
6th VI-HPS Tuning Workshop: The TAU Performance System

TAU PERFORMANCE SYSTEM

Wyatt Spear
Sameer Shende, Alan Morris, Scott Biersdorff
Performance Research Lab

Allen D. Malony, Suzanne Millstein
Department of Computer and Information Science
University of Oregon

1

6th VI-HPS Tuning Workshop: The TAU Performance System

TAU Performance System®

2

• Tuning and Analysis Utilities (15+ year project)

• Performance problem solving framework for HPC
– Integrated, scalable, flexible, portable

– Target all parallel programming / execution paradigms

• Integrated performance toolkit (open source)
– Instrumentation, measurement, analysis, visualization

– Widely-ported performance profiling / tracing system

– Performance data management and data mining

• Broad application use (NSF, DOE, DOD, …)

6th VI-HPS Tuning Workshop: The TAU Performance System

TAU Performance System Components

3

TAU Architecture Program Analysis

Parallel Profile Analysis

P
D

T
P

e
r
fD

M
F

P
a
r
a
P

ro
f

Performance Data Mining

Performance Monitoring

T
A

U
o
v
e
r
S

u
p

e
r
m

o
n

PerfExplorer

6th VI-HPS Tuning Workshop: The TAU Performance System

Building Bridges to Other Tools

4

6th VI-HPS Tuning Workshop: The TAU Performance System

TAU Instrumentation / Measurement

5

6th VI-HPS Tuning Workshop: The TAU Performance System

Direct Performance Observation

6

• Execution actions of interest exposed as events
– In general, actions reflect some execution state

• presence at a code location or change in data
• occurrence in parallelism context (thread of execution)

– Events encode actions for performance system to observe
• Observation is direct

– Direct instrumentation of program (system) code (probes)
– Instrumentation invokes performance measurement
– Event measurement: performance data, meta-data,

context
• Performance experiment

– Actual events + performance measurements
• Contrast with (indirect) event-based sampling

6th VI-HPS Tuning Workshop: The TAU Performance System

TAU Instrumentation Approach

7

• Support for standard program events
– Routines, classes and templates
– Statement-level blocks
– Begin/End events (Interval events)

• Support for user-defined events
– Begin/End events specified by user
– Atomic events (e.g., size of memory allocated/freed)
– Flexible selection of event statistics

• Provides static events and dynamic events
• Enables “semantic” mapping
• Specification of event groups (aggregation, selection)
• Instrumentation optimization

6th VI-HPS Tuning Workshop: The TAU Performance System

TAU Event Interface

8

• Events have a type, a group association, and a name
• TAU events names are character strings

– Powerful way to encode event information
– Inefficient way to communicate each event occurrence

• TAU maps a new event name to an event ID
– Done when event is first encountered (get event handle)
– Event ID is used for subsequent event occurrences
– Assigning a uniform event ID a priori is problematic

• A new event is identified by a new event name in TAU
– Can create new event names at runtime
– Allows for dynamic events (TAU renames events)
– Allows for context-based, parameter-based, phase events

6th VI-HPS Tuning Workshop: The TAU Performance System

TAU Instrumentation Mechanisms

9

• Source code
– Manual (TAU API, TAU component API)
– Automatic (robust)

• C, C++, F77/90/95 (Program Database Toolkit (PDT))
• OpenMP (directive rewriting (Opari), POMP2 spec)
• Library header wrapping

• Object code
– Pre-instrumented libraries (e.g., MPI using PMPI)
– Statically- and dynamically-linked (with LD_PRELOAD)

• Executable code
– Binary and dynamic instrumentation (Dyninst)
– Virtual machine instrumentation (e.g., Java using JVMPI)

• TAU_COMPILER to automate instrumentation process

6th VI-HPS Tuning Workshop: The TAU Performance System

Automatic Source-level Instrumentation

10

6th VI-HPS Tuning Workshop: The TAU Performance System

Program Database Toolkit (PDT)

11

Application

/ Library

C / C++

parser

Fortran parser

F77/90/95

C / C++

IL analyzer

Fortran

IL analyzer

Program

Database

Files

IL IL

DUCTAPE
TAU

instrumentor
Automatic source

instrumentation

.

.

.

6th VI-HPS Tuning Workshop: The TAU Performance System

MPI Wrapper Interposition Library

12

• Uses standard MPI Profiling Interface
– Provides name shifted interface

• MPI_Send = PMPI_Send

• Weak bindings

• Create TAU instrumented MPI library
– Interpose between MPI and TAU

– Done during program link
• -lmpi replaced by –lTauMpi –lpmpi –lmpi

– No change to the source code!

– Just re-link application to generate performance data

6th VI-HPS Tuning Workshop: The TAU Performance System

MPI Shared Library Instrumentation

13

• Interpose the MPI wrapper library for applications
that have already been compiled
– Avoid re-compilation or re-linking

• Requires shared library MPI
– Uses LD_PRELOAD for Linux
– On AIX use MPI_EUILIB / MPI_EUILIBPATH
– Does not work on XT3

• Approach will work with other shared libraries
• Use TAU tauex

– % mpirun -np 4 tauex a.out

6th VI-HPS Tuning Workshop: The TAU Performance System

Selective Instrumentation File

14

• Specify a list of events to exclude or include
• # is a wildcard in a routine name

BEGIN_EXCLUDE_LIST
Foo
Bar
D#EMM
END_EXCLUDE_LIST

BEGIN_INCLUDE_LIST
int main(int, char **)
F1
F3
END_INCLUDE_LIST

6th VI-HPS Tuning Workshop: The TAU Performance System

Selective Instrumentation File

15

• Optionally specify a list of files

• * and ? may be used as wildcard characters
BEGIN_FILE_EXCLUDE_LIST

f*.f90

Foo?.cpp

END_FILE_EXCLUDE_LIST

BEGIN_FILE_INCLUDE_LIST

main.cpp

foo.f90

END_FILE_INCLUDE_LIST

6th VI-HPS Tuning Workshop: The TAU Performance System

Selective Instrumentation File

16

• User instrumentation commands
– Placed in INSTRUMENT section
– Routine entry/exit
– Arbitrary code insertion
– Outer-loop level instrumentation

BEGIN_INSTRUMENT_SECTION
loops file=“foo.f90” routine=“matrix#”
memory file=“foo.f90” routine=“#”
io routine=“matrix#”
*static/dynamic+ phase routine=“MULTIPLY”
dynamic *phase/timer+ name=“foo” file=“foo.cpp” line=22 to line=35
file=“foo.f90” line = 123 code = " print *, \" Inside foo\""
exit routine = “int foo()” code = "cout <<\"exiting foo\"<<endl;”
END_INSTRUMENT_SECTION

