
Introduction to Parallel Performance
Analysis and Engineering

Shirley Moore
shirley@eecs.utk.edu

8th VI-HPS Tuning Workshop
5-9 September 2011

Performance Engineering

2

•  Optimization process
•  Effective use of performance technology

characterization

Performance
Tuning

Performance
Diagnosis

Performance
Experimentation

Performance
Observation	

hypotheses	

properties	

•  Instrumentation
•  Measurement
•  Analysis
•  Visualization

Performance
Technology

•  Experiment
management

•  Performance
data storage

Performance
Technology

•  Data mining
•  Models
•  Expert systems

Performance
Technology

Performance Optimization Cycle

3

•  Design experiment
•  Collect performance data
•  Calculate metrics
•  Analyze results
•  Visualize results
•  Identify bottlenecks and

causes
•  Tune performance

Instrumentation

Presentation

Measurement

Optimization

Analysis

Parallel Performance Properties

4

•  Parallel code performance is influenced by both
sequential and parallel factors

•  Sequential factors
–  Computation
–  Cache and memory use
–  Input/output

•  Parallel factors
–  Thread / process interactions
–  Communication and synchronization

Performance Observation

5

•  Understanding performance requires observation of
performance properties.

•  Performance tools and methodologies are primarily
distinguished by what observations are made and how.
–  How application program is instrumented
–  What performance data are obtained

•  Tools and methods cover broad range.

Metrics and Measurement

6

•  Observability depends on measurement
•  A metric represents a type of measured data

–  Count, time, hardware counters

•  A measurement records performance data
–  Associated with application program static or dynamic execution

portions

•  Derived metrics are computed
–  Rates (e.g., flops)

•  Metrics and measurements dictated by model or
experiment

Execution Time

7

•  Wallclock time
–  Based on realtime clock

•  Virtual process time
–  Time when process is executing

•  User time and system time
–  Does not include time when process is stalled

•  Parallel execution time
–  Runs whenever any parallel part is executing
–  Global time basis

Direct Performance Observation

8

•  Execution actions exposed as events
–  In general, actions reflect some execution state

•  presence at a code location or change in data
•  occurrence in parallelism context (thread of execution)

–  Events encode actions for observation
•  Observation is direct

–  Direct instrumentation of program code (probes)
–  Instrumentation invokes performance measurement
–  Event measurement = performance data + context

•  Performance experiment
–  Actual events + performance measurements

Indirect Performance Observation

9

•  Program code instrumentation is not used
•  Performance is observed indirectly

–  Execution is interrupted
•  can be triggered by different events

–  Execution state is queried (sampled)
•  different performance data measured

–  Event-based sampling (EBS)
•  Performance attribution is inferred

–  Determined by execution context (state)
–  Observation resolution determined by interrupt period
–  Performance data associated with context for period

Direct Observation: Instrumentation

10

•  Events defined by instrumentation access
•  Instrumentation levels

–  Source code – Library code
–  Object code – Executable code
–  Runtime system – Operating system

•  Different levels provide different information
•  Different tools needed for each level
•  Levels can have different granularity

Direct Observation: Techniques

11

•  Static instrumentation
–  Program instrumented prior to execution

•  Dynamic instrumentation
–  Program instrumented at runtime

•  Manual and automatic mechanisms
•  Tools required for automatic support

–  Source time: preprocessor, translator, compiler
–  Link time: wrapper library, preload
–  Execution time: binary rewrite, dynamic

•  Advantages / disadvantages

Direct Observation: Mapping

12

•  Associate
performance data
with high-level
semantic
abstractions

•  Abstract events at
user-level provide
semantic context

Indirect Observation: Events/Triggers

13

•  Events are actions external to program code
–  Timer countdown, HW counter overflow, …
–  Consequence of program execution
–  Event frequency determined by:

•  Type, setup, number enabled (exposed)

•  Triggers used to invoke measurement tool
–  Traps when events occur (interrupt)
–  Associated with events
–  May add differentiation to events

Indirect Observation: Context

14

•  When events trigger, execution context
determined at time of trap (interrupt)
–  Access to PC from interrupt frame
–  Access to information about process/thread
–  Possible access to call stack

•  requires call stack unwinder

•  Assumption is that the context was the same
during the preceding period
–  Between successive triggers
–  Statistical approximation valid for long running

programs

Direct / Indirect Comparison

15

•  Direct performance observation
 Measures performance data exactly
 Links performance data with application events
 Requires instrumentation of code
 Measurement overhead can cause execution

intrusion and possibly performance perturbation
•  Indirect performance observation

 Argued to have less overhead and intrusion
 Can observe finer granularity
 No code modification required (may need symbols)
 Inexact measurement and attribution without

hardware support

Measurement Techniques

16

•  When is measurement triggered?
–  External agent (indirect, asynchronous)

•  interrupts, hardware counter overflow, …
–  Internal agent (direct, synchronous)

•  through code modification
•  How are measurements made?

