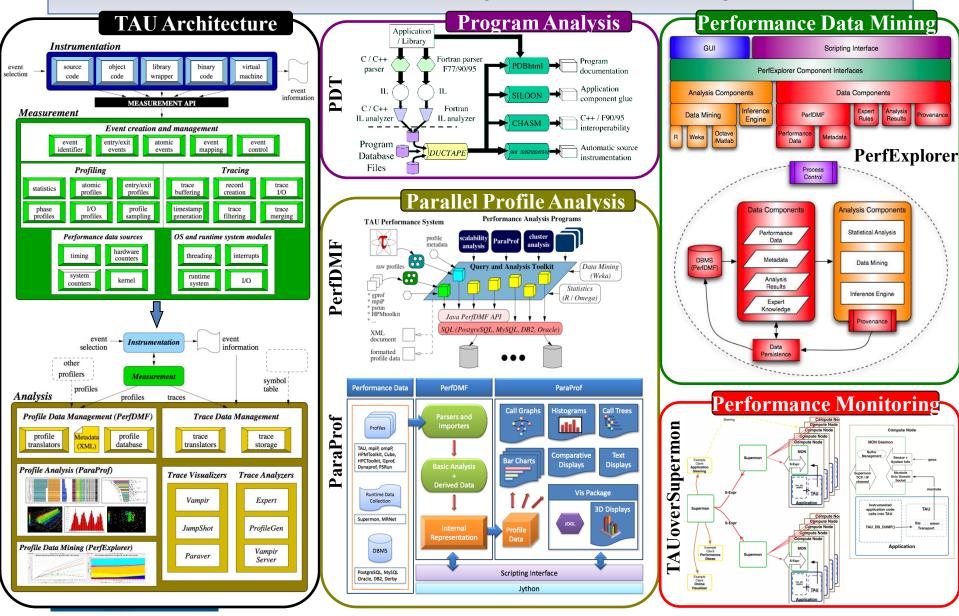
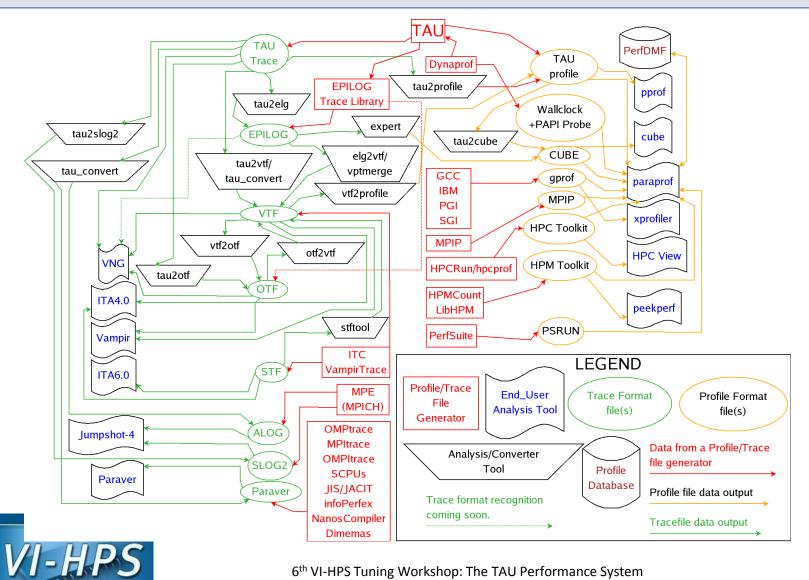
TAU PERFORMANCE SYSTEM

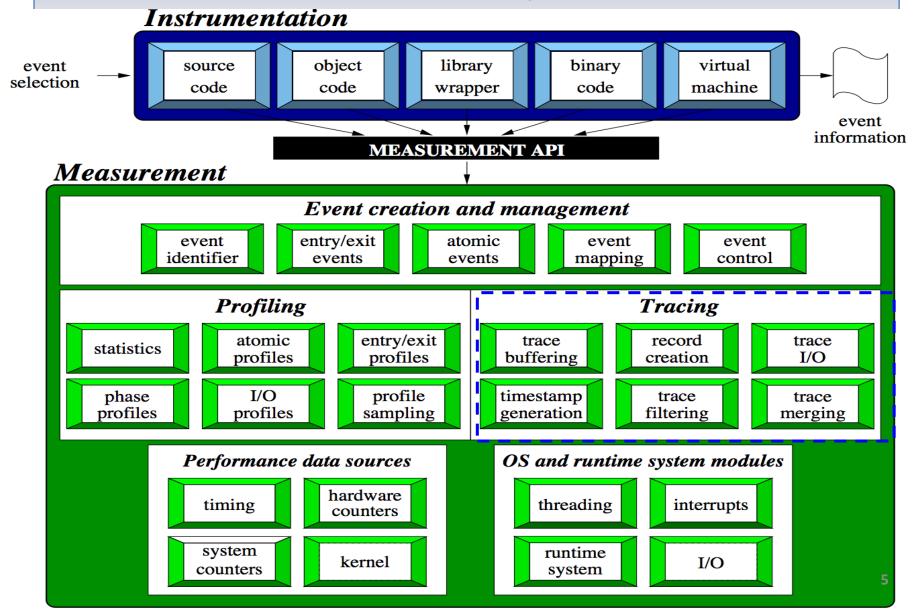
Wyatt Spear

Sameer Shende, Alan Morris, Scott Biersdorff Performance Research Lab

Allen D. Malony, Suzanne Millstein Department of Computer and Information Science University of Oregon


TAU Performance System


- <u>T</u>uning and <u>A</u>nalysis <u>U</u>tilities (15+ year project)
- Performance problem solving framework for HPC
 - Integrated, scalable, flexible, portable
 - Target all parallel programming / execution paradigms
- Integrated performance toolkit (open source)
 - Instrumentation, measurement, analysis, visualization
 - Widely-ported performance profiling / tracing system
 - Performance data management and data mining
- Broad application use (NSF, DOE, DOD, ...)


TAU Performance System Components

Building Bridges to Other Tools

TAU Instrumentation / Measurement

Direct Performance Observation

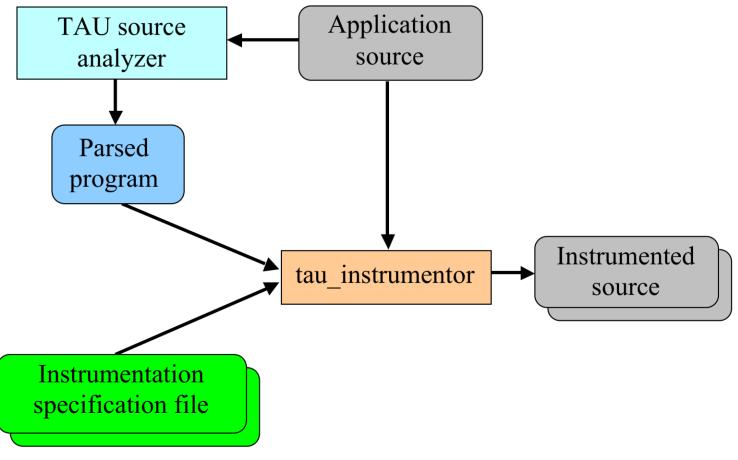
- Execution actions of interest exposed as events
 - In general, actions reflect some execution state
 - presence at a code location or change in data
 - occurrence in parallelism context (thread of execution)
 - Events encode actions for performance system to observe
- Observation is direct
 - Direct instrumentation of program (system) code (probes)
 - Instrumentation invokes performance measurement
 - Event measurement: performance data, meta-data, context
- Performance experiment
 - Actual events + performance measurements
- Contrast with (indirect) event-based sampling

TAU Instrumentation Approach

- Support for standard program events
 - Routines, classes and templates
 - Statement-level blocks
 - Begin/End events (Interval events)
- Support for user-defined events
 - Begin/End events specified by user
 - Atomic events (e.g., size of memory allocated/freed)
 - Flexible selection of event statistics
- Provides static events and dynamic events
- Enables "semantic" mapping
- Specification of event groups (aggregation, selection)
- Instrumentation optimization

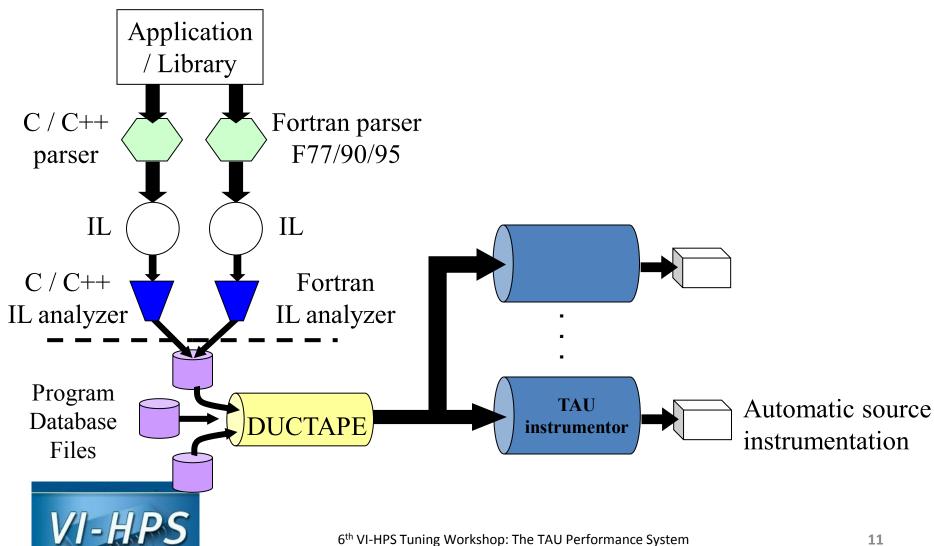
TAU Event Interface

- Events have a type, a group association, and a name
- TAU events names are character strings
 - Powerful way to encode event information
 - Inefficient way to communicate each event occurrence
- TAU maps a new event name to an event ID
 - Done when event is first encountered (get event handle)
 - Event ID is used for subsequent event occurrences
 - Assigning a uniform event ID a priori is problematic
- A new event is identified by a new event name in TAU
 - Can create new event names at runtime
 - Allows for dynamic events (TAU renames events)
 - Allows for context-based, parameter-based, phase events



TAU Instrumentation Mechanisms

- Source code
 - Manual (TAU API, TAU component API)
 - Automatic (robust)
 - C, C++, F77/90/95 (Program Database Toolkit (PDT))
 - OpenMP (directive rewriting (Opari), POMP2 spec)
 - Library header wrapping
- Object code
 - Pre-instrumented libraries (e.g., MPI using PMPI)
 - Statically- and dynamically-linked (with LD_PRELOAD)
- Executable code
 - Binary and dynamic instrumentation (Dyninst)
 - Virtual machine instrumentation (e.g., Java using JVMPI)
- TAU_COMPILER to automate instrumentation process



Automatic Source-level Instrumentation

Program Database Toolkit (PDT)

MPI Wrapper Interposition Library

- Uses standard MPI Profiling Interface
 - Provides name shifted interface
 - MPI_Send = PMPI_Send
 - Weak bindings
- Create TAU instrumented MPI library
 - Interpose between MPI and TAU
 - Done during program link
 - -Impi replaced by –ITauMpi –Ipmpi –Impi
 - No change to the source code!
 - Just re-link application to generate performance data

MPI Shared Library Instrumentation

- Interpose the MPI wrapper library for applications that have already been compiled
 - Avoid re-compilation or re-linking
- Requires shared library MPI
 - Uses LD_PRELOAD for Linux
 - On AIX use MPI_EUILIB / MPI_EUILIBPATH
 - Does not work on XT3
- Approach will work with other shared libraries
- Use TAU tauex
 - % mpirun -np 4 tauex a.out

Selective Instrumentation File

- Specify a list of events to exclude or include
- # is a wildcard in a routine name

```
BEGIN EXCLUDE LIST
Foo
Bar
D#EMM
END EXCLUDE LIST
BEGIN INCLUDE LIST
int main(int, char **)
F1
F3
END INCLUDE LIST
```


Selective Instrumentation File

- Optionally specify a list of files
- * and ? may be used as wildcard characters

```
BEGIN FILE EXCLUDE LIST
f*.f90
Foo?.cpp
END FILE EXCLUDE LIST
BEGIN_FILE INCLUDE LIST
main.cpp
foo.f90
END FILE INCLUDE LIST
```


Selective Instrumentation File

- User instrumentation commands
 - Placed in INSTRUMENT section
 - Routine entry/exit
 - Arbitrary code insertion
 - Outer-loop level instrumentation

```
BEGIN_INSTRUMENT_SECTION
loops file="foo.f90" routine="matrix#"
memory file="foo.f90" routine="#"
io routine="matrix#"
[static/dynamic] phase routine="MULTIPLY"
dynamic [phase/timer] name="foo" file="foo.cpp" line=22 to line=35
file="foo.f90" line = 123 code = " print *, \" Inside foo\""
exit routine = "int foo()" code = "cout <<\"exiting foo\"<<endl;"
END_INSTRUMENT_SECTION
```


TAU Measurement Approach

- Portable and scalable parallel profiling solution
 - Multiple profiling types and options
 - Event selection and control (enabling/disabling, throttling)
 - Online profile access and sampling
 - Online performance profile overhead compensation
- Portable and scalable parallel tracing solution
 - Trace translation to OTF, EPILOG, Paraver, and SLOG2
 - Trace streams (OTF) and hierarchical trace merging
- Robust timing and hardware performance support
- Multiple counters (hardware, user-defined, system)
- Performance measurement of I/O and Linux kernel

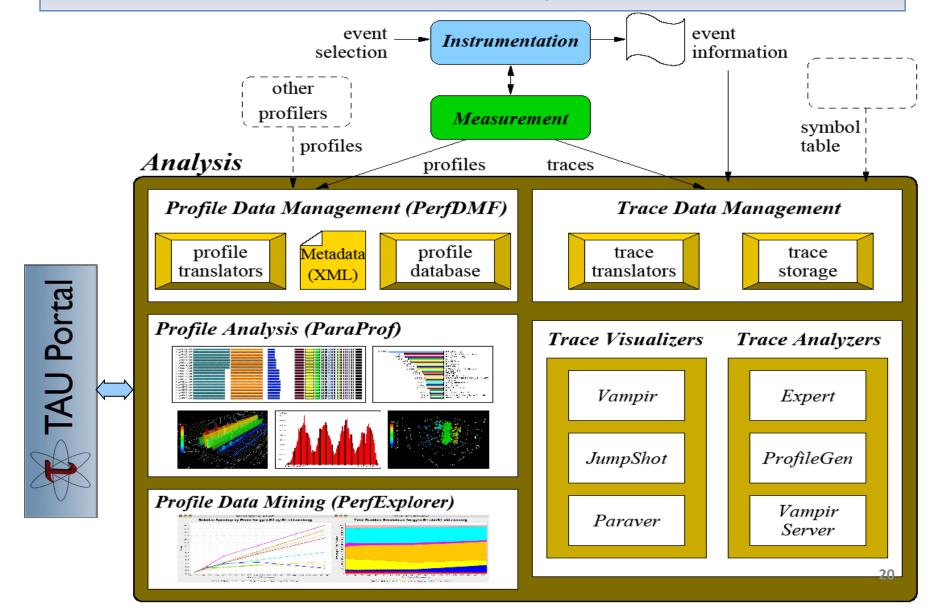
TAU Measurement Mechanisms

Parallel profiling

- Function-level, block-level, statement-level
- Supports user-defined events and mapping events
- Support for flat, callgraph/callpath, phase profiling
- Support for parameter and context profiling
- Support for tracking I/O and memory (library wrappers)
- Parallel profile stored (dumped, shapshot) during execution