6th VI-HPS Tuning Workshop: The TAU Performance System

TAU Measurement Approach

17

• Portable and scalable parallel profiling solution
– Multiple profiling types and options
– Event selection and control (enabling/disabling, throttling)
– Online profile access and sampling
– Online performance profile overhead compensation

• Portable and scalable parallel tracing solution
– Trace translation to OTF, EPILOG, Paraver, and SLOG2
– Trace streams (OTF) and hierarchical trace merging

• Robust timing and hardware performance support
• Multiple counters (hardware, user-defined, system)
• Performance measurement of I/O and Linux kernel

6th VI-HPS Tuning Workshop: The TAU Performance System

TAU Measurement Mechanisms

18

• Parallel profiling
– Function-level, block-level, statement-level
– Supports user-defined events and mapping events
– Support for flat, callgraph/callpath, phase profiling
– Support for parameter and context profiling
– Support for tracking I/O and memory (library wrappers)
– Parallel profile stored (dumped, shapshot) during

execution

• Tracing
– All profile-level events
– Inter-process communication events
– Inclusion of multiple counter data in traced events

6th VI-HPS Tuning Workshop: The TAU Performance System

Types of Parallel Performance Profiling

19

• Flat profiles
– Metric (e.g., time) spent in an event (callgraph nodes)
– Exclusive/inclusive, # of calls, child calls

• Callpath profiles (Calldepth profiles)
– Time spent along a calling path (edges in callgraph)
– “main=> f1 => f2 => MPI_Send” (event name)
– TAU_CALLPATH_DEPTH environment variable

• Phase profiles
– Flat profiles under a phase (nested phases are allowed)
– Default “main” phase
– Supports static or dynamic (per-iteration) phases
– Phase profiles may be generated from full callpath profiles in

paraprof by choosing events as phases

6th VI-HPS Tuning Workshop: The TAU Performance System

TAU Analysis

20

6th VI-HPS Tuning Workshop: The TAU Performance System

Performance Analysis

21

• Analysis of parallel profile and trace measurement

• Parallel profile analysis (ParaProf)
– Java-based analysis and visualization tool

– Support for large-scale parallel profiles

• Performance data management framework (PerfDMF)

• Parallel trace analysis
– Translation to VTF (V3.0), EPILOG, OTF formats

– Integration with Vampir / Vampir Server (TU Dresden)

– Profile generation from trace data

• Online parallel analysis and visualization

• Integration with CUBE browser (Scalasca, UTK / FZJ)

6th VI-HPS Tuning Workshop: The TAU Performance System

ParaProf Profile Analysis Framework

22

6th VI-HPS Tuning Workshop: The TAU Performance System

Performance Data Management

23

• Provide an open, flexible framework to support
common data management tasks
– Foster multi-experiment performance evaluation

• Extensible toolkit to promote integration and reuse
across available performance tools (PerfDMF)
– Originally designed to address critical TAU requirements
– Supported profile formats:

TAU, CUBE (Scalasca), HPC Toolkit (Rice), HPM Toolkit (IBM), gprof,
mpiP, psrun (PerfSuite), Open|SpeedShop, …

– Supported DBMS:
PostgreSQL, MySQL, Oracle, DB2, Derby/Cloudscape

– Profile query and analysis API

• Reference implementation for PERI-DB project

6th VI-HPS Tuning Workshop: The TAU Performance System

PerfDMF Architecture

24

6th VI-HPS Tuning Workshop: The TAU Performance System

Metadata Collection

25

• Integration of XML metadata for each parallel profile

• Three ways to incorporate metadata

– Measured hardware/system information (TAU, PERI-DB)

• CPU speed, memory in GB, MPI node IDs, …

– Application instrumentation (application-specific)

• TAU_METADATA() used to insert any name/value pair

• Application parameters, input data, domain decomposition

– PerfDMF data management tools can incorporate an XML file of
additional metadata

• Compiler flags, submission scripts, input files, …

• Metadata can be imported from / exported to PERI-DB

6th VI-HPS Tuning Workshop: The TAU Performance System

Performance Data Mining / Analytics

26

• Conduct systematic and scalable analysis process
– Multi-experiment performance analysis
– Support automation, collaboration, and reuse

• Performance knowledge discovery framework
– Data mining analysis applied to parallel performance data

• comparative, clustering, correlation, dimension reduction, …

– Use the existing TAU infrastructure

• PerfExplorer v1 performance data mining framework
– Multiple experiments and parametric studies
– Integrate available statistics and data mining packages

• Weka, R, Matlab / Octave

– Apply data mining operations in interactive enviroment

6th VI-HPS Tuning Workshop: The TAU Performance System

How to explain performance?

27

• Should not just redescribe the performance results
• Should explain performance phenomena

– What are the causes for performance observed?
– What are the factors and how do they interrelate?
– Performance analytics, forensics, and decision support

• Need to add knowledge to do more intelligent things
– Automated analysis needs good informed feedback

• iterative tuning, performance regression testing

– Performance model generation requires interpretation

• We need better methods and tools for
– Integrating meta-information
– Knowledge-based performance problem solving

6th VI-HPS Tuning Workshop: The TAU Performance System

Role of Metadata and Knowledge Role

28

Performance Knowledge

Source

Code

Build

Environment

Run

Environment

Performance Result

Execution

You have to

capture these...

...to understand

this

Application Machine

Performance

Problems

Context Knowledge

6th VI-HPS Tuning Workshop: The TAU Performance System

PerfExplorer v2 – Requirements

29

• Component-based analysis process
– Analysis operations implemented as modules
– Linked together in analysis process and workflow

• Scripting
– Provides process/workflow development and automation

• Metadata input, management, and access
• Inference engine

– Reasoning about causes of performance phenomena
– Analysis knowledge captured in expert rules

• Persistence of intermediate analysis results
• Provenance

– Provides historical record of analysis results

6th VI-HPS Tuning Workshop: The TAU Performance System

PerfExplorer v2 Architecture

30

6th VI-HPS Tuning Workshop: The TAU Performance System

Parallel Profile Analysis – pprof

31

6th VI-HPS Tuning Workshop: The TAU Performance System

Parallel Profile Analysis – ParaProf

HPMToolkit

MpiP

TAU

Raw files

PerfDMF

managed

(database)

Metadata

Application

Experiment

Trial

32

6th VI-HPS Tuning Workshop: The TAU Performance System

Metadata for Each Experiment

Multiple PerfDMF DBs

33

6th VI-HPS Tuning Workshop: The TAU Performance System

ParaProf – Flat Profile

8K processorsnode, context, thread

Miranda

 hydrodynamics

 Fortran + MPI

 LLNL BG/L

34

6th VI-HPS Tuning Workshop: The TAU Performance System

Comparing Effects of Multi-Core Processors

AORSA2D

 magnetized

plasma simulation

 Blue is single node

 Red is dual core

 Cray XT3 (4K cores)
35

6th VI-HPS Tuning Workshop: The TAU Performance System

Comparing FLOPS (AORSA2D, Cray XT3)