–  Profiling
•  summarizes performance data during execution
•  per process / thread and organized with respect to context

–  Tracing
•  trace record with performance data and timestamp
•  per process / thread

Measured Performance

17

•  Counts
•  Durations
•  Communication costs
•  Synchronization costs
•  Memory use
•  Hardware counts
•  System calls

Critical issues

18

•  Accuracy
–  Timing and counting accuracy depends on resolution
–  Any performance measurement generates overhead

•  Execution on performance measurement code
–  Measurement overhead can lead to intrusion
–  Intrusion can cause perturbation

•  alters program behavior
•  Granularity

–  How many measurements are made
–  How much overhead per measurement

•  Tradeoff (general wisdom)
–  Accuracy is inversely correlated with granularity

Profiling

19

•  Recording of aggregated information
–  Counts, time, …

•  … about program and system entities
–  Functions, loops, basic blocks, …
–  Processes, threads

•  Methods
–  Event-based sampling (indirect, statistical)
–  Direct measurement (deterministic)

inclusive
duration

exclusive
duration

int foo()
{
 int a;
 a = a + 1;

 bar();

 a = a + 1;
 return a;
}

Inclusive and Exclusive Profiles

20

•  Performance with respect to code regions
•  Exclusive measurements for region only
•  Inclusive measurements includes child regions

Flat and Callpath Profiles

21

•  Static call graph
–  Shows all parent-child calling relationships in a program

•  Dynamic call graph
–  Reflects actual execution time calling relationships

•  Flat profile
–  Performance metrics for when event is active
–  Exclusive and inclusive

•  Callpath profile
–  Performance metrics for calling path (event chain)
–  Differentiate performance with respect to program

execution state
–  Exclusive and inclusive

void master {

 ...

 send(B, tag, buf);
 ...

}

Process A:

void slave {

 ...
 recv(A, tag, buf);

 ...

}

Process B:
void worker {

 ...
 recv(A, tag, buf);

 ...

}

void master {

 ...

 send(B, tag, buf);
 ...

} 58 A ENTER 1

60 B ENTER 2

62 A SEND B

64 A EXIT 1

68 B RECV A

...

69 B EXIT 2

...

1 master

2 worker

3 ...

 trace(ENTER, 1);

 trace(SEND, B);

 trace(EXIT, 1);

 trace(ENTER, 2);

 trace(RECV, A);

 trace(EXIT, 2);

MONITOR

Trace File Generation

1 master

2 worker

3 ...

58 A ENTER 1

60 B ENTER 2

62 A SEND B

64 A EXIT 1

68 B RECV A

...

69 B EXIT 2

...

main
master
worker

58 60 62 64 66 68 70

B

A

Trace Analysis and Visualization

Trace Formats

24

•  Different tools produce different formats
–  Differ by event types supported
–  Differ by ASCII and binary representations

•  Vampir Trace Format (VTF)
•  KOJAK (EPILOG)
•  Jumpshot (SLOG-2)
•  Paraver

•  Open Trace Format (OTF)
–  Supports interoperation between tracing tools

Profiling / Tracing Comparison

25

•  Profiling
 Finite, bounded performance data size
 Applicable to both direct and indirect methods
 Loses time dimension (not entirely)
 Lacks ability to fully describe process interaction

•  Tracing
 Temporal and spatial dimension to performance data
 Capture parallel dynamics and process interaction
 Some inconsistencies with indirect methods
 Unbounded performance data size (large)
 Complex event buffering and clock synchronization

Performance Analysis Questions

26

•  How does performance vary with different compilers?
•  Is poor performance correlated with certain OS features?
•  Has a recent change caused unanticipated

performance?
•  How does performance vary with MPI variants?
•  Why is one application version faster than another?
•  What is the reason for the observed scaling behavior?
•  Did two runs exhibit similar performance?
•  How are performance data related to application events?
•  Which machines will run my code the fastest and why?
•  Which benchmarks predict my code performance best?

Performance Data Management

27

•  Performance diagnosis and optimization involves
multiple performance experiments

•  Support for common performance data
management tasks augments tool use
–  Performance experiment data and metadata storage
–  Performance database and query

•  What type of performance data should be
stored?
–  Parallel profiles or parallel traces
–  Storage size will dictate
–  Experiment metadata helps in meta analysis tasks

•  Serves tool integration objectives

Metadata Collection

28

•  Integration of metadata with each parallel profile
–  Separate information from performance data

•  Three ways to incorporate metadata
–  Measured hardware/system information

•  CPU speed, memory in GB, MPI node IDs, …
–  Application instrumentation (application-specific)

•  Application parameters, input data, domain decomposition
•  Capture arbitrary name/value pair and save with experiment

–  Data management tools can read additional metadata
•  Compiler flags, submission scripts, input files, …
•  Before or after execution

•  Enhances analysis capabilities

Performance Data Mining

29

•  Conduct parallel performance analysis in a
systematic, collaborative and reusable manner
–  Manage performance complexity and automate

process
–  Discover performance relationship and properties
–  Multi-experiment performance analysis

•  Data mining applied to parallel performance data
–  Comparative, clustering, correlation, characterization,

…
–  Large-scale performance data reduction

•  Implement extensible analysis framework
–  Abstraction / automation of data mining operations
–  Interface to existing analysis and data mining tools

How to explain performance?

30

•  Should not just redescribe performance results
•  Should explain performance phenomena

–  What are the causes for performance observed?
–  What are the factors and how do they interrelate?
–  Performance analytics, forensics, and decision support

•  Add knowledge to do more intelligent things
–  Automated analysis needs informed feedback
–  Performance model generation requires interpretation

•  Performance knowledge discovery framework
–  Integrating meta-information
–  Knowledge-based performance problem solving

Metadata and Knowledge Role

31

Performance Result	

Execution	

You have to
capture these...	

...to understand this	

Performance Optimization Process

32

•  Performance characterization
–  Identify major performance contributors
–  Identify sources of performance inefficiency
–  Utilize timing and hardware measures

•  Performance diagnosis (Performance
Debugging)
–  Look for conditions of performance problems
–  Determine if conditions are met and their severity
–  What and where are the performance bottlenecks

•  Performance tuning
–  Focus on dominant performance contributors
–  Eliminate main performance bottlenecks