Tracing

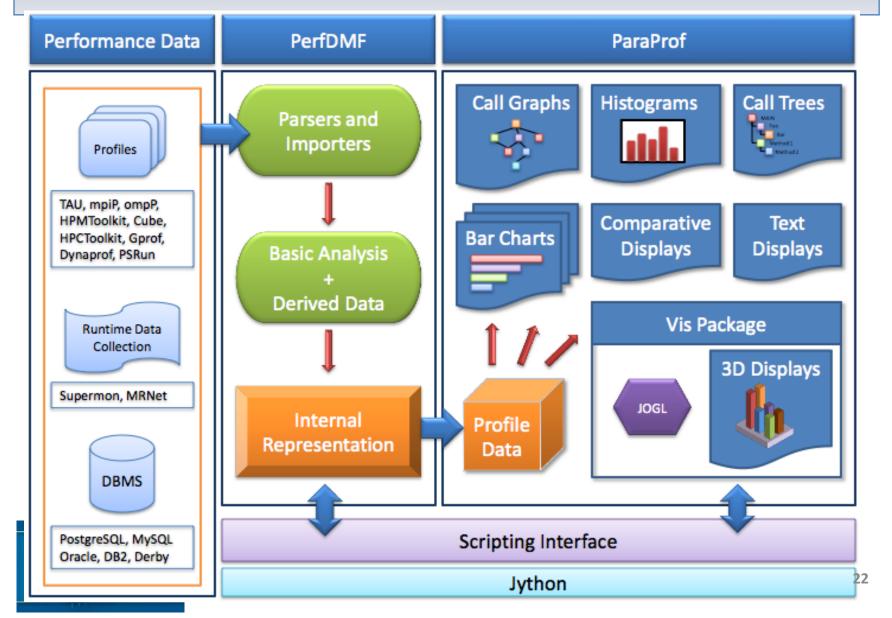
- All profile-level events
- Inter-process communication events
- Inclusion of multiple counter data in traced events



Types of Parallel Performance Profiling

- Flat profiles
 - Metric (e.g., time) spent in an event (callgraph nodes)
 - Exclusive/inclusive, # of calls, child calls
- Callpath profiles (Calldepth profiles)
 - Time spent along a calling path (edges in callgraph)
 - "main=> f1 => f2 => MPI_Send" (event name)
 - TAU_CALLPATH_DEPTH environment variable
- Phase profiles
 - Flat profiles under a phase (nested phases are allowed)
 - Default "main" phase
 - Supports static or dynamic (per-iteration) phases
 - Phase profiles may be generated from full callpath profiles in paraprof by choosing events as phases

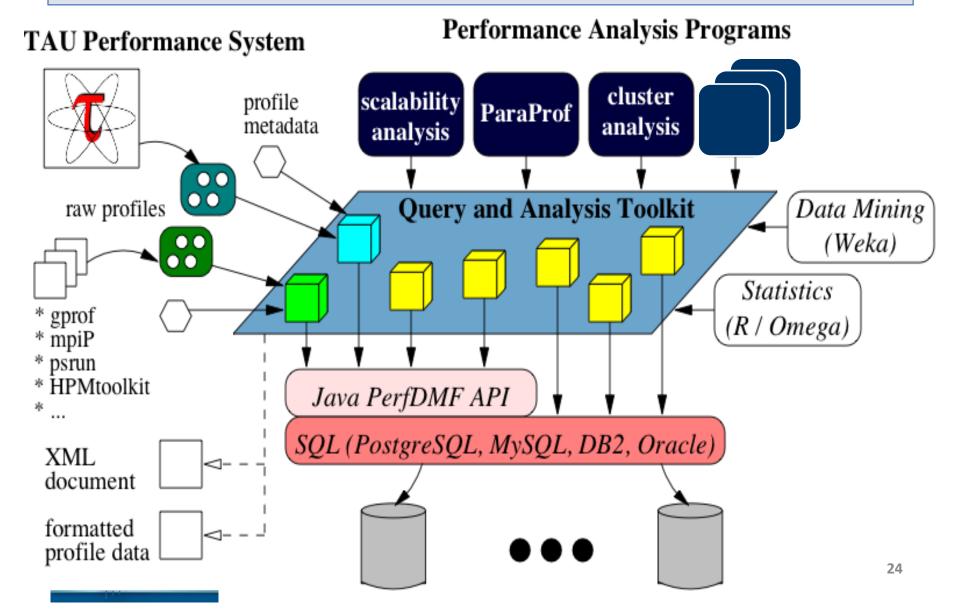
TAU Analysis



Performance Analysis

- Analysis of parallel profile and trace measurement
- Parallel profile analysis (ParaProf)
 - Java-based analysis and visualization tool
 - Support for large-scale parallel profiles
- Performance data management framework (PerfDMF)
- Parallel trace analysis
 - Translation to VTF (V3.0), EPILOG, OTF formats
 - Integration with Vampir / Vampir Server (TU Dresden)
 - Profile generation from trace data
- Online parallel analysis and visualization
- Integration with CUBE browser (Scalasca, UTK / FZJ)

ParaProf Profile Analysis Framework



Performance Data Management

- Provide an open, flexible framework to support common data management tasks
 - Foster multi-experiment performance evaluation
- Extensible toolkit to promote integration and reuse across available performance tools (PerfDMF)
 - Originally designed to address critical TAU requirements
 - Supported profile formats:
 TAU, CUBE (Scalasca), HPC Toolkit (Rice), HPM Toolkit (IBM), gprof, mpiP, psrun (PerfSuite), Open | SpeedShop, ...
 - Supported DBMS:
 PostgreSQL, MySQL, Oracle, DB2, Derby/Cloudscape
 - Profile query and analysis API
- Reference implementation for PERI-DB project

PerfDMF Architecture

Metadata Collection

- Integration of XML metadata for each parallel profile
- Three ways to incorporate metadata
 - Measured hardware/system information (TAU, PERI-DB)
 - CPU speed, memory in GB, MPI node IDs, ...
 - Application instrumentation (application-specific)
 - TAU_METADATA() used to insert any name/value pair
 - Application parameters, input data, domain decomposition
 - PerfDMF data management tools can incorporate an XML file of additional metadata
 - Compiler flags, submission scripts, input files, ...
- Metadata can be imported from / exported to PERI-DB

Performance Data Mining / Analytics

- Conduct systematic and scalable analysis process
 - Multi-experiment performance analysis
 - Support automation, collaboration, and reuse
- Performance knowledge discovery framework
 - Data mining analysis applied to parallel performance data
 - comparative, clustering, correlation, dimension reduction, ...
 - Use the existing TAU infrastructure
- PerfExplorer v1 performance data mining framework
 - Multiple experiments and parametric studies
 - Integrate available statistics and data mining packages
 - Weka, R, Matlab / Octave
 - Apply data mining operations in interactive environment

How to explain performance?

- Should not just redescribe the performance results
- Should explain performance phenomena
 - What are the causes for performance observed?
 - What are the factors and how do they interrelate?
 - Performance analytics, forensics, and decision support
- Need to add knowledge to do more intelligent things
 - Automated analysis needs good informed feedback
 - iterative tuning, performance regression testing
 - Performance model generation requires interpretation
- We need better methods and tools for
 - Integrating meta-information
 - Knowledge-based performance problem solving

Role of Metadata and Knowledge Role

Context Knowledge

You have to capture these...

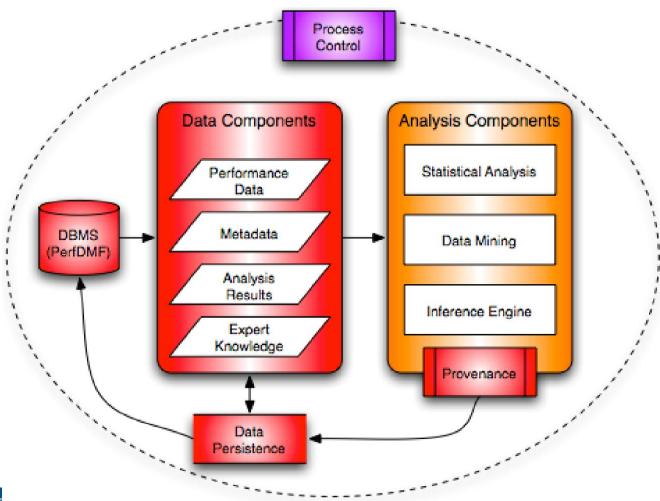
Build Environment Run Environment

Application

Machine

Performance Knowledge

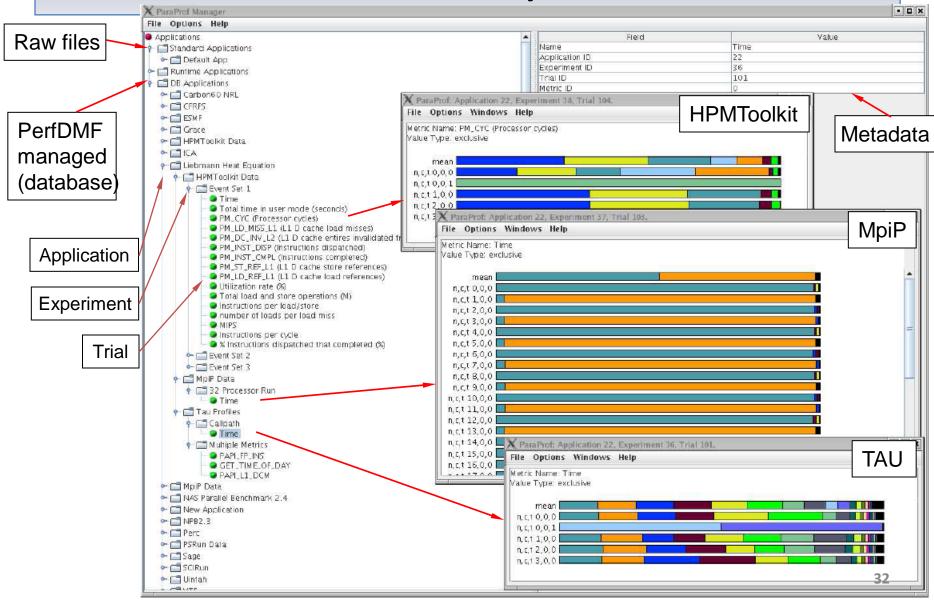
...to understand


→ Performance Result

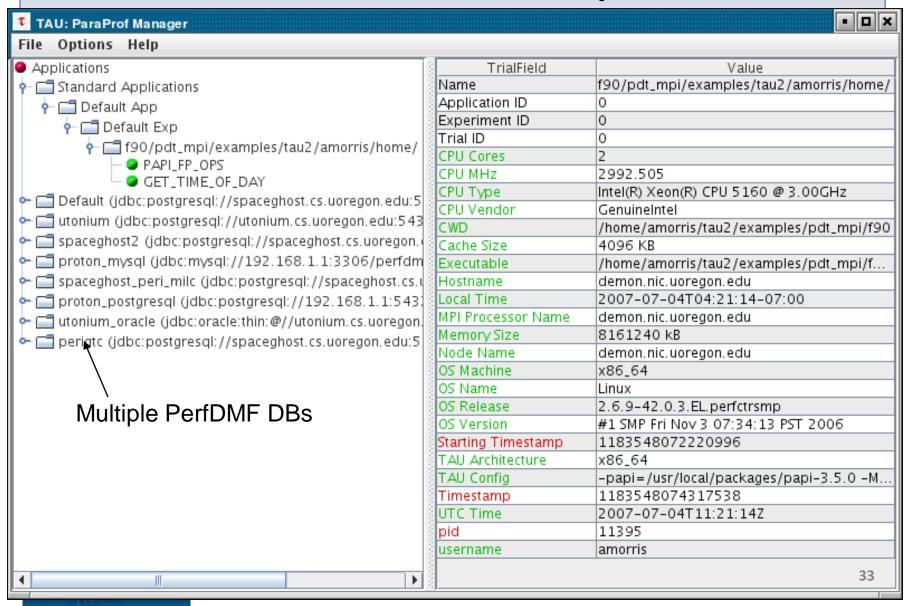
PerfExplorer v2 – Requirements

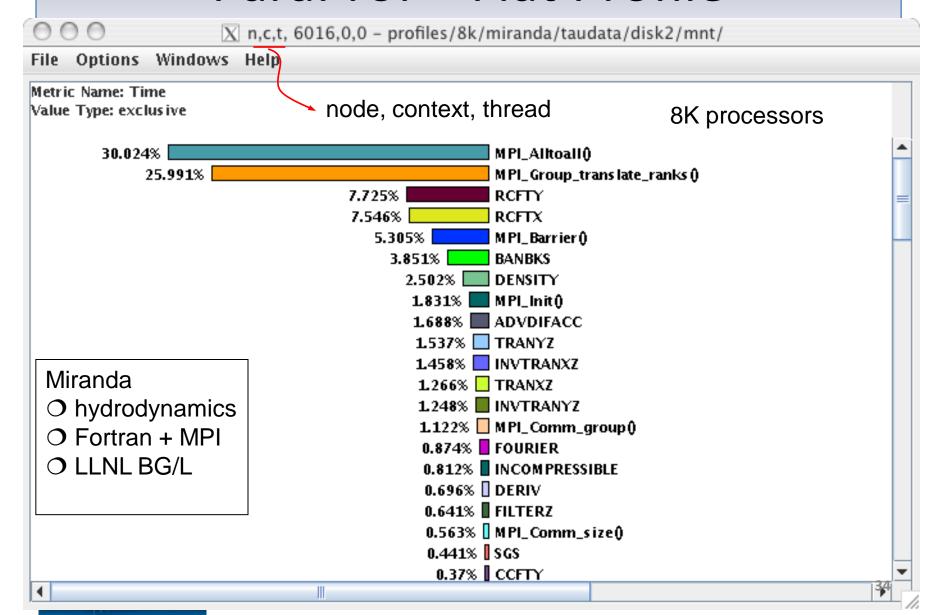
- Component-based analysis process
 - Analysis operations implemented as modules
 - Linked together in analysis process and workflow
- Scripting
 - Provides process/workflow development and automation
- Metadata input, management, and access
- Inference engine
 - Reasoning about causes of performance phenomena
 - Analysis knowledge captured in expert rules
- Persistence of intermediate analysis results
- Provenance
 - Provides historical record of analysis results

PerfExplorer v2 Architecture



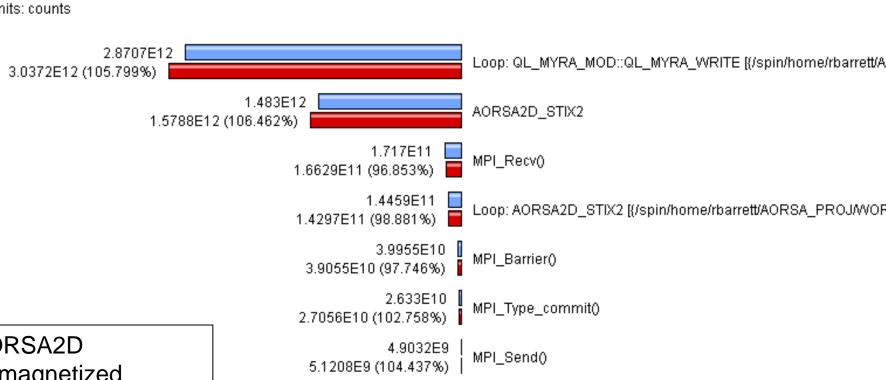
Parallel Profile Analysis – pprof


		Edit Search Des in profile.*	Mule Help			
_	CONTEXT O;THE					
%Time		Inclusive total msec	#Call	#Subrs		
5052294462211110000000000000000000000000000000	3,667 491 6.461	31,031 7,501 6,594 6,590 4,989 400 399 247 131 103 96 95 44 24 15 12 8 3 1 0.837 0.512 0.353 0.191 0.103	1 3 37200 9300 18600 9300 19204 301 9300 604 9300 608 1 1 1 57252 1 1 9 1 608 1 1 1 57252	18600 0 18600 0 602 0 1812 0 4 39 47616 0 2 2 0 7937 0 5 1700 3 0 6 0 4 0 2 2 0 7937 0 5	9157 4217 6065 2611 103096 807 10918 709 8206 400081 399634 247086 96458 10603 44878 40 15630 12335 2893 491 3874 1007 837 512 353	buts MPI_Recv() blts MPI_Send() rhs jacld exchange_3 jacu MPI_Wait() init_comm MPI_Init() setiv exact erhs read_input MPI_Bcast() error MPI_Irecv() MPI_Finalize()