AORSA2D

 Blue is dual core

 Red is single node

 Cray XT3 (4K cores)

 Data generated by

Richard Barrett, ORNL
36

6th VI-HPS Tuning Workshop: The TAU Performance System

ParaProf – Stacked View

37

6th VI-HPS Tuning Workshop: The TAU Performance System

ParaProf – Callpath Profile

Flash

 thermonuclear

flashes

 Fortran + MPI

 Argonne

38

6th VI-HPS Tuning Workshop: The TAU Performance System

ParaProf – Scalable Histogram

39

8k processors 16k processors

6th VI-HPS Tuning Workshop: The TAU Performance System

ParaProf – 3D View (Full Profile)

40

128k processors

xbec

6th VI-HPS Tuning Workshop: The TAU Performance System

ParaProf – 3D View (Full Profile)

16k processors

Miranda

41

6th VI-HPS Tuning Workshop: The TAU Performance System

ParaProf – 3D Scatterplot

42

• Each point is a “thread”
of execution

• A total of four metrics
shown in relation

• ParaProf’s
visualization
library
– JOGL

• Miranda, 32k cores

6th VI-HPS Tuning Workshop: The TAU Performance System

Performance Mapping

• Example: Particles distributed on cube surface
Particle* P[MAX]; /* Array of particles */

int GenerateParticles() {

/* distribute particles over all faces of the cube */

for (int face=0, last=0; face < 6; face++){

/* particles on this face */

int particles_on_this_face = num(face);

for (int i=last; i < particles_on_this_face; i++) {

/* particle properties are a function of face */

P[i] = ... f(face);

...

}

last+= particles_on_this_face;

}

}
43

6th VI-HPS Tuning Workshop: The TAU Performance System

Performance Mapping

44

• How much time (flops) spent processing face i particles?
• What is the distribution of performance among faces?

int ProcessParticle(Particle *p) {

/* perform some computation on p */

}

int main() {

GenerateParticles();

/* create a list of particles */

for (int i = 0; i < N; i++)

/* iterates over the list */

ProcessParticle(P[i]);

}

engine

work

packets

6th VI-HPS Tuning Workshop: The TAU Performance System

No Mapping versus Mapping

• Typical performance tools
report performance with
respect to routines

• Does not provide support
for mapping

• TAU’s performance
mapping can observe
performance with respect
to scientist’s
programming and
problem abstractions

TAU (no mapping) TAU (w/ mapping)

45

6th VI-HPS Tuning Workshop: The TAU Performance System

NAS BT – Flat Profile

How is MPI_Wait()

distributed relative to

solver direction?

Application routine names

reflect phase semantics

46

6th VI-HPS Tuning Workshop: The TAU Performance System

NAS BT – Phase Profile
Main phase shows nested phases and immediate events

47

6th VI-HPS Tuning Workshop: The TAU Performance System

Phase Profiling of HW Counters

• GTC particle-in-cell simulation of fusion turbulence
• Phases assigned to

iterations
• Poor temporal locality for

one important data
• Automatically generated

by PE2 python script

increasing phase

execution time

decreasing

flops rate

declining cache

performance

48

6th VI-HPS Tuning Workshop: The TAU Performance System

Profile Snapshots in ParaProf
• Profile snapshots are parallel profiles recorded at runtime
• Shows performance profile dynamics (all types allowed)

Initialization

Checkpointing

Finalization

49

6th VI-HPS Tuning Workshop: The TAU Performance System

Profile Snapshot Views

• Only show main loop • Percentage breakdown

50

6th VI-HPS Tuning Workshop: The TAU Performance System

Snapshot Replay in ParaProf

All windows dynamically update

51

6th VI-HPS Tuning Workshop: The TAU Performance System

PerfExplorer – Runtime Breakdown

MPI_Waitall

WRITE_SAVEFILE

52

6th VI-HPS Tuning Workshop: The TAU Performance System

PerfExplorer – Relative Comparisons

53

• Total execution time
• Timesteps per second
• Relative efficiency
• Relative efficiency per event
• Relative speedup
• Relative speedup per event
• Group fraction of total
• Runtime breakdown
• Correlate events with total runtime
• Relative efficiency per phase
• Relative speedup per phase
• Distribution visualizations

6th VI-HPS Tuning Workshop: The TAU Performance System

PerfExplorer – Correlation Analysis

Data: FLASH on BGL(LLNL), 64 nodes

Strong negative linear correlation between

CALC_CUT_BLOCK_CONTRIBUTIONS

and MPI_Barrier

54

6th VI-HPS Tuning Workshop: The TAU Performance System

PerfExplorer – Correlation Analysis

55

• -0.995 indicates
strong, negative
relationship

• As CALC_CUT_
BLOCK_CONTRIBUTIO
NS() increases in
execution time,
MPI_Barrier()
decreases

6th VI-HPS Tuning Workshop: The TAU Performance System

PerfExplorer – Cluster Analysis

56

6th VI-HPS Tuning Workshop: The TAU Performance System

PerfExplorer – Cluster Analysis

• Four significant events automatically selected

• Clusters and correlations are visible

57

6th VI-HPS Tuning Workshop: The TAU Performance System

PerfExplorer – Performance Regression

58

6th VI-HPS Tuning Workshop: The TAU Performance System

Other Projects in TAU

59

• TAU Portal
– Support collaborative performance study

• Kernel-level system measurements (KTAU)
– Application to OS noise analysis and I/O system analysis

• TAU performance monitoring
– TAUoverSupermon and TAUoverMRNet

• PerfExplorer integration and expert-based analysis
– OpenUH compiler optimizations
– Computational quality of service in CCA

• Eclipse CDT and PTP integration
• Performance tools integration (NSF POINT project)

6th VI-HPS Tuning Workshop: The TAU Performance System

Using TAU

60

• Install TAU
– % configure [options]; make clean install

• Modify application makefile and choose TAU configuration
– Select TAU’s stub makefile
– Change name of compiler in makefile

• Set environment variables
– Directory where profiles/traces are to be stored/counter

selection
– TAU options

• Execute application
– % mpirun –np <procs> a.out;

• Analyze performance data
– paraprof, vampir, pprof, paraver …

6th VI-HPS Tuning Workshop: The TAU Performance System

Application Build Environment

61

• Minimize impact on user’s application build procedures
• Handle parsing, instrumentation, compilation, linking
• Dealing with Makefiles

– Minimal change to application Makefile
– Avoid changing compilation rules in application Makefile
– No explicit inclusion of rules for process stages

• Some applications do not use Makefiles
– Facilitate integration in whatever procedures used

• Two techniques:
– TAU shell scripts (tau_<compiler>.sh)

