in functions (CFG): --collect-jumps=yes
•  time in system calls: --collect-systime=yes

Callgrind: Usage

Technische Universität München

{Q,K}Cachegrind

Graphical Browser for Profile Visualization

Weidendorfer: Callgrind / KCachegrind

Technische Universität München

•  open source, GPL
•  kcachegrind.sf.net (recent release 0.7.0 includes pure Qt version,

able to run on Mac OS-X/Windows)
•  included with KDE3 & KDE4

•  visualization of
–  call relationship of functions (callers, callees, call graph)‏
–  exclusive/Inclusive cost metrics of functions

•  grouping according to ELF object / source file / C++ class
–  source/assembly annotation: costs + CFG
–  arbitrary events counts + specification of derived events

•  callgrind support: file format, events of cache model
(can load cachegrind data)

Features

Technische Universität München

•  supported format
–  currently callgrind format (support for Linux Perf. Events planned)
–  some converters available (OProfile, Java/Phyton/PHP profilers)

•  special callgrind support:
–  derived event “cycle estimation” (very rough, formula can be edited)‏

•  exec. instructions + 10 * L1 misses + 100 * LL misses + 10 * Bm

Features

Technische Universität München

•  qcachegrind callgrind.out.<pid>

•  left: “Dockables”
–  list of function groups

groups according to
–  library (ELF object)
–  source
–  class (C++)

–  list of functions with
–  inclusive
–  exclusive costs

•  right: visualization panes

Usage

Technische Universität München

Visualization panes for selected function

•  List of event types

•  List of callers/callees

•  Treemap visualization

•  Call Graph

•  Source annotation

•  Assemly annotation

Technische Universität München

Call-graph Context Visualization

Weidendorfer: Callgrind / KCachegrind

Technische Universität München

Hands-on

Weidendorfer: Callgrind / KCachegrind

Technische Universität München

Getting started

•  Try it out yourself (on JUROPA / cluster-beta)
–  module add UNITE
–  module add kcachegrind

•  Test: What happens in „/bin/ls“ ?
–  valgrind --tool=callgrind ls /usr/bin
–  qcachegrind
–  What function takes most instruction executions? Purpose?
–  Where is the main function?

–  Now run with cache simulation: --cache-sim=yes

Technische Universität München

Detailed analysis of matrix multiplication

•  Kernel for C = A * B
–  Side length N è N3 multiplications + N3 additions

–  3 nested loops (i,j,k): Best index order?
–  Optimization for large matrixes: Blocking

B
C
 A
=
 *

i
 j

k

i

k
 j

c[k][i] = a[k][j] * b[j][i]

Technische Universität München

Detailed analysis of matrix multiplication

•  To try out...
–  cp -r ~hpclab01/tutorial/mm-vihpstw8 .
–  make CFLAGS=‘-O2 -g’
–  Timing of orderings (e.g. size 512): ./mm 512
–  Cache behavior for small matrix (fitting into cache):

valgrind --tool=callgrind –-cache-sim=yes ./mm 300

–  How good is L1/L2 exploitation of the MM versions?
–  Large matrix (800, pregenerated callgrind.out).

How does blocking help?

Technische Universität München

How to run with MPI

•  On “cluster-beta”
module add UNITE
module add kcachegrind
export OMP_NUM_THREADS=4
mpiexec -n 4 valgrind --tool=callgrind --cache-sim=yes \
 --separate-threads=yes ./bt-mz_B.4

•  ≤ VG 3.6.x: cache config detection on Westmere not working
–  “--I1=32768,4,64 --D1=32768,8,64 --LL=12582912,24,64”

•  reduce iterations in BT_MZ
–  sys/setparams.c, write_bt_info, set niter = 5

•  load all profile dumps at once:
–  run in new directory, “qcachegrind callgrind.out”

Weidendorfer: Callgrind / KCachegrind

Technische Universität München

Weidendorfer: Callgrind / KCachegrind

Q
 A
&

?

?