Parallel Profile Analysis – ParaProf

Metadata for Each Experiment

ParaProf – Flat Profile



Comparing Effects of Multi-Core Processors

Metric: PAPI_RES_STL

Value: Exclusive Units: counts

C:\titer.350x350.4096pes.sn.loops.BARRIER.ppk - Mean C:\iter.350x350.2048pes.dc.loops.BARRIER.ppk - Mean

AORSA2D

- O magnetized plasma simulation
- O Blue is single node
- O Red is dual core
- O Cray XT3 (4K cores)

MPI Pack()

MPI_Allreduce()

3.3801E9

2.8833E9

3.3829E9 (100.082%)

4.8216E9 (167.223%)

Comparing FLOPS (AORSA2D, Cray XT3)

1064.333 (100.12%)

644.334 (104.674%)

Loop: AORSA2D STIX2 If/spin/home/rbarrett/AORSA_PROJ/WORK/AORSA2D/src/aorsa2dMain.ft (3712.7)-(3717.12)

Loop: AORSA2D STIX2 [//spin/home/rbarrett/AORSA_PROJ/WORK/AORSA2D/src/aorsa2dMain.f} {3719.7}-{3724.12}]

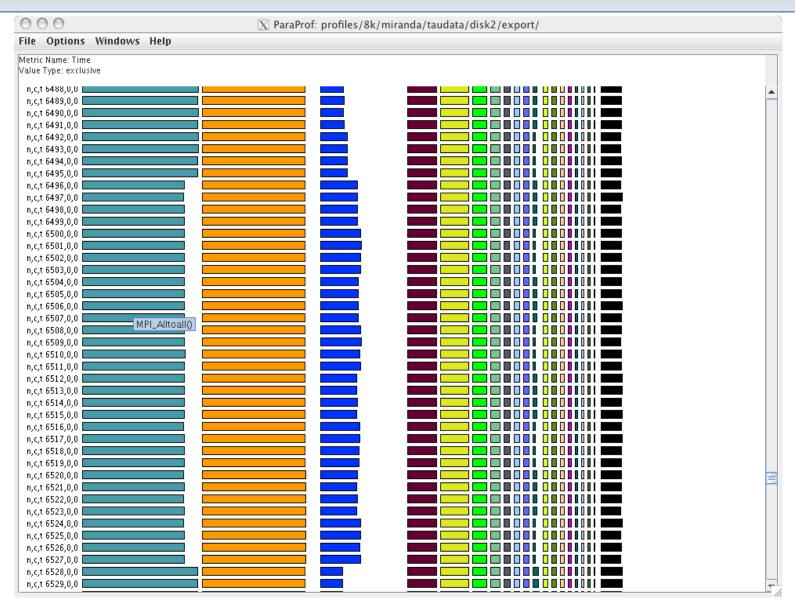
Loop: AORSA2D STIX2 If/spin/home/rbarrett/AORSA_PROJ/WORK/AORSA2D/src/aorsa2dMain.ft (5572.71/5583.12)

659.748 Loop: AORSA2D_STIX2 [{/spin/home/rbarrett/AORSA_PROJ/WORK/AORSA2D/src/aorsa2dMain.f} {3008,7}-{3013,12}]

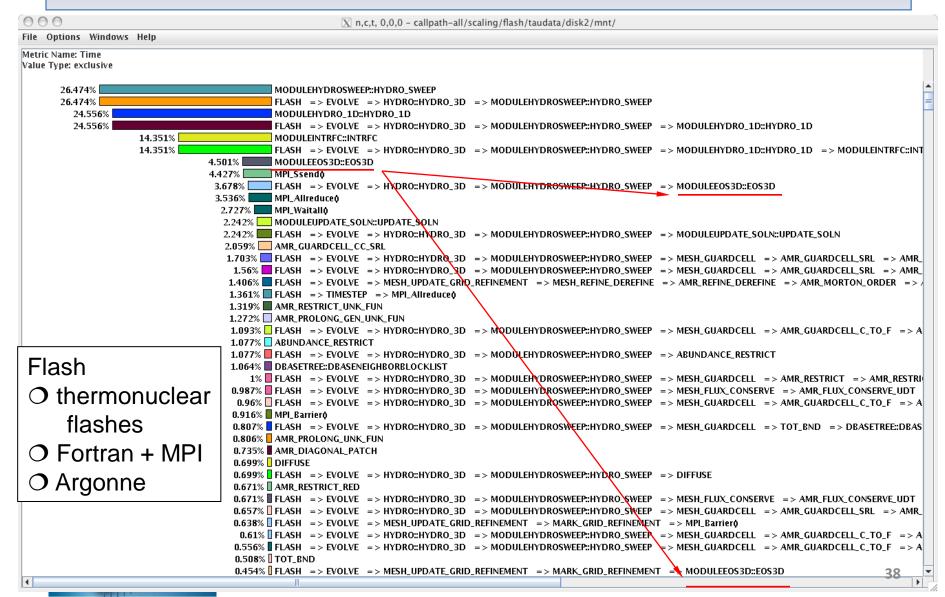
702.5 (107.25%) Loop: QL_MYRA_MOD::QL_MYRA_WRITE [i/spin/home/rbarrett/AORSA_PROJ/WORK/AORSA2D/src/ql_myra.f} (354.7)+(696.12)]

546.969 Loop: AORSA2D_STIX2 [(/spin/home/rbarrett/AORSA_PROJ/WORK/AORSA2D/src/aorsa2dMain.f) {5556,7}-{5567,12}]

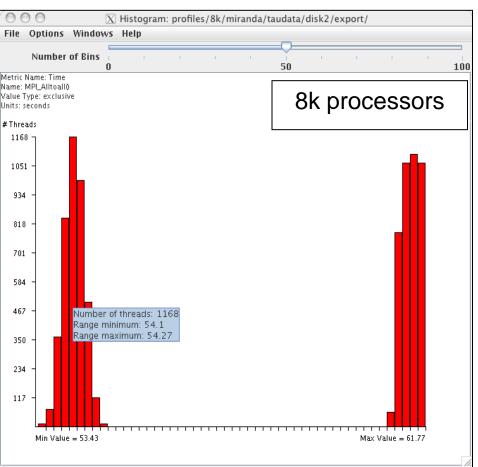
535.918 Loop: AORSA2D_STIX2 [{/spin/home/rbarrett/AORSA_PROJ/WORK/AORSA2D/src/aorsa2dMain.f} {3059,7}-{3096,12}]

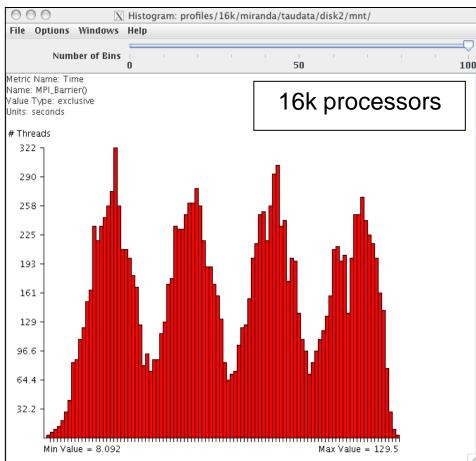

521.226 Loop: AORSA2D_STIX2 [{/spin/home/rbarrett/AORSA_PROJ/WORK/AORSA2D/src/aorsa2dMain.f}-{2435,7}-{2444,12}]

AORSA2D

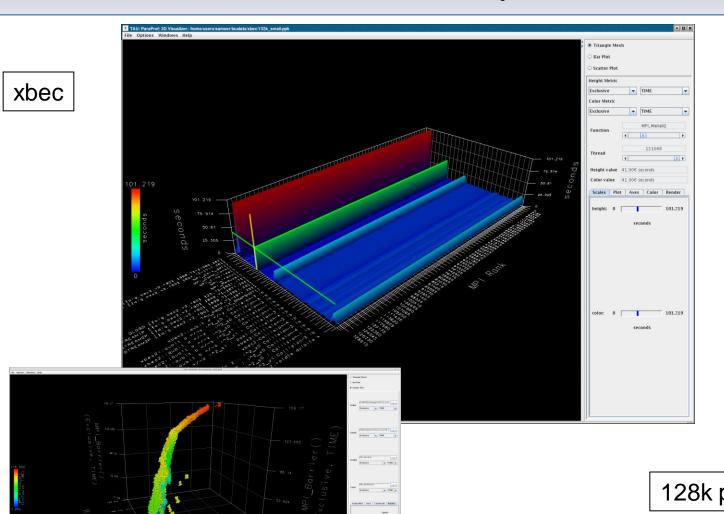

- O Blue is dual core
- Red is single node
- O Cray XT3 (4K cores)
- Data generated by Richard Barrett, ORNL

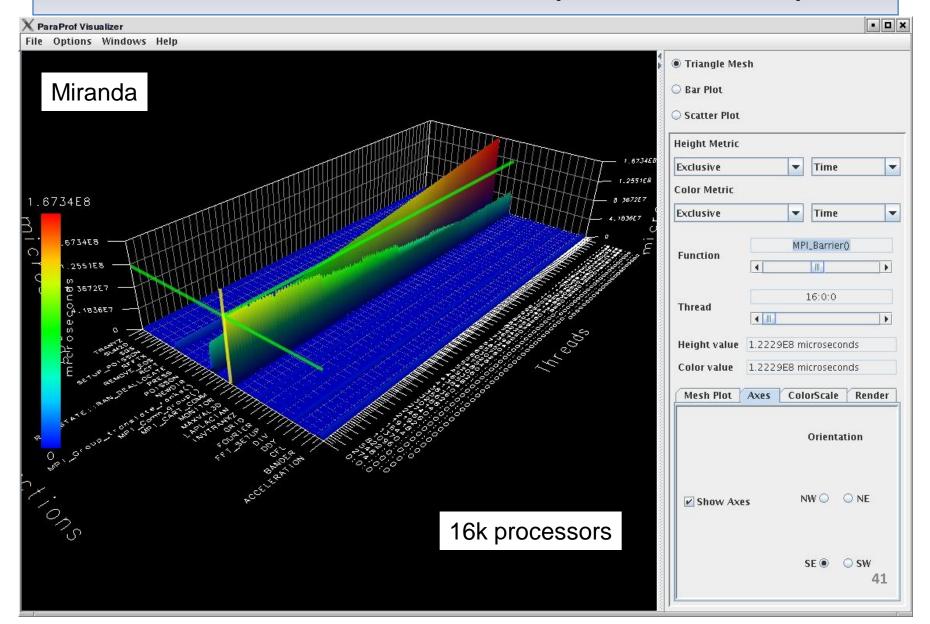
Metric: PAPI_FP_OPS / GET_TIME_OF_DAY 🔲 C:\titer.350x350.2048pes.dc.loops.BARRIER.ppk - Mean


ParaProf – Stacked View

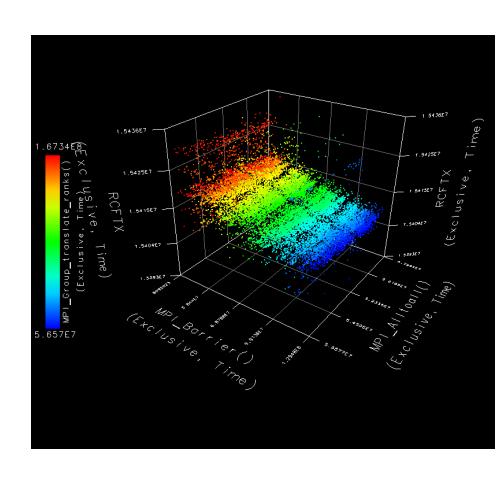


ParaProf – Callpath Profile


ParaProf – Scalable Histogram



ParaProf – 3D View (Full Profile)


128k processors

ParaProf – 3D View (Full Profile)

ParaProf – 3D Scatterplot

- Each point is a "thread" of execution
- A total of four metrics shown in relation
- ParaProf's visualization library
 - JOGL
- Miranda, 32k cores

Performance Mapping

Example: Particles distributed on cube surface

```
Particle* P[MAX]; /* Array of particles */
int GenerateParticles() {
 /* distribute particles over all faces of the cube */
 for (int face=0, last=0; face < 6; face++) {</pre>
    /* particles on this face */
   int particles on this face = num(face);
   for (int i=last; i < particles on this face; i++) {</pre>
      /* particle properties are a function of face */
   P[i] = \dots f(face);
    last+= particles on this face;
```

Performance Mapping

```
int ProcessParticle(Particle *p) {
 /* perform some computation on p */
                                             work
int main() {
                                             packets
 GenerateParticles();
 /* create a list of particles */
                                                engine
 for (int i = 0; i < N; i++)
                                  /* iterates over the list */
   ProcessParticle(P[i]);
```

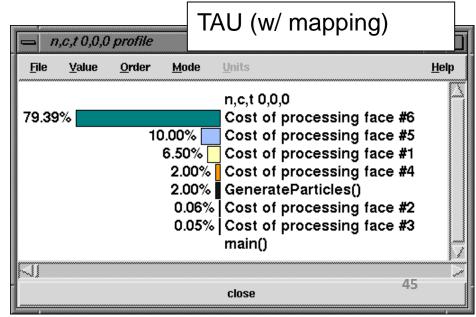
- How much time (flops) spent processing face i particles?
- What is the distribution of performance among faces?