• Invokes all PDT parser, TAU instrumenter, and compiler

– TAU_COMPILER

6th VI-HPS Tuning Workshop: The TAU Performance System

Configuring TAU

62

• TAU can measure several metrics with profiling
and tracing approaches

• Different tools can also be invoked to instrument
programs for TAU measurement

• Each configuration of TAU produces a
measurement library for an architecture

• Each measurement configuration of TAU also
creates a corresponding stub makefile that can be
used to compile programs

• Typically configure multiple measurement
libraries

6th VI-HPS Tuning Workshop: The TAU Performance System

TAU Measurement System Configuration

63

• configure [OPTIONS]
– {-c++=<CC>, -cc=<cc>} Specify C++ and C compilers
– -pdt=<dir> Specify location of PDT
– -opari=<dir> Specify location of Opari OpenMP tool
– -papi=<dir> Specify location of PAPI
– -vampirtrace=<dir> Specify location of VampirTrace
– -mpi[inc/lib]=<dir> Specify MPI library instrumentation
– -dyninst=<dir> Specify location of DynInst Package
– -shmem[inc/lib]=<dir> Specify PSHMEM library instrumentation
– -python[inc/lib]=<dir> Specify Python instrumentation
– -tag=<name> Specify a unique configuration name
– -epilog=<dir> Specify location of EPILOG
– -slog2 Build SLOG2/Jumpshot tracing package
– -otf=<dir> Specify location of OTF trace package
– -arch=<architecture> Specify architecture explicitly

(bgl, xt3,x86_64,x86_64linux…)
– {-pthread, -sproc} Use pthread or SGI sproc threads
– -openmp Use OpenMP threads
– -jdk=<dir> Specify Java instrumentation (JDK)
– -fortran=[vendor] Specify Fortran compiler

6th VI-HPS Tuning Workshop: The TAU Performance System

TAU Measurement System Configuration

64

• configure [OPTIONS]
– -TRACE Generate binary TAU traces
– -PROFILE (default) Generate profiles (summary)
– -PROFILECALLPATH Generate call path profiles
– -PROFILEPHASE Generate phase based profiles
– -PROFILEMEMORY Track heap memory for each routine
– -PROFILEHEADROOM Track memory headroom to grow
– Use hardware counters + time
– -COMPENSATE Compensate timer overhead
– -CPUTIME Use usertime+system time
– -PAPIWALLCLOCK Use PAPI’s wallclock time
– -PAPIVIRTUAL Use PAPI’s process virtual time
– -SGITIMERS Use fast IRIX timers
– -LINUXTIMERS Use fast x86 Linux timers

6th VI-HPS Tuning Workshop: The TAU Performance System

TAU Configuration – Examples

65

• Configure using PDT and MPI for x86_64 Linux
./configure –pdt=/usr/pkgs/pkgs/pdtoolkit-3.15

-mpiinc=/usr/pkgs/mpich/include -mpilib=/usr/pkgs/mpich/lib
-mpilibrary=‘-lmpich -L/usr/gm/lib64 -lgm -lpthread -ldl’

• Use PAPI counters (one or more) with C/C++/F90
automatic instrumentation for Cray CNL. Also instrument
the MPI library. Use PGI compilers.
./configure -arch=craycnl -papi=/opt/xt-tools/papi/3.6.2 -mpi; make

clean install

• Stub makefiles
/usr/pkgs/tau/x86_64/lib/Makefile.tau-mpi-pdt-pgi
/usr/pkgs/tau/x86_64/lib/Makefile.tau-mpi-papi-pdt-pgi

6th VI-HPS Tuning Workshop: The TAU Performance System

Stub Makefiles Configuration Parameters

66

• TAU scripts use stub makefiles to select performance measurements
• Variables:

– TAU_CXX Specify the C++ compiler used by TAU
– TAU_CC, TAU_F90 Specify the C, F90 compilers
– TAU_DEFS Defines used by TAU (add to CFLAGS)
– TAU_LDFLAGS Linker options (add to LDFLAGS)
– TAU_INCLUDE Header files include path (add to CFLAGS)
– TAU_LIBS Statically linked TAU library (add to LIBS)
– TAU_SHLIBS Dynamically linked TAU library
– TAU_MPI_LIBS TAU’s MPI wrapper library for C/C++
– TAU_MPI_FLIBS TAU’s MPI wrapper library for F90
– TAU_FORTRANLIBS Must be linked in with C++ linker for F90
– TAU_CXXLIBS Must be linked in with F90 linker
– TAU_INCLUDE_MEMORY Use TAU’s malloc/free wrapper lib
– TAU_DISABLE TAU’s dummy F90 stub library
– TAU_COMPILER Instrument using tau_compiler.sh script

6th VI-HPS Tuning Workshop: The TAU Performance System

TAU Measurement Configuration

67

• % cd /opt/tau-2.19.1/x86_64/lib; ls Makefile.*
– Makefile.tau-pdt
– Makefile.tau-mpi-pdt
– Makefile.tau-mpi-papi-pdt
– Makefile.tau-mpi-papi-pdt-trace
– Makefile.tau-pthread-pdt…

• For an MPI+F90 application, you may want to start with:
– Makefile.tau-mpi-pdt
– Supports MPI instrumentation & PDT for automatic source

instrumentation
• % setenv TAU_MAKEFILE

/opt/tau-2.19.1/x86_64/lib/Makefile.tau-mpi-pdt

6th VI-HPS Tuning Workshop: The TAU Performance System

Using TAU: A brief Introduction

• To instrument source code using PDT
– Choose an appropriate TAU stub makefile in <arch>/lib:

% setenv TAU_MAKEFILE
/opt/tau-2.19.1/x86_64/lib/Makefile.tau-mpi-pdt

% setenv TAU_OPTIONS ‘-optVerbose …’ (see tau_compiler.sh)

And use tau_f90.sh, tau_cxx.sh or tau_cc.sh as Fortran, C++ or C
compilers:

% mpif90 foo.f90

changes to
% tau_f90.sh foo.f90

• Execute application and analyze performance data:
% pprof (for text based profile display)

% paraprof (for GUI)

68

6th VI-HPS Tuning Workshop: The TAU Performance System

TAU Measurement Configuration – Examples

% cd /usr/local/packages/tau-2.19.1/i386_linux/lib; ls Makefile.* on LiveDVD
Makefile.tau-pdt
Makefile.tau-mpi-pdt
Makefile.tau-papi-mpi-pdt
Makefile.tau-vampirtrace-papi-mpi-pdt
Makefile.tau-scalasca-papi-mpi-pdt
Makefile.tau-pthread-pdt
Makefile.tau-pthread-mpi-pdt
Makefile.tau-openmp-opari-pdt
Makefile.tau-openmp-opari-mpi-pdt
Makefile.tau-papi-openmp-opari-mpi-pdt
…
• For an MPI+F90 application, you may want to start with:
Makefile.tau-mpi-pdt

– Supports MPI instrumentation & PDT for automatic source instrumentation
– % setenv TAU_MAKEFILE

/usr/local/packages/tau-2.19.1/i386_linux/lib/Makefile.tau-mpi-pdt

69

6th VI-HPS Tuning Workshop: The TAU Performance System

-PROFILE Option

70

• Generates flat profiles

– One for each MPI process

– It is the default option.