No Mapping versus Mapping

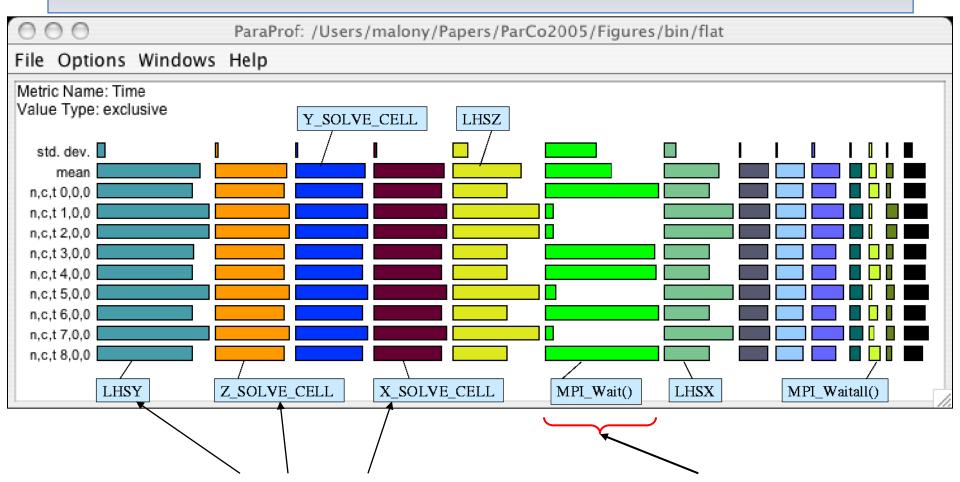
- Typical performance tools report performance with respect to routines
- Does not provide support for mapping

TAU (no mapping)

File Value Order Mode Units Help


n,c,t 0,0,0

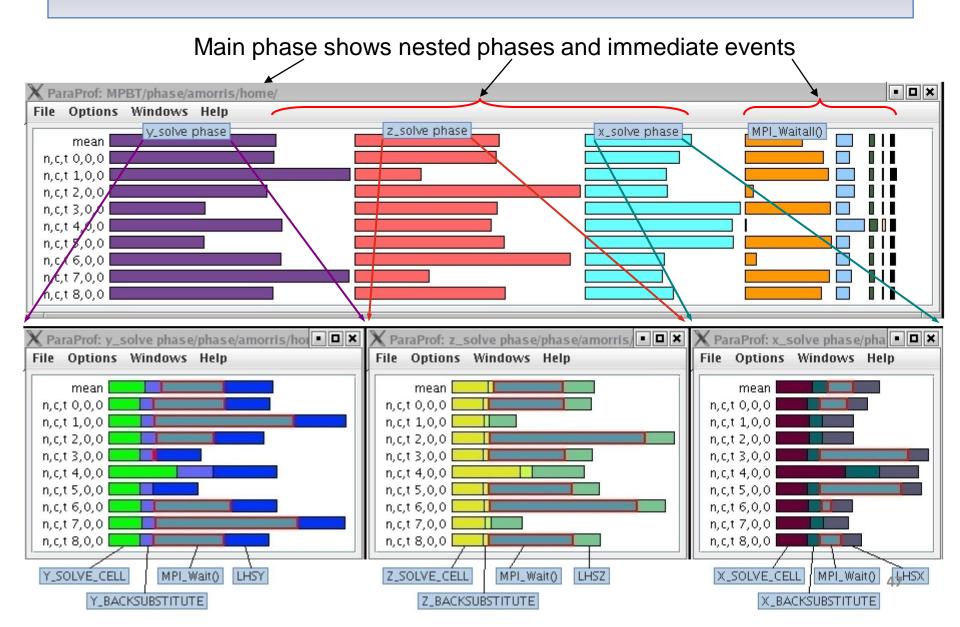
ProcessParticles()


2.00% GenerateParticles()

main()

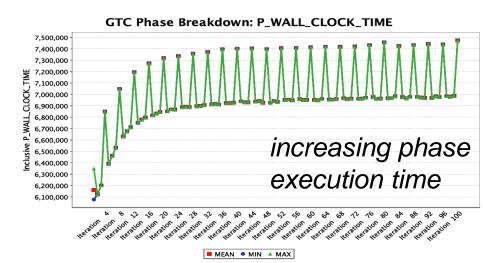
 TAU's performance mapping can observe performance with respect to scientist's programming and problem abstractions

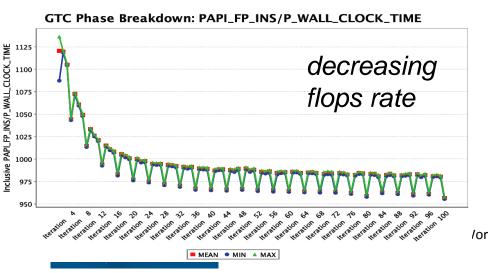
NAS BT – Flat Profile

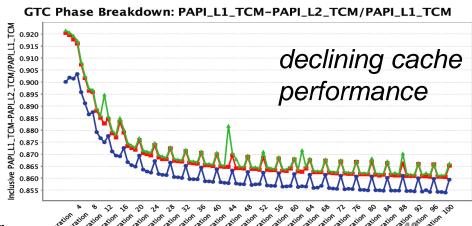


Application routine names reflect phase semantics

VI-HPS

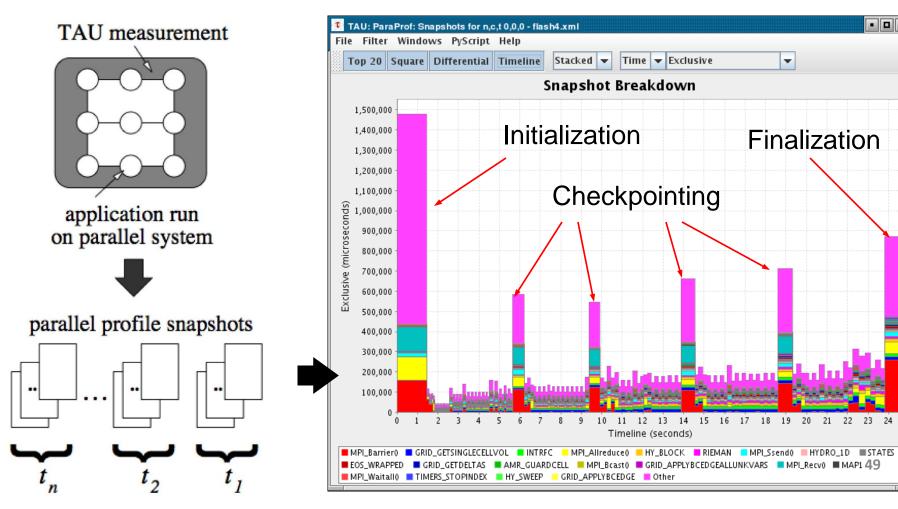

How is MPI_Wait() distributed relative to solver direction?


NAS BT – Phase Profile



Phase Profiling of HW Counters

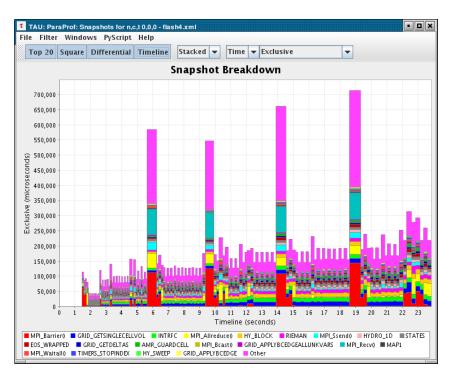
- GTC particle-in-cell simulation of fusion turbulence
- Phases assigned to iterations
- Poor temporal locality for one important data
- Automatically generated by PE2 python script

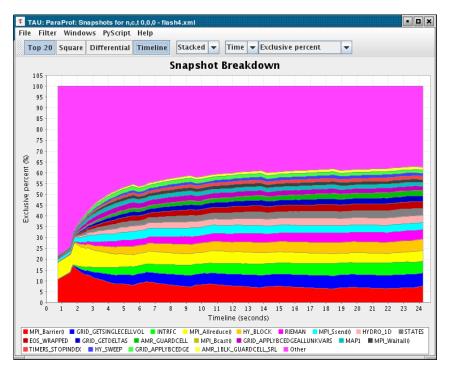


Profile Snapshots in ParaProf

Profile snapshots are parallel profiles recorded at runtime

- 0 ×

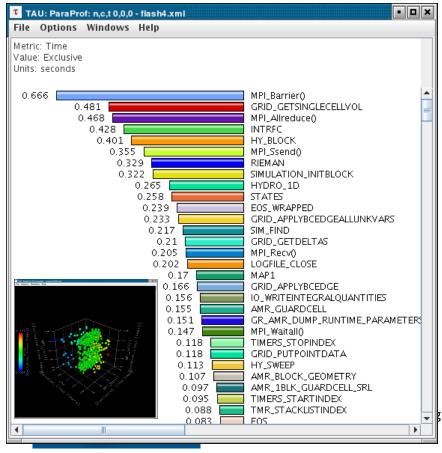

Shows performance profile dynamics (all types allowed)

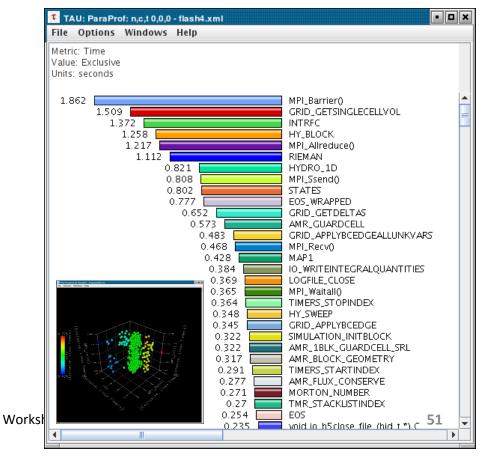


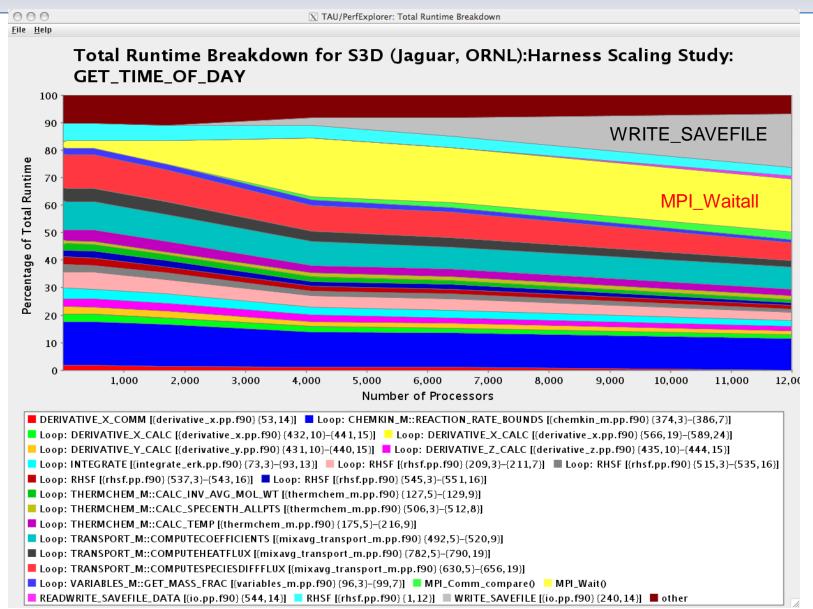
Profile Snapshot Views

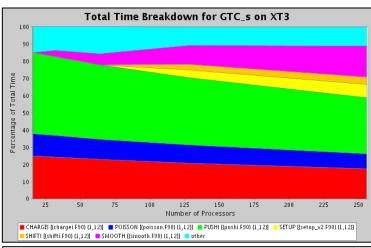
Only show main loop

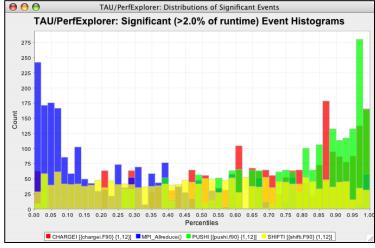
Percentage breakdown



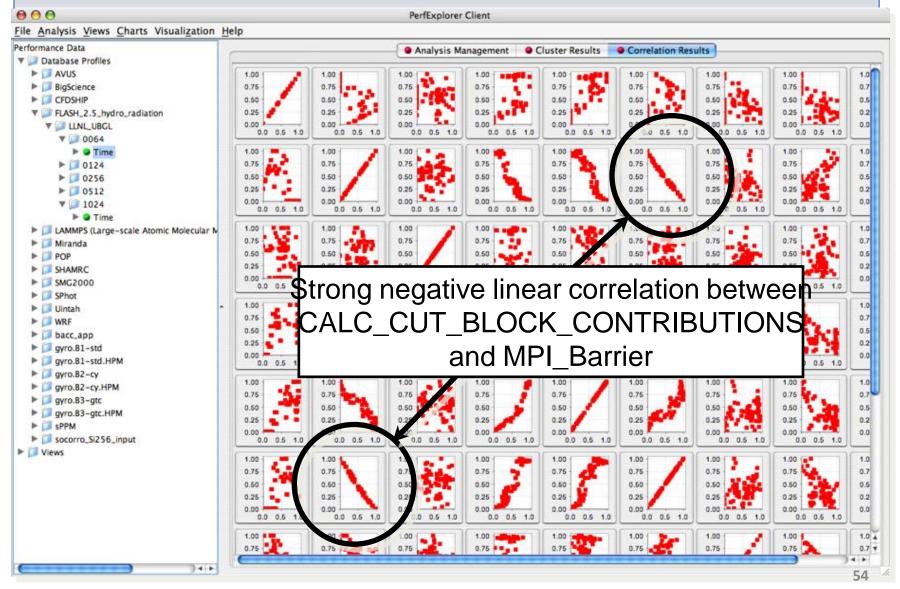

Snapshot Replay in ParaProf

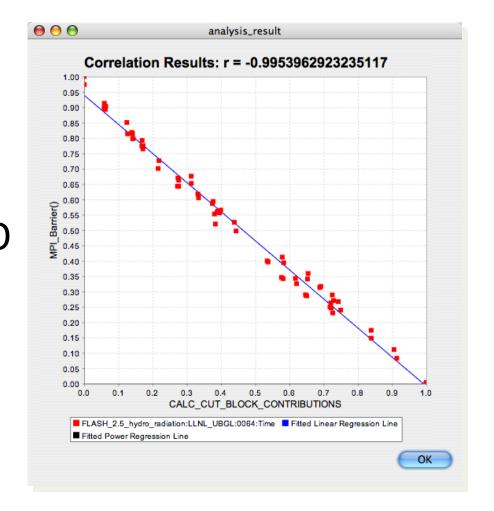

All windows dynamically update



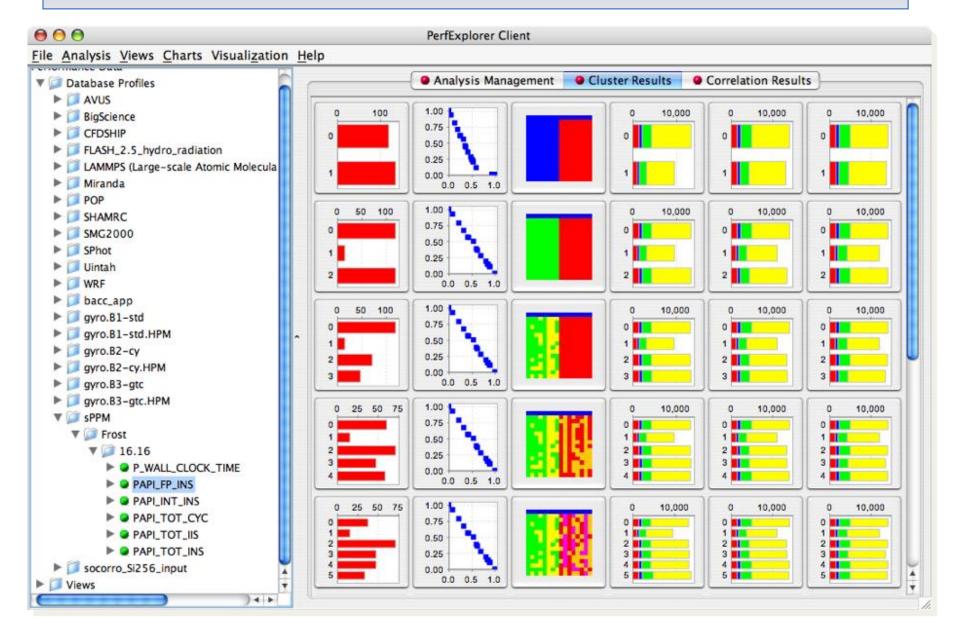

PerfExplorer – Runtime Breakdown

PerfExplorer – Relative Comparisons

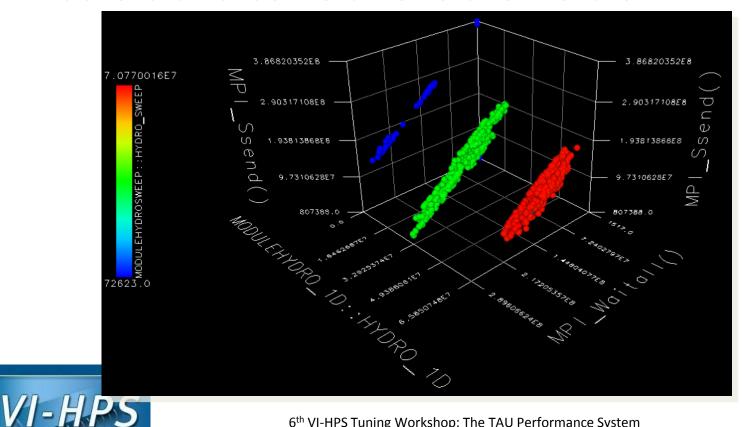

- Total execution time
- Timesteps per second
- Relative efficiency
- Relative efficiency per event
- Relative speedup
- Relative speedup per event
- Group fraction of total
- Runtime breakdown
- Correlate events with total runtime
- Relative efficiency per phase
- Relative speedup per phase
- Distribution visualizations



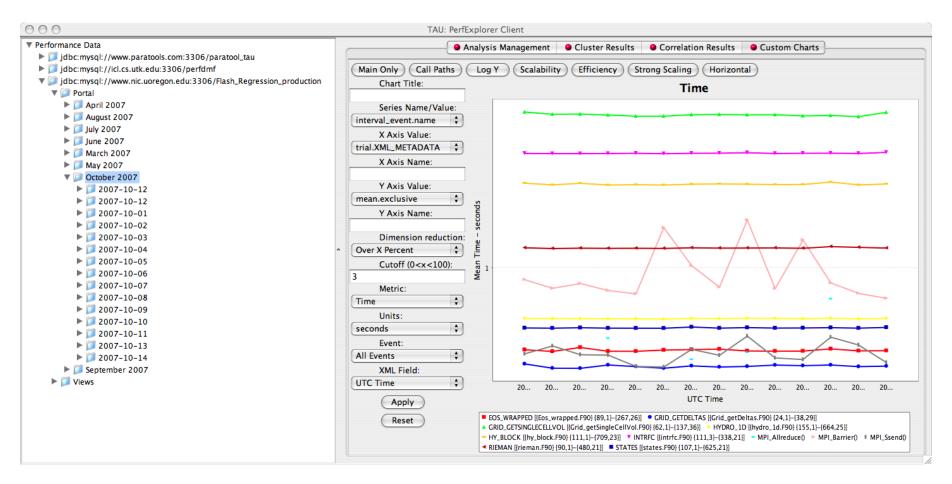
PerfExplorer – Correlation Analysis


PerfExplorer – Correlation Analysis

- -0.995 indicates strong, negative relationship
- As CALC_CUT_ BLOCK_CONTRIBUTIONS() increases in execution time, MPI_Barrier() decreases



PerfExplorer – Cluster Analysis



PerfExplorer – Cluster Analysis

- Four significant events automatically selected
- Clusters and correlations are visible

PerfExplorer – Performance Regression

Other Projects in TAU

- TAU Portal
 - Support collaborative performance study
- Kernel-level system measurements (KTAU)
 - Application to OS noise analysis and I/O system analysis
- TAU performance monitoring
 - TAUoverSupermon and TAUoverMRNet
- PerfExplorer integration and expert-based analysis
 - OpenUH compiler optimizations
 - Computational quality of service in CCA
- Eclipse CDT and PTP integration
- Performance tools integration (NSF POINT project)

Using TAU

- Install TAU
 - % configure [options]; make clean install
- Modify application makefile and choose TAU configuration
 - Select TAU's stub makefile
 - Change name of compiler in makefile
- Set environment variables
 - Directory where profiles/traces are to be stored/counter selection
 - TAU options
- Execute application
 - % mpirun –np procs> a.out;
- Analyze performance data
 - paraprof, vampir, pprof, paraver ...

Application Build Environment

- Minimize impact on user's application build procedures
- Handle parsing, instrumentation, compilation, linking
- Dealing with Makefiles
 - Minimal change to application Makefile
 - Avoid changing compilation rules in application Makefile
 - No explicit inclusion of rules for process stages
- Some applications do not use Makefiles
 - Facilitate integration in whatever procedures used
- Two techniques:
 - TAU shell scripts (tau_<compiler>.sh)
 - Invokes all PDT parser, TAU instrumenter, and compiler
 - TAU_COMPILER

Configuring TAU

- TAU can measure several metrics with profiling and tracing approaches
- Different tools can also be invoked to instrument programs for TAU measurement
- Each configuration of TAU produces a measurement library for an architecture
- Each measurement configuration of TAU also creates a corresponding stub makefile that can be used to compile programs
- Typically configure multiple measurement libraries

TAU Measurement System Configuration

configure [OPTIONS]

- {-c++=<CC>, -cc=<cc>} Specify C++ and C compilers

- -pdt=<dir>- -opari=<dir>Specify location of PDTSpecify location of Opari OpenMP tool

- papi=<dir>Specify location of PAPI

- -vampirtrace=<dir>- -mpi[inc/lib]=<dir>Specify location of VampirTraceSpecify MPI library instrumentation

- dyninst=<dir>Specify location of DynInst Package

- -shmem[inc/lib]=<dir>Specify PSHMEM library instrumentation

- -python[inc/lib]=<dir>Specify Python instrumentation

- -tag=<name>Specify a unique configuration name

- epilog=<dir>Specify location of EPILOG

- -slog2
 - otf=<dir>
 Build SLOG2/Jumpshot tracing package
 Specify location of OTF trace package

- arch=<architecture>Specify architecture explicitly

(bgl, xt3,x86_64,x86_64linux...)

- {-pthread, -sproc}Use pthread or SGI sproc threads

- openmp Use OpenMP threads

- -jdk=<dir>
 Specify Java instrumentation (JDK)

- -fortran=[vendor]Specify Fortran compiler

TAU Measurement System Configuration

- configure [OPTIONS]
 - TRACE Generate binary TAU traces
 - -PROFILE (default) Generate profiles (summary)
 - PROFILECALLPATH Generate call path profiles
 - -PROFILEPHASE Generate phase based profiles
 - PROFILEMEMORY Track heap memory for each routine
 - -PROFILEHEADROOM
 Track memory headroom to grow
 - Use hardware counters + time
 - COMPENSATE Compensate timer overhead
 - -CPUTIME Use usertime+system time
 - -PAPIWALLCLOCK Use PAPI's wallclock time
 - -PAPIVIRTUAL
 Use PAPI's process virtual time
 - -SGITIMERS Use fast IRIX timers
 - -LINUXTIMERS Use fast x86 Linux timers

TAU Configuration – Examples

- Configure using PDT and MPI for x86_64 Linux
 - ./configure -pdt=/usr/pkgs/pkgs/pdtoolkit-3.15
 -mpiinc=/usr/pkgs/mpich/include -mpilib=/usr/pkgs/mpich/lib
 -mpilibrary='-lmpich -L/usr/gm/lib64 -lgm -lpthread -ldl'
- Use PAPI counters (one or more) with C/C++/F90 automatic instrumentation for Cray CNL. Also instrument the MPI library. Use PGI compilers.
 - ./configure -arch=craycnl -papi=/opt/xt-tools/papi/3.6.2 -mpi; make clean install
- Stub makefiles

/usr/pkgs/tau/x86_64/lib/Makefile.tau-mpi-pdt-pgi /usr/pkgs/tau/x86_64/lib/Makefile.tau-mpi-papi-pdt-pgi

Stub Makefiles Configuration Parameters

TAU scripts use stub makefiles to select performance measurements

Variables:

TAU CXX Specify the C++ compiler used by TAU - TAU_CC, TAU_F90 Specify the C, F90 compilers – TAU_DEFS Defines used by TAU (add to CFLAGS) – TAU LDFLAGS Linker options (add to LDFLAGS) Header files include path (add to CFLAGS) TAU INCLUDE – TAU LIBS Statically linked TAU library (add to LIBS) – TAU SHLIBS Dynamically linked TAU library TAU MPI LIBS TAU's MPI wrapper library for C/C++ TAU MPI FLIBS TAU's MPI wrapper library for F90 TAU FORTRANLIBS Must be linked in with C++ linker for F90 – TAU CXXLIBS Must be linked in with F90 linker TAU INCLUDE MEMORY Use TAU's malloc/free wrapper lib

TAU_DISABLE
 TAU's dummy F90 stub library

TAU_COMPILER
 Instrument using tau_compiler.sh script

TAU Measurement Configuration

- % cd /opt/tau-2.19.1/x86_64/lib; ls Makefile.*
 - Makefile.tau-pdt
 - Makefile.tau-mpi-pdt
 - Makefile.tau-mpi-papi-pdt
 - Makefile.tau-mpi-papi-pdt-trace
 - Makefile.tau-pthread-pdt...
- For an MPI+F90 application, you may want to start with:
 - Makefile.tau-mpi-pdt
 - Supports MPI instrumentation & PDT for automatic source instrumentation
- % setenv TAU_MAKEFILE /opt/tau-2.19.1/x86_64/lib/Makefile.tau-mpi-pdt

Using TAU: A brief Introduction

- To instrument source code using PDT
 - Choose an appropriate TAU stub makefile in <arch>/lib:

```
% setenv TAU_MAKEFILE
    /opt/tau-2.19.1/x86_64/lib/Makefile.tau-mpi-pdt
% setenv TAU_OPTIONS '-optVerbose ...' (see tau_compiler.sh)
And use tau_f90.sh, tau_cxx.sh or tau_cc.sh as Fortran, C++ or C compilers:
% mpif90 foo.f90
changes to
% tau_f90.sh foo.f90
```

Execute application and analyze performance data:

```
% pprof (for text based profile display)% paraprof (for GUI)
```


TAU Measurement Configuration – Examples

% cd /usr/local/packages/tau-2.19.1/i386_linux/lib; ls Makefile.* on LiveDVD

Makefile.tau-pdt

Makefile.tau-mpi-pdt

Makefile.tau-papi-mpi-pdt

Makefile.tau-vampirtrace-papi-mpi-pdt

Makefile.tau-scalasca-papi-mpi-pdt

Makefile.tau-pthread-pdt

Makefile.tau-pthread-mpi-pdt

Makefile.tau-openmp-opari-pdt

Makefile.tau-openmp-opari-mpi-pdt

Makefile.tau-papi-openmp-opari-mpi-pdt

• • •

For an MPI+F90 application, you may want to start with:

Makefile.tau-mpi-pdt

- Supports MPI instrumentation & PDT for automatic source instrumentation
- % setenv TAU_MAKEFILE /usr/local/packages/tau-2.19.1/i386_linux/lib/Makefile.tau-mpi-pdt

-PROFILE Option

- Generates flat profiles
 - One for each MPI process
 - It is the default option.
- Uses wallclock time
 - gettimeofday() sys call
- Calculates exclusive, inclusive time spent in each timer and number of calls

Generating a Flat Profile with MPI

```
% setenv TAU MAKEFILE /opt/tau-2.19.1/x86 64
                  /lib/Makefile.tau-mpi-pdt
% set path=(/opt/tau-2.19.1/x86 64/bin $path)
% make F90=tau f90.sh
(Or edit Makefile and change F90=tau f90.sh)
% qsub run.job
% paraprof --pack app.ppk
 Move the app.ppk file to your desktop.
% paraprof app.ppk
```


Generating a Loop-level Profile

```
% setenv TAU MAKEFILE /opt/tau-2.19.1/x86 64
                      /lib/Makefile.tau-mpi-pdt
% setenv TAU OPTIONS '-optTauSelectFile=select.tau -optVerbose'
% cat select.tau
 BEGIN INSTRUMENT SECTION
 loops routine="#"
 END INSTRUMENT SECTION
% set path=(/opt/tau-2.19.1/x86 64/bin $path)
% make F90=tau f90.sh
(Or edit Makefile and change F90=tau f90.sh)
% qsub run.job
% paraprof --pack app.ppk
 Move the app.ppk file to your desktop.
% paraprof app.ppk
```


Compiler-based Instrumentation

-papi Option

- Instead of one metric, profile or trace with more than one metric
 - Set environment variable TAU_METRICS to specify the metric
 - % setenv TAU_METRICS TIME:PAPI_FP_INS:PAPI_L1_DCM...
 - % setenv TAU_METRICS TIME:PAPI_NATIVE_<native_event>...
- When used with tracing (TAU_TRACE=1) option, the first counter must be TIME
 - % setenv TAU_METRICS TIME:PAPI_FP_INS...
 - Provides a globally synchronized real time clock for tracing
- -papi appears in the name of the stub Makefile
- papi_avail, papi_event_chooser, and papi_native_avail are useful tools

Generate a PAPI profile

```
% setenv TAU MAKEFILE /opt/tau-2.19.1/x86 64
                          /lib/Makefile.tau-papi-mpi-pdt
% setenv TAU OPTIONS '-optTauSelectFile=select.tau -optVerbose'
% cat select.tau
 BEGIN INSTRUMENT SECTION
  loops routine="#"
 END INSTRUMENT SECTION
% set path=(/opt/tau-2.19.1/x86 64/bin $path)
% make F90=tau f90.sh
(Or edit Makefile and change F90=tau f90.sh)
% setenv TAU METRICS TIME:PAPI FP INS
% qsub run.job
% paraprof --pack app.ppk
 Move the app.ppk file to your desktop.
% paraprof app.ppk
 Choose Options -> Show Derived Panel -> Click PAPI FP INS, Click / , Click
    TIME, Apply, choose the metric
```


-PROFILECALLPATH Option

- Generates profiles that show the calling order (edges and nodes in callgraph)
 - A=>B=>C shows the time spent in C when it was called by B and B was called by A
 - Control the depth of callpath using TAU_CALLPATH_DEPTH environment variable
 - callpath in the name of the stub Makefile name or setting TAU_CALLPATH= 1 at runtime (TAU v2.18.1+)

-DEPTHLIMIT Option

- Allows users to enable instrumentation at runtime based on the depth of a calling routine on a callstack
 - Disables instrumentation in all routines a certain depth away from the root in a callgraph
- TAU_DEPTH_LIMIT environment variable specifies depth
 - % setenv TAU_DEPTH_LIMIT 1
 - enables instrumentation in only "main"
 - % setenv TAU_DEPTH_LIMIT 2
 - enables instrumentation in main and routines that are directly called by main
- Stub makefile has -depthlimit in its name:
 - setenv TAU_MAKEFILE <taudir>/<arch>/lib/Makefile.tau-mpi-depthlimit-pdt

Generate a Callpath Profile

```
% setenv TAU MAKEFILE /opt/tau-2.19.1/x86 64
                      /lib/Makefile.tau-mpi-pdt
% set path=(/opt/tau-2.19.1/x86 64/bin $path)
% make F90=tau f90.sh
(Or edit Makefile and change F90=tau f90.sh)
% setenv TAU CALLPATH 1
% setenv TAU CALLPATH DEPTH 100
to generate the callpath profiles without any recompilation.
% qsub run.job
% paraprof --pack app.ppk
 Move the app.ppk file to your desktop.
% paraprof app.ppk
(Windows -> Thread -> Call Graph)
```


Tracing in TAU

- Generates event-trace logs, rather than summary profiles
 - setenv TAU_TRACE 1
- Traces show when and where an event occurred in terms of location and the process that executed it
- Traces from multiple processes are merged:
 - % tau_treemerge.pl
 - generates tau.trc and tau.edf as merged trace and event definition file
- TAU traces can be converted to Vampir's OTF/VTF3, Jumpshot SLOG2, Paraver trace formats:
 - % tau2otf tau.trc tau.edf app.otf
 - % tau2vtf tau.trc tau.edf app.vpt.gz
 - % tau2slog2 tau.trc tau.edf -o app.slog2
 - % tau_convert -paraver tau.trc tau.edf app.prv