• Uses wallclock time

– gettimeofday() sys call

• Calculates exclusive, inclusive time spent in
each timer and number of calls

6th VI-HPS Tuning Workshop: The TAU Performance System

Generating a Flat Profile with MPI

71

% setenv TAU_MAKEFILE /opt/tau-2.19.1/x86_64

/lib/Makefile.tau-mpi-pdt

% set path=(/opt/tau-2.19.1/x86_64/bin $path)

% make F90=tau_f90.sh

(Or edit Makefile and change F90=tau_f90.sh)

% qsub run.job

% paraprof -–pack app.ppk

Move the app.ppk file to your desktop.

% paraprof app.ppk

6th VI-HPS Tuning Workshop: The TAU Performance System

Generating a Loop-level Profile

72

% setenv TAU_MAKEFILE /opt/tau-2.19.1/x86_64

/lib/Makefile.tau-mpi-pdt

% setenv TAU_OPTIONS „-optTauSelectFile=select.tau –optVerbose‟

% cat select.tau

BEGIN_INSTRUMENT_SECTION

loops routine=“#”

END_INSTRUMENT_SECTION

% set path=(/opt/tau-2.19.1/x86_64/bin $path)

% make F90=tau_f90.sh

(Or edit Makefile and change F90=tau_f90.sh)

% qsub run.job

% paraprof -–pack app.ppk

Move the app.ppk file to your desktop.

% paraprof app.ppk

6th VI-HPS Tuning Workshop: The TAU Performance System

Compiler-based Instrumentation

73

% setenv TAU_MAKEFILE /opt/tau-2.19.1/x86_64
/lib/Makefile.tau-mpi

% setenv TAU_OPTIONS „-optCompInst –optVerbose‟

% % set path=(/opt/tau-2.19.1/x86_64/bin $path)

% make F90=tau_f90.sh

(Or edit Makefile and change F90=tau_f90.sh)

% qsub run.job

% paraprof -–pack app.ppk

Move the app.ppk file to your desktop.

% paraprof app.ppk

6th VI-HPS Tuning Workshop: The TAU Performance System

-papi Option

74

• Instead of one metric, profile or trace with more than one metric
– Set environment variable TAU_METRICS to specify the metric

• % setenv TAU_METRICS TIME:PAPI_FP_INS:PAPI_L1_DCM...
• % setenv TAU_METRICS TIME:PAPI_NATIVE_<native_event>...

• When used with tracing (TAU_TRACE=1) option, the first counter
must be TIME

• % setenv TAU_METRICS TIME:PAPI_FP_INS...
• Provides a globally synchronized real time clock for tracing

• -papi appears in the name of the stub Makefile
• papi_avail, papi_event_chooser, and papi_native_avail are useful

tools

6th VI-HPS Tuning Workshop: The TAU Performance System

Generate a PAPI profile

75

% setenv TAU_MAKEFILE /opt/tau-2.19.1/x86_64
/lib/Makefile.tau-papi-mpi-pdt

% setenv TAU_OPTIONS „-optTauSelectFile=select.tau –optVerbose‟

% cat select.tau

BEGIN_INSTRUMENT_SECTION

loops routine=“#”

END_INSTRUMENT_SECTION

% set path=(/opt/tau-2.19.1/x86_64/bin $path)

% make F90=tau_f90.sh

(Or edit Makefile and change F90=tau_f90.sh)

% setenv TAU_METRICS TIME:PAPI_FP_INS

% qsub run.job

% paraprof -–pack app.ppk

Move the app.ppk file to your desktop.

% paraprof app.ppk

Choose Options -> Show Derived Panel -> Click PAPI_FP_INS, Click / , Click
TIME, Apply, choose the metric

6th VI-HPS Tuning Workshop: The TAU Performance System

-PROFILECALLPATH Option

76

• Generates profiles that show the calling order (edges
and nodes in callgraph)

– A=>B=>C shows the time spent in C when it was called by B
and B was called by A

– Control the depth of callpath using TAU_CALLPATH_DEPTH
environment variable

– -callpath in the name of the stub Makefile name or setting
TAU_CALLPATH= 1 at runtime
(TAU v2.18.1+)

6th VI-HPS Tuning Workshop: The TAU Performance System

-DEPTHLIMIT Option

77

• Allows users to enable instrumentation at runtime based on
the depth of a calling routine on a callstack
– Disables instrumentation in all routines a certain depth away

from the root in a callgraph
• TAU_DEPTH_LIMIT environment variable specifies depth

– % setenv TAU_DEPTH_LIMIT 1
– enables instrumentation in only “main”
– % setenv TAU_DEPTH_LIMIT 2
– enables instrumentation in main and routines that are directly

called by main

• Stub makefile has -depthlimit in its name:
– setenv TAU_MAKEFILE <taudir>/<arch>/lib/Makefile.tau-mpi-

depthlimit-pdt

6th VI-HPS Tuning Workshop: The TAU Performance System

Generate a Callpath Profile

78

% setenv TAU_MAKEFILE /opt/tau-2.19.1/x86_64

/lib/Makefile.tau-mpi-pdt

% set path=(/opt/tau-2.19.1/x86_64/bin $path)

% make F90=tau_f90.sh

(Or edit Makefile and change F90=tau_f90.sh)

% setenv TAU_CALLPATH 1

% setenv TAU_CALLPATH_DEPTH 100

to generate the callpath profiles without any recompilation.

% qsub run.job

% paraprof -–pack app.ppk

Move the app.ppk file to your desktop.

% paraprof app.ppk

(Windows -> Thread -> Call Graph)

6th VI-HPS Tuning Workshop: The TAU Performance System

Tracing in TAU

79

• Generates event-trace logs, rather than summary profiles
– setenv TAU_TRACE 1

• Traces show when and where an event occurred in terms of location
and the process that executed it

• Traces from multiple processes are merged:
– % tau_treemerge.pl

• generates tau.trc and tau.edf as merged trace and event definition file

• TAU traces can be converted to Vampir’s OTF/VTF3, Jumpshot
SLOG2, Paraver trace formats:
– % tau2otf tau.trc tau.edf app.otf
– % tau2vtf tau.trc tau.edf app.vpt.gz
– % tau2slog2 tau.trc tau.edf -o app.slog2
– % tau_convert -paraver tau.trc tau.edf app.prv

6th VI-HPS Tuning Workshop: The TAU Performance System

Generate a Trace File

80

% setenv TAU_MAKEFILE /opt/tau-2.19.1/x86_64

/lib/Makefile.tau-mpi-pdt

% set path=(/opt/tau-2.19.1/x86_64/bin $path)

% make F90=tau_f90.sh

(Or edit Makefile and change F90=tau_f90.sh)

% setenv TAU_TRACE 1

% qsub run.job

% tau_treemerge.pl

(merges binary traces to create tau.trc and tau.edf files)

JUMPSHOT:

% tau2slog2 tau.trc tau.edf –o app.slog2

% jumpshot app.slog2

OR

VAMPIR:

% tau2otf tau.trc tau.edf app.otf –n 4 –z

(4 streams, compressed output trace)

% vampir app.otf

(or vng client with vngd server)

6th VI-HPS Tuning Workshop: The TAU Performance System

Instrumentation Specification

81

% tau_instrumentor

Usage : tau_instrumentor <pdbfile> <sourcefile> [-o <outputfile>] [-noinline]

[-g groupname] [-i headerfile] [-c|-c++|-fortran] [-f <instr_req_file>]

For selective instrumentation, use –f option

% tau_instrumentor foo.pdb foo.cpp –o foo.inst.cpp –f selective.dat

% cat selective.dat

Selective instrumentation: Specify an exclude/include list of routines/files.

BEGIN_EXCLUDE_LIST

void quicksort(int *, int, int)

void sort_5elements(int *)

void interchange(int *, int *)

END_EXCLUDE_LIST

BEGIN_FILE_INCLUDE_LIST

Main.cpp

Foo?.c

*.C

END_FILE_INCLUDE_LIST

Instruments routines in Main.cpp, Foo?.c and *.C files only

Use BEGIN_[FILE]_INCLUDE_LIST with END_[FILE]_INCLUDE_LIST

6th VI-HPS Tuning Workshop: The TAU Performance System

Outer Loop Level Instrumentation

82

BEGIN_INSTRUMENT_SECTION

loops file="loop_test.cpp" routine="multiply"

it also understands # as the wildcard in routine name

and * and ? wildcards in file name.

You can also specify the full

name of the routine as is found in profile files.

#loops file="loop_test.cpp" routine="double multiply#"

END_INSTRUMENT_SECTION

% pprof

NODE 0;CONTEXT 0;THREAD 0:

%Time Exclusive Inclusive #Call #Subrs Inclusive Name

msec total msec usec/call

100.0 0.12 25,162 1 1 25162827 int main(int, char **)

100.0 0.175 25,162 1 4 25162707 double multiply()

90.5 22,778 22,778 1 0 22778959 Loop: double multiply()[

file = <loop_test.cpp> line,col = <23,3> to <30,3>]

9.3 2,345 2,345 1 0 2345823 Loop: double multiply()[

file = <loop_test.cpp> line,col = <38,3> to <46,7>]

0.1 33 33 1 0 33964 Loop: double

multiply()[file = <loop_test.cpp> line,col = <16,10> to <21,12>]

6th VI-HPS Tuning Workshop: The TAU Performance System

Using TAU: A brief Introduction

• To instrument source code using PDT
– Choose an appropriate TAU stub makefile in <arch>/lib:

% setenv TAU_MAKEFILE
/opt/tau-2.19.1/x86_64/lib/Makefile.tau-mpi-pdt

% setenv TAU_OPTIONS ‘-optVerbose …’ (see tau_compiler.sh)

And use tau_f90.sh, tau_cxx.sh or tau_cc.sh as Fortran, C++ or C
compilers:

% mpif90 foo.f90

changes to
% tau_f90.sh foo.f90

• Execute application and analyze performance data:
% pprof (for text based profile display)

% paraprof (for GUI)

83

6th VI-HPS Tuning Workshop: The TAU Performance System

Usage Scenarios: Routine Level Profile

• Goal: What routines account for the most time? How much?

84

6th VI-HPS Tuning Workshop: The TAU Performance System

Solution: Generating a flat profile with MPI

% setenv TAU_MAKEFILE /opt/tau-2.19.1/x86_64

/lib/Makefile.tau-mpi-pdt

% set path=(/opt/tau-2.19.1/x86_64/bin $path)

Or

% module load tau

% make F90=tau_f90.sh

Or

% tau_f90.sh matmult.f90 –o matmult

(Or edit Makefile and change F90=tau_f90.sh)

% qsub run.job

% paraprof

To view. To view the data locally on the workstation,

% paraprof -–pack app.ppk

Move the app.ppk file to your desktop.

% paraprof app.ppk

85

6th VI-HPS Tuning Workshop: The TAU Performance System

Usage Scenarios: Loop Level Instrumentation

• Goal: What loops account for the most time? How much?

• Flat profile with wallclock time with loop instrumentation:

86

6th VI-HPS Tuning Workshop: The TAU Performance System

Solution: Generating a loop level profile
% setenv TAU_MAKEFILE /opt/tau-2.19.1/x86_64

/lib/Makefile.tau-mpi-pdt

% setenv TAU_OPTIONS „-optTauSelectFile=select.tau –optVerbose‟

% cat select.tau

BEGIN_INSTRUMENT_SECTION

loops routine=“#”

END_INSTRUMENT_SECTION

% module load tau

% make F90=tau_f90.sh

(Or edit Makefile and change F90=tau_f90.sh)

% qsub run.job

% paraprof -–pack app.ppk

Move the app.ppk file to your desktop.

% paraprof app.ppk

87

6th VI-HPS Tuning Workshop: The TAU Performance System

Usage Scenarios: MFlops in Loops

• Goal: What execution rate do my application loops get in mflops?

• Flat profile with PAPI_FP_INS/OPS and time (-papi) with loop
instrumentation:

88

6th VI-HPS Tuning Workshop: The TAU Performance System

Generate a PAPI profile with 2 or more counters
% setenv TAU_MAKEFILE /opt/tau-2.19.1/x86_64

/lib/Makefile.tau-papi-mpi-pdt

% setenv TAU_OPTIONS „-optTauSelectFile=select.tau –optVerbose‟

% cat select.tau

BEGIN_INSTRUMENT_SECTION

loops routine=“#”

END_INSTRUMENT_SECTION

% make F90=tau_f90.sh

(Or edit Makefile and change F90=tau_f90.sh)

% setenv TAU_METRICS TIME:PAPI_FP_INS

% qsub run.job

% paraprof -–pack app.ppk

Move the app.ppk file to your desktop.

% paraprof app.ppk

Choose Options -> Show Derived Panel -> Arg 1 = PAPI_FP_INS,

Arg 2 = GET_TIME_OF_DAY, Operation = Divide -> Apply, choose.