Generate a Trace File

```
% setenv TAU MAKEFILE /opt/tau-2.19.1/x86 64
               /lib/Makefile.tau-mpi-pdt
% set path=(/opt/tau-2.19.1/x86 64/bin $path)
% make F90=tau f90.sh
(Or edit Makefile and change F90=tau f90.sh)
% setenv TAU TRACE 1
% qsub run.job
% tau treemerge.pl
(merges binary traces to create tau.trc and tau.edf files)
JUMPSHOT:
% tau2slog2 tau.trc tau.edf -o app.slog2
% jumpshot app.slog2
   OR
VAMPTR .
% tau2otf tau.trc tau.edf app.otf -n 4 -z
(4 streams, compressed output trace)
% vampir app.otf
(or vng client with vngd server)
```


Instrumentation Specification

```
% tau instrumentor
Usage : tau instrumentor <pdbfile> <sourcefile> [-o <outputfile>] [-noinline]
[-g groupname] [-i headerfile] [-c|-c++|-fortran] [-f <instr req file> ]
For selective instrumentation, use -f option
% tau instrumentor foo.pdb foo.cpp -o foo.inst.cpp -f selective.dat
% cat selective.dat
# Selective instrumentation: Specify an exclude/include list of routines/files.
BEGIN EXCLUDE LIST
void quicksort(int *, int, int)
void sort 5elements(int *)
void interchange(int *, int *)
END EXCLUDE LIST
BEGIN FILE INCLUDE LIST
Main.cpp
Foo?.c
*.C
END FILE INCLUDE LIST
# Instruments routines in Main.cpp, Foo?.c and *.C files only
# Use BEGIN [FILE] INCLUDE LIST with END [FILE] INCLUDE LIST
```


Outer Loop Level Instrumentation

```
BEGIN INSTRUMENT SECTION
loops file="loop test.cpp" routine="multiply"
# it also understands # as the wildcard in routine name
# and * and ? wildcards in file name.
# You can also specify the full
# name of the routine as is found in profile files.
#loops file="loop test.cpp" routine="double multiply#"
END INSTRUMENT SECTION
% pprof
NODE 0; CONTEXT 0; THREAD 0:
%Time Exclusive Inclusive #Call #Subrs Inclusive Name
            msec total msec
                                                  usec/call
100.0 0.12 25,162 1 1 25162827 int main(int, char **)
100.0 0.175 25,162 1 4 25162707 double multiply()
90.5 22,778 22,778
                                                0 22778959 Loop: double multiply()[
file = \langle loop test.cpp \rangle line, col = \langle 23,3 \rangle to \langle 30,3 \rangle ]
 9.3 2,345 2,345
                                                0 2345823 Loop: double multiply()[
file = \langle loop test.cpp \rangle line, col = \langle 38,3 \rangle to \langle 46,7 \rangle ]
                                                 33964 Loop: double
 0.1
              33 33
multiply()[file = <loop test.cpp> line,col = <16,10> to <21,12> ]
```

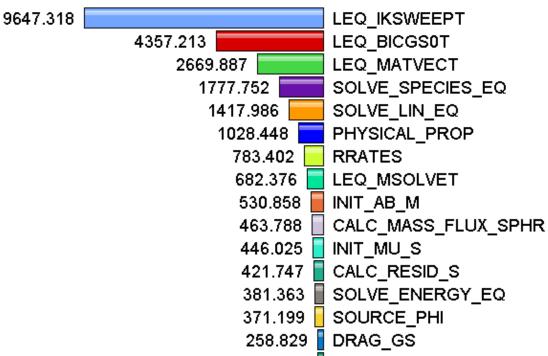

Using TAU: A brief Introduction

- To instrument source code using PDT
 - Choose an appropriate TAU stub makefile in <arch>/lib:

```
% setenv TAU_MAKEFILE
    /opt/tau-2.19.1/x86_64/lib/Makefile.tau-mpi-pdt
% setenv TAU_OPTIONS '-optVerbose ...' (see tau_compiler.sh)
And use tau_f90.sh, tau_cxx.sh or tau_cc.sh as Fortran, C++ or C compilers:
% mpif90 foo.f90
changes to
% tau_f90.sh foo.f90
```

Execute application and analyze performance data:

```
% pprof (for text based profile display)% paraprof (for GUI)
```



Usage Scenarios: Routine Level Profile

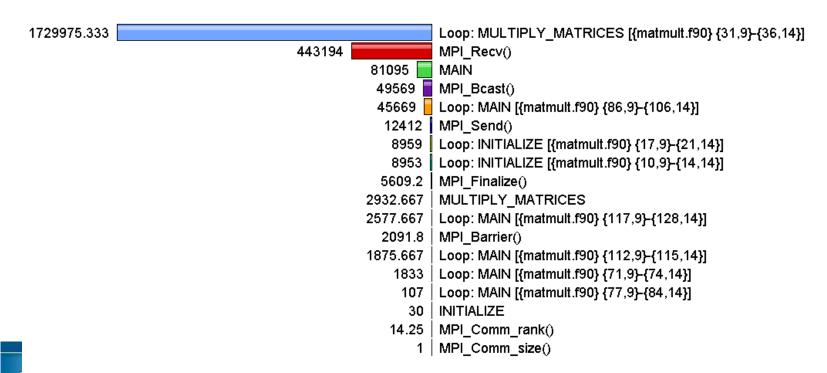
Goal: What routines account for the most time? How much?

Metric: P_VIRTUAL_TIME

Value: Exclusive Units: seconds

Solution: Generating a flat profile with MPI

```
% setenv TAU MAKEFILE /opt/tau-2.19.1/x86 64
                              /lib/Makefile.tau-mpi-pdt
% set path=(/opt/tau-2.19.1/x86 64/bin $path)
Or
% module load tau
% make F90=tau f90.sh
Or
% tau f90.sh matmult.f90 -o matmult
(Or edit Makefile and change F90=tau f90.sh)
% qsub run.job
% paraprof
To view. To view the data locally on the workstation,
% paraprof --pack app.ppk
 Move the app.ppk file to your desktop.
% paraprof app.ppk
```



Usage Scenarios: Loop Level Instrumentation

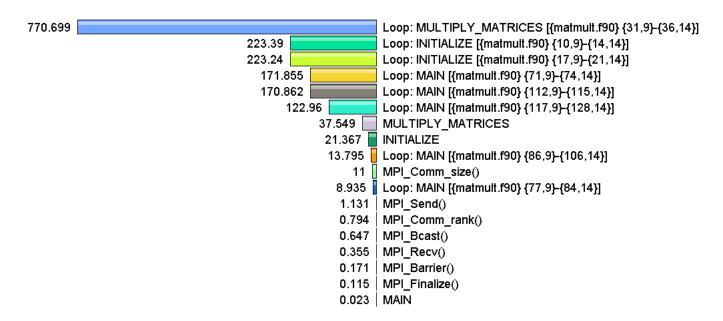
- Goal: What loops account for the most time? How much?
- Flat profile with wallclock time with loop instrumentation:

Metric: GET_TIME_OF_DAY

Value: Exclusive Units: microseconds

Solution: Generating a loop level profile

```
% setenv TAU MAKEFILE /opt/tau-2.19.1/x86 64
                              /lib/Makefile.tau-mpi-pdt
% setenv TAU OPTIONS '-optTauSelectFile=select.tau -optVerbose'
% cat select.tau
 BEGIN INSTRUMENT SECTION
  loops routine="#"
 END INSTRUMENT SECTION
% module load tau
% make F90=tau f90.sh
(Or edit Makefile and change F90=tau f90.sh)
% qsub run.job
% paraprof --pack app.ppk
 Move the app.ppk file to your desktop.
% paraprof app.ppk
```

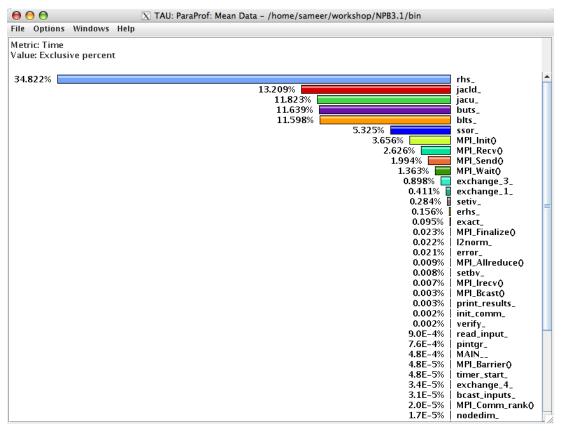


Usage Scenarios: MFlops in Loops

- Goal: What execution rate do my application loops get in mflops?
- Flat profile with PAPI_FP_INS/OPS and time (-papi) with loop instrumentation:

Metric: PAPI_FP_INS / GET_TIME_OF_DAY

Value: Exclusive

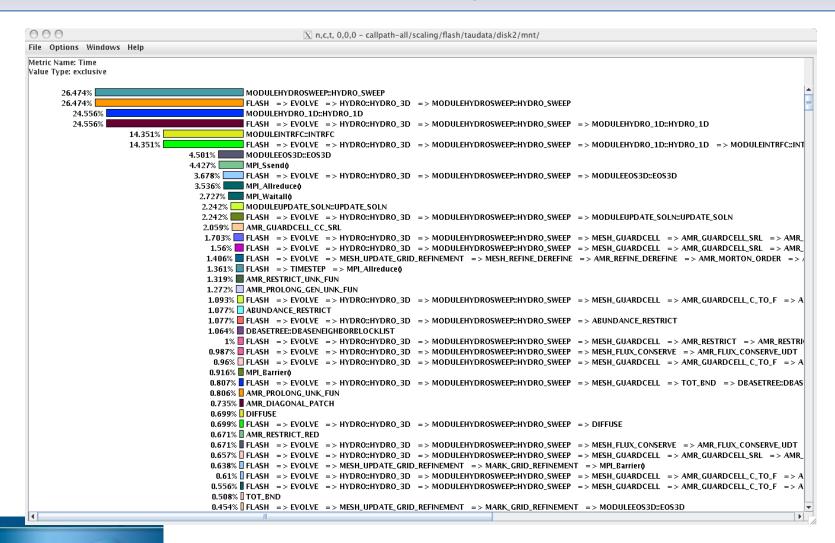
Units: Derived metric shown in microseconds format


Generate a PAPI profile with 2 or more counters

```
% setenv TAU MAKEFILE /opt/tau-2.19.1/x86 64
               /lib/Makefile.tau-papi-mpi-pdt
% setenv TAU OPTIONS '-optTauSelectFile=select.tau -optVerbose'
% cat select.tau
 BEGIN INSTRUMENT SECTION
 loops routine="#"
 END INSTRUMENT SECTION
% make F90=tau f90.sh
(Or edit Makefile and change F90=tau f90.sh)
% setenv TAU METRICS TIME:PAPI FP INS
% qsub run.job
% paraprof --pack app.ppk
 Move the app.ppk file to your desktop.
% paraprof app.ppk
 Choose Options -> Show Derived Panel -> Arg 1 = PAPI FP INS,
Arg 2 = GET TIME OF DAY, Operation = Divide -> Apply, choose.
```

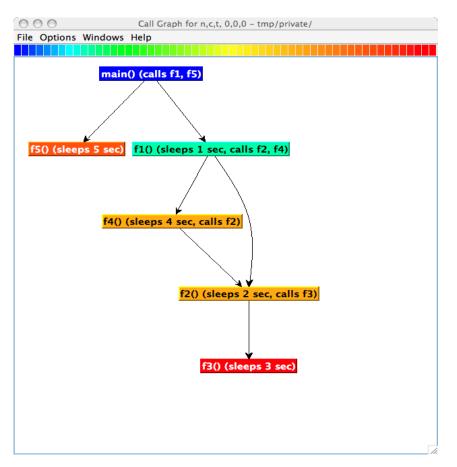

Usage Scenarios: Compiler-based Instrumentation

Goal: Easily generate routine level performance data using the compiler instead of PDT for parsing the source code



Use Compiler-Based Instrumentation

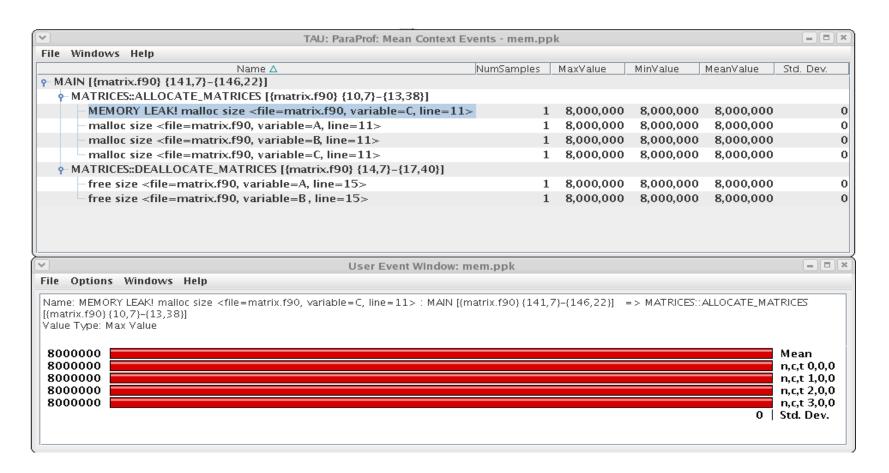
Generate a Callpath Profile



VI-HPS

Callpath Profile

Generates program callgraph



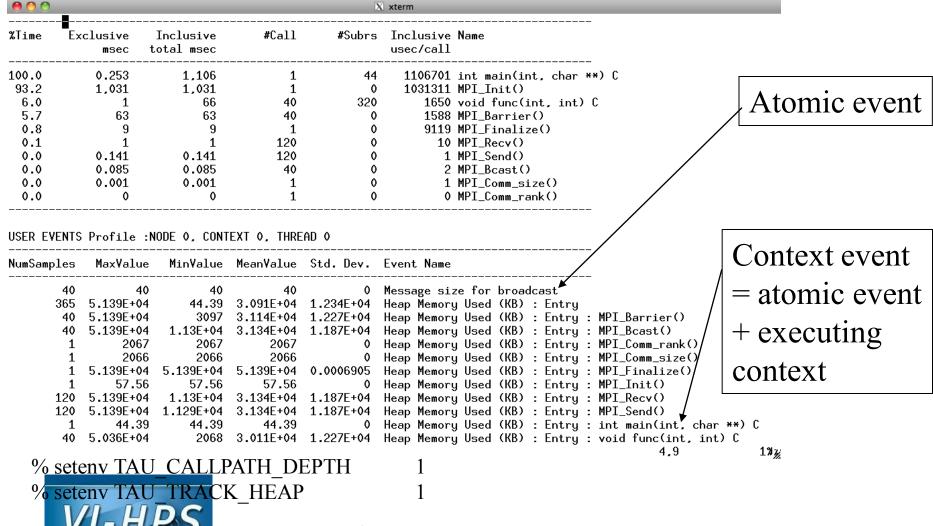
Generate a Callpath Profile

```
% setenv TAU MAKEFILE /opt/tau-2.19.1/x86 64
               /lib/Makefile.tau-mpi-pdt
% set path=(/opt/tau-2.19.1/x86 64/bin $path)
% make F90=tau f90.sh
(Or edit Makefile and change F90=tau f90.sh)
% setenv TAU CALLPATH 1
% setenv TAU CALLPATH DEPTH 100
% qsub run.job
% paraprof --pack app.ppk
 Move the app.ppk file to your desktop.
% paraprof app.ppk
(Windows -> Thread -> Call Graph)
```


Usage Scenario: Detect Memory Leaks

Detect Memory Leaks

```
% setenv TAU MAKEFILE /opt/tau-2.19.1/x86 64
        /lib/Makefile.tau-mpi-pdt
% setenv TAU OPTIONS '-optDetectMemoryLeaks -optVerbose'
% module load tau
% make F90=tau f90.sh
(Or edit Makefile and change F90=tau f90.sh)
% setenv TAU CALLPATH DEPTH 100
% qsub run.job
% paraprof --pack app.ppk
  Move the app.ppk file to your desktop.
% paraprof app.ppk
(Windows -> Thread -> Context Event Window -> Select thread ->
    select... expand tree)
(Windows -> Thread -> User Event Bar Chart -> right click LEAK
-> Show User Event Bar Chart)
NOTE: setenv TAU TRACK HEAP 1 and setenv TAU TRACK HEADROOM 1 may be used to track
heap and headroom utilization at the entry and exit of each routine.
TAU CALLPATH DEPTH=1 shows just the routine name, and 0 shows just one event for the
entire program.
```



Interval Events, Atomic Events in TAU

NODE 0;CON	ODE O;CONTEXT O;THREAD O:						
%Time E	xclusive msec	Inclusive total msec	#Call	#Subrs	Inclusive Name usec/call		
100.0 93.2 5.9 4.6 1.2 0.8 0.0 0.0 0.0	0.187 1.030 0.879 51 13 9 0.137 0.086 0.002 0.001	1,105 1,030 65 51 13 9 0.137 0.086 0.002 0.001	1 40 40 120 1 120 40 1	44 0 320 0 0 0 0 0	1030654 MPI_Init()		
		:NODE 0, CONT			Atomic ever		
365 365 40	5.138E+0 5.138E+0	4 2064	3.09E+04	1.234E+04 1.21E+04	Heap Memory Used (KB): Entry (trigger with		

% setenv TAU_CALLPATH_DEPTH 0 % setenv TAU_TRACK_HEAP 1

Atomic Events, Context Events

Context Events (default)

000						X xterm			
NODE O:CONTEXT O:THREAD O:									
~ %Time	Exclusive msec	Inclusive total msec	#Call	#Subrs	Inclusive usec/call				
100.0 92.6 6.7 0.7 0.1 0.1 0.0 0.0	0.357 1.031 72 8 1 0.608 0.136 0.095 0.001	1.114 1.031 74 8 1 0.608 0.136 0.095 0.001	1 1 40 1 120 40 120 40 11	44 0 320 0 0 0 0 0 0	1031066 1865 8002 12 15 1 2	int main(int, char MPI_Init() void func(int, int) MPI_Finalize() MPI_Recv() MPI_Barrier() MPI_Send() MPI_Bcast() MPI_Comm_size() MPI_Comm_rank()			
USER EVEN	USER EVENTS Profile :NODE 0. CONTEXT 0. THREAD 0								
NumSample	s MaxValue	e MinValue	MeanValue	Std. Dev.	Event Name				
4 4	5 5.139E+04 1 44.33 1 2068 1 2068 1 5.139E+04 1 57.58 0 5.036E+04 0 5.139E+04	44.39 2068 2066 5.139E+04 57.58 2069 3098 1.13E+04	44.39 2068 2066 5.139E+04 57.58 3.011E+04 3.114E+04 3.134E+04	0 0 0 0 0 1.228E+04 1.227E+04 1.187E+04	Heap Memori Heap Memori Heap Memori Heap Memori Heap Memori Heap Memori Heap Memori	y Used (KB) : Entry	<pre>int main(int, char **) C int main(int, char **) C => MPI_Comm_rank() int main(int, char **) C => MPI_Comm_size() int main(int, char **) C => MPI_Finalize() int main(int, char **) C => MPI_Init() int main(int, char **) C => void func(int, int) C void func(int, int) C => MPI_Barrier() void func(int, int) C => MPI_Bcast()</pre>		
12 12 36		1.13E+04	3.134E+04	1.187E+04	Heap Memor	y Used (KB) : Entry y Used (KB) : Entry y Used (KB) : Exit	void func(int, int) C => MPI_Recv() void func(int, int) C => MPI_Send() 3.7 Context event = atomic event		
	% seten	v TAU_	_CALL	PATH_	DEPT	Н 2	+ executing		

% setenv TAU_TRACK_HEAP

VI-HPS

context

Using tau_exec

```
X xterm
> cd ~/workshop-point/matmult
> mpif90 matmult.f90 -o matmult
> mpirun -np 4 ./matmult
> # To use tau_exec to measure the I/O and memory usage:
> mpirun -np 4 tau_exec -io -memory ./matmult
> # To measure memory leaks and get complete callpaths
> seteny TAU TRACK MEMORY LEAKS 1
> setenv TAU_CALLPATH_DEPTH 100
> mpirun -np 4 tau_exec -io -memory ./matmult
> paraprof
> # Right click on a given rank (e.g. "node 2") and choose "Show Context Event
> # Window" and expand the ".TAU Application" node to see the callpath
> # To use a different configuration (e.g., Makefile.tau-papi-mpi-pdt)
> seteny TAU METRICS TIME:PAPI FP INS:PAPI L1 DCM
> mpirun -np 4 tau_exec -io -memory -T papi,mpi,pdt ./matmult
> # Using tau_exec with DyninstAPI:
> tau_run matmult -o matmult.i
> mpirun -np 4 tau_exec -io -memory ./matmult.i
> tau_run -XrunTAUsh-papi-mpi-pdt matmult -o matmult.i
> mpirun -np 4 tau_exec -io -memory -T papi,mpi,pdt ./matmult.i
> paraprof
```


Environment Variables in TAU

Environment Variable	Default	Description	
TAU_TRACE	0	Setting to 1 turns on tracing	
TAU_CALLPATH	0	Setting to 1 turns on callpath profiling	
TAU_TRACK_HEAP or TAU_TRACK_HEADROOM	0	Setting to 1 turns on tracking heap memory/headroom at routine entry & exit using context events (e.g., Heap at Entry: main=>foo=>bar)	
TAU_CALLPATH_DEPTH	2	Specifies depth of callpath. Setting to 0 generates no callpath or routine information, setting to 1 generates flat profile and context events have just parent information (e.g., Heap Entry: foo)	
TAU_SYNCHRONIZE_CLOCKS	1	Synchronize clocks across nodes to correct timestamps in traces	
TAU_COMM_MATRIX	0	Setting to 1 generates communication matrix display using context events	
TAU_THROTTLE	1	Setting to 0 turns off throttling. Enabled by default to remove instrumentation in lightweight routines that are called frequently	
TAU_THROTTLE_NUMCALLS	100000	Specifies the number of calls before testing for throttling	
TAU_THROTTLE_PERCALL	10	Specifies value in microseconds. Throttle a routine if it is called over 100000 times and takes less than 10 usec of inclusive time per call	
TAU_COMPENSATE	0	Setting to 1 enables runtime compensation of instrumentation overhead	
TAU_PROFILE_FORMAT	Profile	Setting to "merged" generates a single file. "snapshot" generates xml format	
TAU_METRICS	TIME	Setting to a comma separted list generates other metrics. (e.g., TIME:linuxtimers:PAPI_FP_OPS:PAPI_NATIVE_ <event>)</event>	

Compile-Time Environment Variables

• Optional parameters for TAU OPTIONS: [tau compiler.sh -help]

-optVerbose-optCompInstTurn on verbose debugging messages-optComplistUse compiler based instrumentation

-optDetectMemoryLeaks Turn on debugging memory allocations/de-allocations to track leaks

-optKeepFiles-optPreProcessPreprocess Fortran sources before instrumentation

-optTauSelectFile="" Specify selective instrumentation file for tau_instrumentor

-optLinking="" Options passed to the linker. Typically

\$(TAU_MPI_FLIBS) \$(TAU_LIBS) \$(TAU_CXXLIBS)

-optCompile="" Options passed to the compiler. Typically

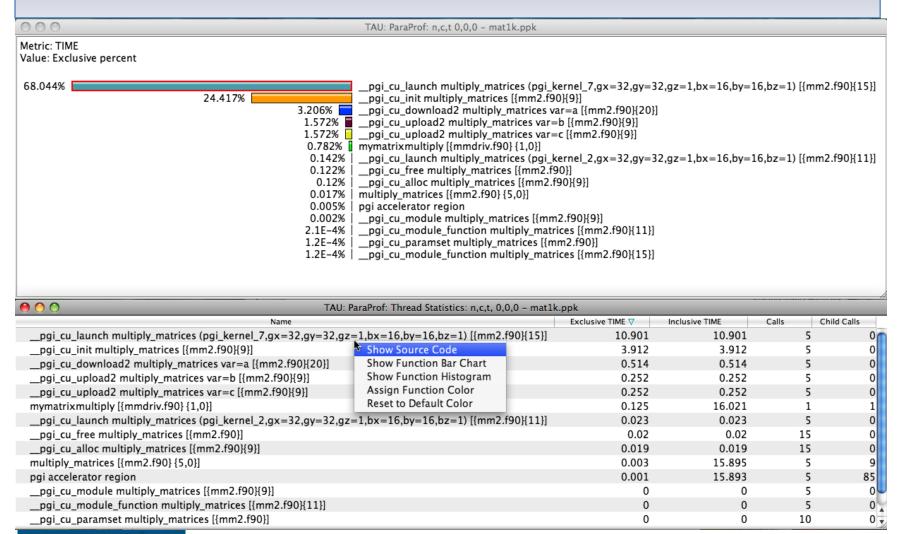
\$(TAU_MPI_INCLUDE) \$(TAU_INCLUDE) \$(TAU_DEFS)

-optTauSelectFile="" Specify selective instrumentation file for tau_instrumentor

-optNoComplnst Do not revert to compiler-based instrumentation if source instrumentation fails

-optPdtF95Opts="" Add options for Fortran parser in PDT (f95parse/gfparse)
-optPdtF95Reset="" Reset options for Fortran parser in PDT (f95parse/gfparse)

-optPdtCOpts="" Options for C parser in PDT (cparse). Typically


\$(TAU_MPI_INCLUDE) \$(TAU_INCLUDE) \$(TAU_DEFS)

-optPdtCxxOpts="" Options for C++ parser in PDT (cxxparse). Typically

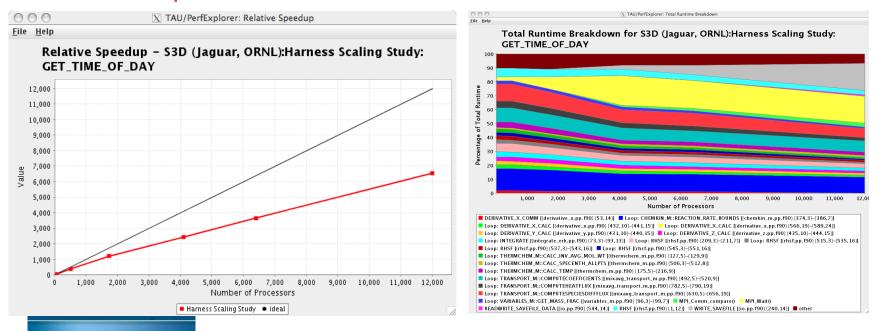
\$(TAU_MPI_INCLUDE) \$(TAU_INCLUDE) \$(TAU_DEFS)

Measuring Performance of PGI Accelerator Code

Usage Scenarios: Mixed Python+F90+C+pyMPI

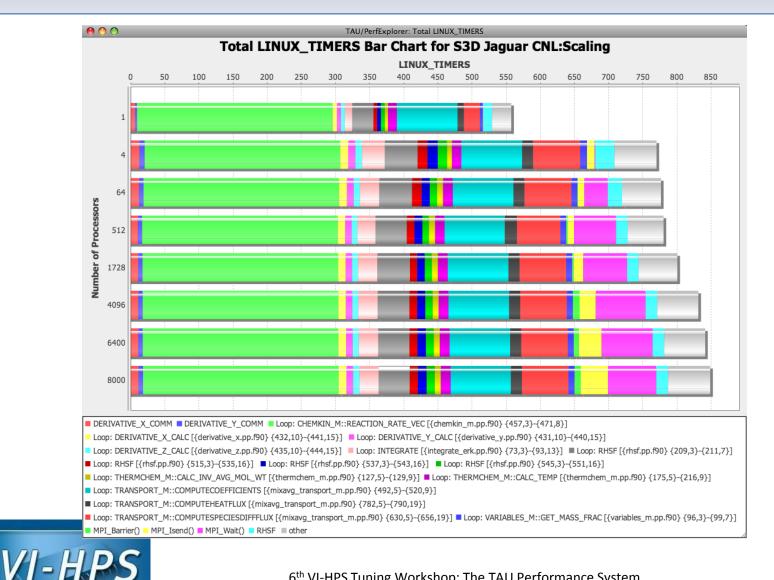
 Goal: Generate multi-level instrumentation for Python+MPI+C+F90+C++ ...