89

6th VI-HPS Tuning Workshop: The TAU Performance System

Usage Scenarios: Compiler-based Instrumentation

• Goal: Easily generate routine level performance data using the compiler
instead of PDT for parsing the source code

90

6th VI-HPS Tuning Workshop: The TAU Performance System

Use Compiler-Based Instrumentation

% setenv TAU_MAKEFILE /opt/tau-2.19.1/x86_64

/lib/Makefile.tau-mpi-pdt

% setenv TAU_OPTIONS „-optCompInst –optVerbose‟

% module load tau

% make F90=tau_f90.sh

(Or edit Makefile and change F90=tau_f90.sh)

% qsub run.job

% paraprof -–pack app.ppk

Move the app.ppk file to your desktop.

% paraprof app.ppk

91

6th VI-HPS Tuning Workshop: The TAU Performance System

Generate a Callpath Profile

92

6th VI-HPS Tuning Workshop: The TAU Performance System

Callpath Profile
• Generates program callgraph

93

6th VI-HPS Tuning Workshop: The TAU Performance System

Generate a Callpath Profile

% setenv TAU_MAKEFILE /opt/tau-2.19.1/x86_64

/lib/Makefile.tau-mpi-pdt

% set path=(/opt/tau-2.19.1/x86_64/bin $path)

% make F90=tau_f90.sh

(Or edit Makefile and change F90=tau_f90.sh)

% setenv TAU_CALLPATH 1

% setenv TAU_CALLPATH_DEPTH 100

% qsub run.job

% paraprof -–pack app.ppk

Move the app.ppk file to your desktop.

% paraprof app.ppk

(Windows -> Thread -> Call Graph)

94

6th VI-HPS Tuning Workshop: The TAU Performance System

Usage Scenario: Detect Memory Leaks

95

6th VI-HPS Tuning Workshop: The TAU Performance System

Detect Memory Leaks

% setenv TAU_MAKEFILE /opt/tau-2.19.1/x86_64

/lib/Makefile.tau-mpi-pdt

% setenv TAU_OPTIONS „-optDetectMemoryLeaks -optVerbose‟

% module load tau

% make F90=tau_f90.sh

(Or edit Makefile and change F90=tau_f90.sh)

% setenv TAU_CALLPATH_DEPTH 100

% qsub run.job

% paraprof -–pack app.ppk

Move the app.ppk file to your desktop.

% paraprof app.ppk

(Windows -> Thread -> Context Event Window -> Select thread ->

select... expand tree)

(Windows -> Thread -> User Event Bar Chart -> right click LEAK

-> Show User Event Bar Chart)
NOTE: setenv TAU_TRACK_HEAP 1 and setenv TAU_TRACK_HEADROOM 1 may be used to track

heap and headroom utilization at the entry and exit of each routine.

TAU_CALLPATH_DEPTH=1 shows just the routine name, and 0 shows just one event for the

entire program.

96

6th VI-HPS Tuning Workshop: The TAU Performance System

Interval Events, Atomic Events in TAU

Interval event

e.g., routines

(start/stop)

Atomic events

(trigger with

value)

% setenv TAU_CALLPATH_DEPTH 0

% setenv TAU_TRACK_HEAP 1

97

6th VI-HPS Tuning Workshop: The TAU Performance System

Atomic Events, Context Events

% setenv TAU_CALLPATH_DEPTH 1

% setenv TAU_TRACK_HEAP 1

Atomic event

Context event

= atomic event

+ executing

context

98

6th VI-HPS Tuning Workshop: The TAU Performance System

Context Events (default)

% setenv TAU_CALLPATH_DEPTH 2

% setenv TAU_TRACK_HEAP 1

Context event

= atomic event

+ executing

context

99

6th VI-HPS Tuning Workshop: The TAU Performance System

Using tau_exec

100

6th VI-HPS Tuning Workshop: The TAU Performance System

Environment Variables in TAU
Environment Variable Default Description

TAU_TRACE 0 Setting to 1 turns on tracing

TAU_CALLPATH 0 Setting to 1 turns on callpath profiling

TAU_TRACK_HEAP or
TAU_TRACK_HEADROOM

0 Setting to 1 turns on tracking heap memory/headroom at routine entry & exit
using context events (e.g., Heap at Entry: main=>foo=>bar)

TAU_CALLPATH_DEPTH 2 Specifies depth of callpath. Setting to 0 generates no callpath or routine
information, setting to 1 generates flat profile and context events have just
parent information (e.g., Heap Entry: foo)

TAU_SYNCHRONIZE_CLOCKS 1 Synchronize clocks across nodes to correct timestamps in traces

TAU_COMM_MATRIX 0 Setting to 1 generates communication matrix display using context events

TAU_THROTTLE 1 Setting to 0 turns off throttling. Enabled by default to remove instrumentation
in lightweight routines that are called frequently

TAU_THROTTLE_NUMCALLS 100000 Specifies the number of calls before testing for throttling

TAU_THROTTLE_PERCALL 10 Specifies value in microseconds. Throttle a routine if it is called over 100000
times and takes less than 10 usec of inclusive time per call

TAU_COMPENSATE 0 Setting to 1 enables runtime compensation of instrumentation overhead

TAU_PROFILE_FORMAT Profile Setting to “merged” generates a single file. “snapshot” generates xml format

TAU_METRICS TIME Setting to a comma separted list generates other metrics. (e.g.,
TIME:linuxtimers:PAPI_FP_OPS:PAPI_NATIVE_<event>)

101

6th VI-HPS Tuning Workshop: The TAU Performance System

Compile-Time Environment Variables

• Optional parameters for TAU_OPTIONS: [tau_compiler.sh –help]

-optVerbose Turn on verbose debugging messages

-optCompInst Use compiler based instrumentation

-optDetectMemoryLeaks Turn on debugging memory allocations/de-allocations to track leaks

-optKeepFiles Does not remove intermediate .pdb and .inst.* files

-optPreProcess Preprocess Fortran sources before instrumentation

-optTauSelectFile="" Specify selective instrumentation file for tau_instrumentor

-optLinking="" Options passed to the linker. Typically
$(TAU_MPI_FLIBS) $(TAU_LIBS) $(TAU_CXXLIBS)

-optCompile="" Options passed to the compiler. Typically
$(TAU_MPI_INCLUDE) $(TAU_INCLUDE) $(TAU_DEFS)

-optTauSelectFile="" Specify selective instrumentation file for tau_instrumentor

-optNoCompInst Do not revert to compiler-based instrumentation if source instrumentation fails

-optPdtF95Opts="" Add options for Fortran parser in PDT (f95parse/gfparse)

-optPdtF95Reset="" Reset options for Fortran parser in PDT (f95parse/gfparse)

-optPdtCOpts="" Options for C parser in PDT (cparse). Typically
$(TAU_MPI_INCLUDE) $(TAU_INCLUDE) $(TAU_DEFS)

-optPdtCxxOpts="" Options for C++ parser in PDT (cxxparse). Typically
$(TAU_MPI_INCLUDE) $(TAU_INCLUDE) $(TAU_DEFS)

...
102

6th VI-HPS Tuning Workshop: The TAU Performance System

Measuring Performance of PGI Accelerator Code

103

6th VI-HPS Tuning Workshop: The TAU Performance System

Usage Scenarios: Mixed Python+F90+C+pyMPI

• Goal: Generate multi-level instrumentation for
Python+MPI+C+F90+C++ ...