VI-HPS

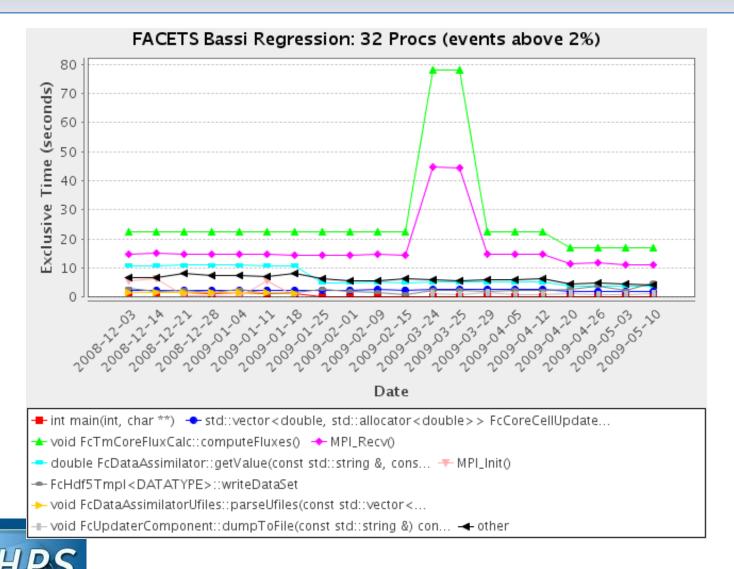

```
TAU: ParaProf: Mean Data - py.ppk
Metric: Time
Value: Exclusive percent
 39.466%
                                                                                void SAMINT::timestep(double, double) [{SAMINT.C} {72.1}-{78.1}]
                                                                                int pyMPI_Main_with_communicator(int, int *, char ***, MPI_Comm) C [{pyMPI_main.c} {23,1}-{80,1}]
                                                                                <module> [{/usr/local/PET/pkgs/python-2.5.1/lib/python2.5/site-packages/numpy/linalg/linalg.py} {7}]
                                                                          void pyMPI_distutils_init(PyObject **) C [{pyMPI_distutils.c} {275,1}-{400,1}]
                                                                               <module> [{/usr/local/PET/pkgs/python-2.5.1/lib/python2.5/site-packages/numpy/core/numeric.py} {1}]
                                                                        void pyMPI_site(void) C [{pyMPI_site.c} {23,1}-{121,1}]
                                                        3.633% void pyMPI_site(void) C_{[pyMPI_site.cr]_{c3,1,P=(1.2.1,1]}
3.607% <a href="mailto:coal/PET/pkgs/python-2.5.1/lib/python2.5/site-packages/numpy/core/_init__py]">mailto:coal/PET/pkgs/python-2.5.1/lib/python2.5/site-packages/numpy/lib/machar.py]</a> {2}
3.1% <a href="mailto:analyeer-packages/numpy/lib/machar.py]">analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:analto:anal
                                                           2.123% __compile [{/usr/local/PET/pkgs/python-2.5.1/lib/python2.5/sre_compile.py} {38}]
                                                             1.187% any [{/usr/local/PET/pkgs/python-2.5.1/lib/python2.5/site-packages/numpy/core/fromnumeric.py] {540}]
                                                              0.982% (wsr/local/PET/pkgs/python-2.5.1/lib/python2.5/site-packages/numpy/_init_.py) (17)
                                                              0.941% Tokenizer::_next [{/usr/local/PET/pkgs/python-2.5.1/lib/python2.5/sre_parse.py} {188}]
                                                             0.929% append
                                                              0.906%          <pr
                                                              0.895% anv
                                                             0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888% 0.888%
                                                              0.863% <module> [{/usr/local/PET/pkgs/python-2.5.1/lib/python2.5/site-packages/numpy/lib/index_tricks.py} {3}]
                                                              0.806% void pyMPI_pickle_init(PyObject **) C [{pyMPI_pickle.c} {43,1}-{61,1}]
                                                                                <module> [{/usr/local/PET/pkgs/python-2.5.1/lib/python2.5/site-packages/numpy/random/__init__.py} {2}]
                                                                               SubPattern::getwidth [{/usr/local/PET/pkgs/python-2.5.1/lib/python2.5/sre_parse.py} {146}]
                                                                               <module> [{/usr/local/PET/pkgs/python-2.5.1/lib/python2.5/site-packages/numpy/testing/numpytest.py} {1}]
                                                                              _optimize_charset [{/usr/local/PET/pkgs/python-2.5.1/lib/python2.5/sre_compile.py} {213}]
                                                                              Tokenizer::get [{/usr/local/PET/pkgs/python-2.5.1/lib/python2.5/sre_parse.py} {207}]
                                                                             <module> [{/usr/local/PET/pkgs/python-2.5.1/lib/python2.5/inspect.py} {24}]
                                                              0.541%  <module> [{/users3/sameer/py/py-c++-f90/samint.py} {7}]
                                                                              <module> [{/usr/local/PET/pkgs/python-2.5.1/lib/python2.5/site-packages/numpy/core/memmap.py} {1}]
                                                                              <module> [{/usr/local/PET/pkgs/python-2.5.1/lib/python2.5/site-packages/numpy/testing/__init__.py} {2}]
                                                                             <module> [{/users3/sameer/py/py-c++-f90/samarc.py} {9}]
                                                                              <module> [{/usr/local/PET/pkgs/python-2.5.1/lib/python2.5/site-packages/numpy/ctypeslib.py} {1}]
                                                              0.462% add_newdoc [{/usr/local/PET/pkgs/python-2.5.1/lib/python2.5/site-packages/numpy/lib/function_base.py} {1154}]
                                                              0.453% | <module> [{/usr/local/PET/pkgs/python-2.5.1/lib/python2.5/site-packages/numpy/lib/function_base.py} {1}]
                                                                               _parse_sub [{/usr/local/PET/pkgs/python-2.5.1/lib/python2.5/sre_parse.py} {307}]
                                                              0.378% compile_charset [{/usr/local/PET/pkgs/python-2.5.1/lib/python2.5/sre_compile.py} {184}]
                                                              0.367% abs
                                                              0.365% samarc::runStep [{/users3/sameer/py/py-c++-f90/samarc.py} {105}]
                                                              0.365% | <module> [{/usr/local/PET/pkgs/python-2.5.1/lib/python2.5/site-packages/numpy/fft/fftpack.py} {21}]
                                                              0.296% | SubPattern::_len_ [{/usr/local/PET/pkgs/python-2.5.1/lib/python2.5/sre_parse.py} {132}]
                                                                               <module> [{/usr/local/PET/pkgs/python-2.5.1/lib/python2.5/site-packages/numpy/core/arrayprint.py} {4}]
                                                              0.225% | Tokenizer::match [{/usr/local/PET/pkgs/python-2.5.1/lib/python2.5/sre_parse.py} {201}]
                                                                                _mk_bitmap [{/usr/local/PET/pkgs/python-2.5.1/lib/python2.5/sre_compile.py} {264}]
                                                                                <module> [{/usr/local/PET/pkgs/python-2.5.1/lib/python2.5/site-packages/numpy/core/defmatrix.py} {1}]
                                                              0.178% | SubPattern::_getitem_ [{/usr/local/PET/pkgs/python-2.5.1/lib/python2.5/sre_parse.py} {136}]
```

Generate a Multi-Language Profile w/ Python

```
% setenv TAU MAKEFILE /opt/tau-2.19.1/x86 64
                /lib/Makefile.tau-python-mpi-pdt
% set path=(/opt/tau-2.19.1/x86 64/bin $path)
% setenv TAU OPTIONS \-optShared -optVerbose...'
(Python needs shared object based TAU library)
% make F90=tau f90.sh CXX=tau cxx.sh CC=tau cc.sh (build pyMPI w/TAU)
% cat wrapper.py
  import tau
  def OurMain():
      import App
  tau.run('OurMain()')
Uninstrumented:
% poe <dir>/pyMPI-2.4b4/bin/pyMPI ./App.py -procs 4
Instrumented:
% setenv PYTHONPATH <taudir>/x86 64/lib/bindings-python-mpi-pdt-pgi
(same options string as TAU MAKEFILE)
setenv LD LIBRARY PATH <taudir>/x86 64/lib/bindings-icpc-python-mpi-pdt-
pgi\:$LD LIBRARY PATH
% poe <dir>/pyMPI-2.5b0-TAU/bin/pyMPI ./wrapper.py -procs 4
(Instrumented pyMPI with wrapper.py)
```


Usage Scenarios: Evaluate Scalability

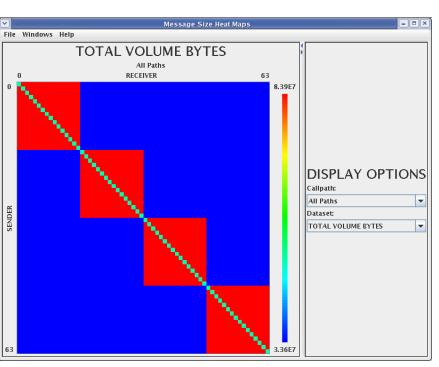
- Goal: How does my application scale? What bottlenecks at what cpu counts?
- Load profiles in PerfDMF database and examine with PerfExplorer

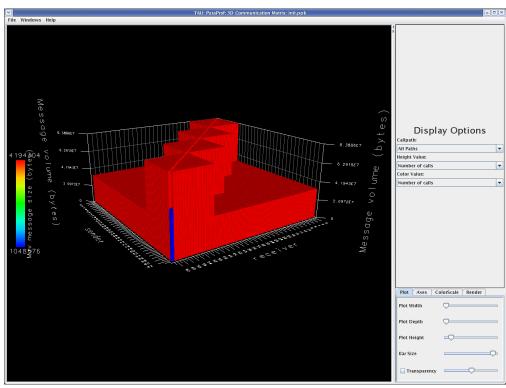


VI-HPS

Usage Scenarios: Evaluate Scalability

Performance Regression Testing




Evaluate Scalability using PerfExplorer Charts

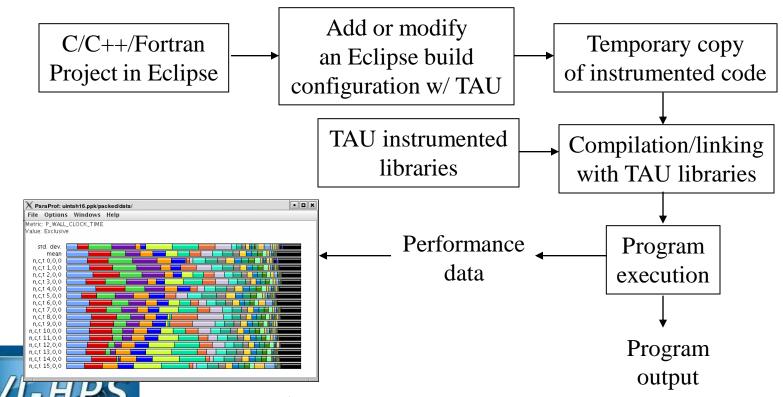
```
% setenv TAU MAKEFILE /opt/tau-2.19.1/x86 64
               /lib/Makefile.tau-mpi-pdt
% set path=(/opt/tau-2.19.1/x86 64/bin $path)
% make F90=tau f90.sh
(Or edit Makefile and change F90=tau f90.sh)
% qsub run1p.job
% paraprof --pack 1p.ppk
% qsub run2p.job ...
% paraprof --pack 2p.ppk ... and so on.
On your client:
% perfdmf configure
(Choose derby, blank user/passwd, yes to save passwd, defaults)
% perfexplorer configure
(Yes to load schema, defaults)
% paraprof
(load each trial: DB -> Add Trial -> Type (Paraprof Packed
Profile) -> OK, OR use perfdmf loadtrial on the commandline)
% perfexplorer
(Charts -> Speedup)
```

Communication Matrix Display

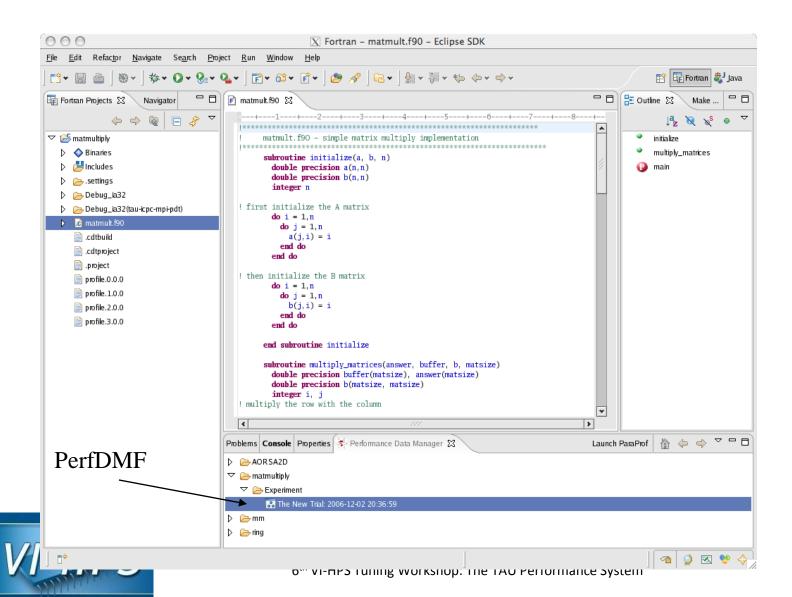
 Goal: What is the volume of inter-process communication? Along which calling path?

Evaluate Scalability using PerfExplorer Charts

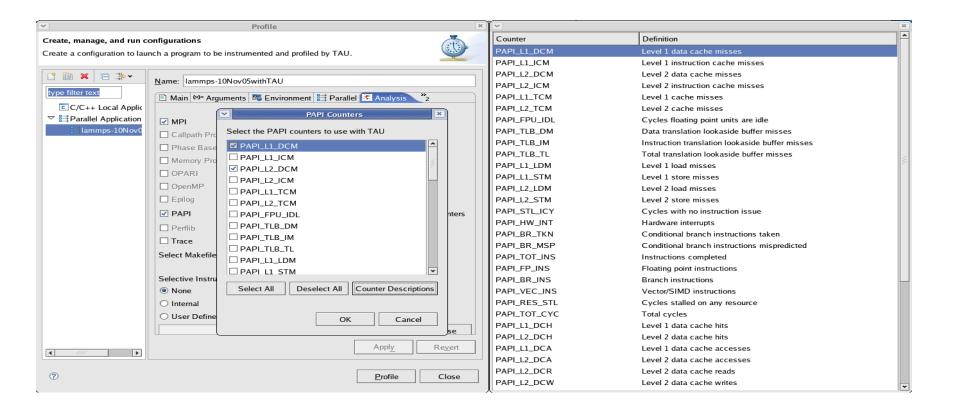
```
% setenv TAU_MAKEFILE
    $TAU/Makefile.tau-mpi-pdt
% set path=(/usr/local/packages/tau-2.19.1/x86_64/bin $path)
% make F90=tau_f90.sh
(Or edit Makefile and change F90=tau_f90.sh)
% setenv TAU_COMM_MATRIX 1
% qsub run.job (setting the environment variables)
% paraprof
(Windows -> Communication Matrix)
(Windows -> 3D Communication Matrix)
```



TAU Integration with IDEs

- High performance software development environments
 - Tools may be complicated to use
 - Interfaces and mechanisms differ between platforms / OS
- Integrated development environments
 - Consistent development environment
 - Numerous enhancements to development process
 - Standard in industrial software development
- Integrated performance analysis
 - Tools limited to single platform or programming language
 - Rarely compatible with 3rd party analysis tools
 - Little or no support for parallel projects



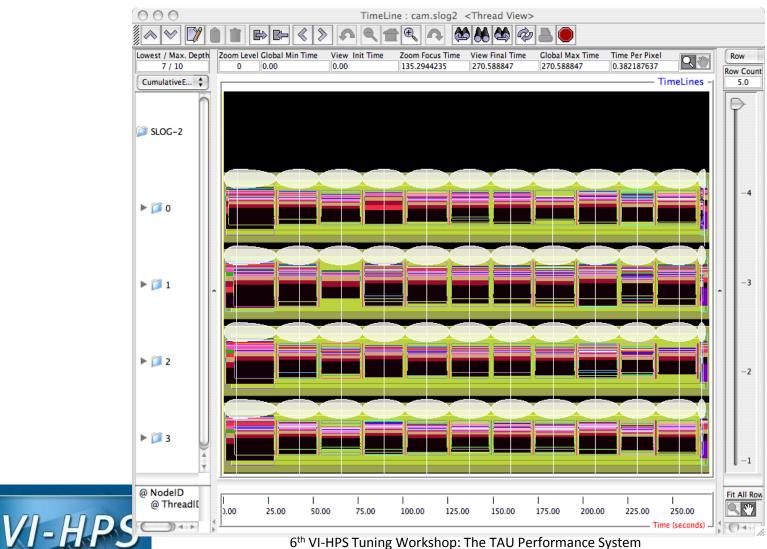
TAU and Eclipse


- Provide an interface for configuring TAU's automatic instrumentation within Eclipse's build system
- Manage runtime configuration settings and environment variables for execution of TAU instrumented programs

TAU and Eclipse

Choosing PAPI Counters with TAU in Eclipse

% /usr/local/packages/eclipse/eclipse



Jumpshot

- http://www-unix.mcs.anl.gov/perfvis/software/viewers/index.htm
- Developed at Argonne National Laboratory as part of the MPICH project
 - Also works with other MPI implementations
 - Installed on IBM BG/P
 - Jumpshot is bundled with the TAU package
- Java-based tracefile visualization tool for postmortem performance analysis of MPI programs
- Latest version is Jumpshot-4 for SLOG-2 format
 - Scalable level of detail support
 - Timeline and histogram views
 - Scrolling and zooming
 - Search/scan facility

Jumpshot

Support Acknowledgements

- Department of Energy (DOE)
 - Office of Science
 - MICS, Argonne National Lab
 - ASC/NNSA
 - University of Utah ASC/NNSA Level 1
 - ASC/NNSA, Lawrence Livermore National Lab
- Department of Defense (DoD)
 - HPC Modernization Office (HPCMO)
- NSF Software Development for Cyberinfrastructure (S
- Research Centre Juelich
- ANL, NASA Ames, LANL, SNL
- TU Dresden
- ParaTools, Inc.

For more information

- TAU Website:
 - http://tau.uoregon.edu
 - Software
 - Release notes
 - Documentation