104

6th VI-HPS Tuning Workshop: The TAU Performance System

Generate a Multi-Language Profile w/ Python
% setenv TAU_MAKEFILE /opt/tau-2.19.1/x86_64

/lib/Makefile.tau-python-mpi-pdt

% set path=(/opt/tau-2.19.1/x86_64/bin $path)

% setenv TAU_OPTIONS „-optShared -optVerbose…‟

(Python needs shared object based TAU library)

% make F90=tau_f90.sh CXX=tau_cxx.sh CC=tau_cc.sh (build pyMPI w/TAU)

% cat wrapper.py

import tau

def OurMain():

import App

tau.run(„OurMain()‟)

Uninstrumented:

% poe <dir>/pyMPI-2.4b4/bin/pyMPI ./App.py –procs 4

Instrumented:

% setenv PYTHONPATH <taudir>/x86_64/lib/bindings-python-mpi-pdt-pgi

(same options string as TAU_MAKEFILE)

setenv LD_LIBRARY_PATH <taudir>/x86_64/lib/bindings-icpc-python-mpi-pdt-

pgi\:$LD_LIBRARY_PATH

% poe <dir>/pyMPI-2.5b0-TAU/bin/pyMPI ./wrapper.py –procs 4

(Instrumented pyMPI with wrapper.py) 105

6th VI-HPS Tuning Workshop: The TAU Performance System

Usage Scenarios: Evaluate Scalability

• Goal: How does my application scale? What bottlenecks at
what cpu counts?

• Load profiles in PerfDMF database and examine with
PerfExplorer

106

6th VI-HPS Tuning Workshop: The TAU Performance System

Usage Scenarios: Evaluate Scalability

107

6th VI-HPS Tuning Workshop: The TAU Performance System

Performance Regression Testing

108

6th VI-HPS Tuning Workshop: The TAU Performance System

Evaluate Scalability using PerfExplorer Charts

% setenv TAU_MAKEFILE /opt/tau-2.19.1/x86_64

/lib/Makefile.tau-mpi-pdt

% set path=(/opt/tau-2.19.1/x86_64/bin $path)

% make F90=tau_f90.sh

(Or edit Makefile and change F90=tau_f90.sh)

% qsub run1p.job

% paraprof -–pack 1p.ppk

% qsub run2p.job …

% paraprof -–pack 2p.ppk … and so on.

On your client:

% perfdmf_configure

(Choose derby, blank user/passwd, yes to save passwd, defaults)

% perfexplorer_configure

(Yes to load schema, defaults)

% paraprof

(load each trial: DB -> Add Trial -> Type (Paraprof Packed

Profile) -> OK, OR use perfdmf_loadtrial on the commandline)

% perfexplorer

(Charts -> Speedup) 109

6th VI-HPS Tuning Workshop: The TAU Performance System

Communication Matrix Display

• Goal: What is the volume of inter-process communication? Along which calling
path?

110

6th VI-HPS Tuning Workshop: The TAU Performance System

Evaluate Scalability using PerfExplorer Charts

% setenv TAU_MAKEFILE

$TAU/Makefile.tau-mpi-pdt

% set path=(/usr/local/packages/tau-2.19.1/x86_64/bin $path)

% make F90=tau_f90.sh

(Or edit Makefile and change F90=tau_f90.sh)

% setenv TAU_COMM_MATRIX 1

% qsub run.job (setting the environment variables)

% paraprof

(Windows -> Communication Matrix)

(Windows -> 3D Communication Matrix)

111

6th VI-HPS Tuning Workshop: The TAU Performance System

TAU Integration with IDEs

• High performance software development environments
– Tools may be complicated to use

– Interfaces and mechanisms differ between platforms / OS

• Integrated development environments
– Consistent development environment

– Numerous enhancements to development process

– Standard in industrial software development

• Integrated performance analysis
– Tools limited to single platform or programming language

– Rarely compatible with 3rd party analysis tools

– Little or no support for parallel projects

112

6th VI-HPS Tuning Workshop: The TAU Performance System

TAU and Eclipse

• Provide an interface for configuring TAU’s automatic instrumentation within
Eclipse’s build system

• Manage runtime configuration settings and environment variables for execution of
TAU instrumented programs

C/C++/Fortran

Project in Eclipse

Add or modify

an Eclipse build

configuration w/ TAU

Temporary copy

of instrumented code

Compilation/linking

with TAU libraries

TAU instrumented

libraries

Program

execution

Performance

data

Program

output
113

6th VI-HPS Tuning Workshop: The TAU Performance System

TAU and Eclipse

PerfDMF

114

6th VI-HPS Tuning Workshop: The TAU Performance System

Choosing PAPI Counters with TAU in Eclipse

% /usr/local/packages/eclipse/eclipse

115

6th VI-HPS Tuning Workshop: The TAU Performance System

116

Jumpshot

• http://www-unix.mcs.anl.gov/perfvis/software/viewers/index.htm

• Developed at Argonne National Laboratory as part of the MPICH project
– Also works with other MPI implementations

– Installed on IBM BG/P

– Jumpshot is bundled with the TAU package

• Java-based tracefile visualization tool for postmortem performance analysis
of MPI programs

• Latest version is Jumpshot-4 for SLOG-2 format
– Scalable level of detail support

– Timeline and histogram views

– Scrolling and zooming

– Search/scan facility

6th VI-HPS Tuning Workshop: The TAU Performance System

117

Jumpshot

6th VI-HPS Tuning Workshop: The TAU Performance System

Support Acknowledgements
• Department of Energy (DOE)

– Office of Science

• MICS, Argonne National Lab

– ASC/NNSA

• University of Utah ASC/NNSA Level 1

• ASC/NNSA, Lawrence Livermore National Lab

• Department of Defense (DoD)

– HPC Modernization Office (HPCMO)

• NSF Software Development for Cyberinfrastructure (SDCI)

• Research Centre Juelich

• ANL, NASA Ames, LANL, SNL

• TU Dresden

• ParaTools, Inc.

118

6th VI-HPS Tuning Workshop: The TAU Performance System

For more information

119

• TAU Website:
http://tau.uoregon.edu

– Software

– Release notes

– Documentation

