
Technische Universität München

Automatic Single Core Performance

Analysis on IBM POWER6

Yury Oleynik

oleynik@in.tum.de

Technische Universität München

mailto:oleynik@in.tum.de
mailto:oleynik@in.tum.de

Technische Universität München

Outline
 Motivation for single core performance analysis automation

 Performance Property

 IBM POWER6 CPU

 Overview

 Execution pipeline and Periscope Perfromance Properties derivation

 Instruction fetching

 Instruction dispatching

 Memory access

 Floating Point instructions

 Memory access pattern analysis

 Measuring single core performance with Periscope

 POWER6 Search Strategies

 Demonstration of Automatic Single Core Performance Analysis with Periscope

 Conclusion

Technische Universität München

Motivation
● Single core performance tuning on POWER6 is tough!

━ Complicated microarchitecture

━ Lack of documentation

━ Ultra-high frequency

━ In-order execution

━ Weird execution specifics

━ Complicated HW counters interpretation

━ 552 HW events available

━ 2 lines of event description

━ Only 4 counters available

━ Poor single core performance analysis tools support

━ General problem for single core perf. analysis

● Goal: Single Core Performance Analysis Automation

● Tasks:

━ Understand architecture

━ Identify potential bottlenecks

━ Map bottlenecks to available HW events

━ Validate bottlenecks against test kernels

━ Automate bottlenecks evaluation

Technische Universität München

Periscope Performance Property

• Based on APART Specification Language:
“ Performance Property: A performance property (e.g. load imbalance, communication, cache

misses, redundant computations, etc.) characterizes a specific performance behavior of a

program (or part) and can be checked by a set of conditions. Conditions are associated with

a confidence value (between 0 and 1) indicating the degree of confidence about the

existence of a performance property. In addition, for every performance property a severity

measure is provided the magnitude of which specifies the importance of the property. The

severity can be used to focus effort on the important performance issues during the (manual

or automatic) performance tuning process. Performance properties, confidence and severity

are defined over performance-related data. “

Process 17

Region 1 Region 2 Region 3 Region 4 Region 5

Thread 1

Property: Cycles lost due to cache misses

Condition:

PM_MISS_L1_CYC/PM_RUN_CYC>a

Confidence: 1.0

Severity:

PM_MISS_L1_CYC/PM_RUN_CYC

Context

Execute

Property: Cycles lost due to cache misses

Condition: TRUE

Confidence: 1.0

Severity: 21%

Hypothesis Found property

Technische Universität München

POWER 6 Overview
• Ultra-high frequency dual-core chip

• 8 execution units

• 2LS, 2FP, 2FX, 1BR, DFU

• private 64K L1 D and I cache

• private 4MB on-chip L2

• On-chip L3 directory and controller

• Symmetric MultiProcessor (SMP) coherence and

data interconnect

• Simultaneous MultiThreading (SMT)

• Powerfull prefetch engine

• Performance sacrifices:

• In-order execution model

H.Q. Le et al

Technische Universität München

POWER6 Execution pipeline

H.Q. Le et al

AG: address generation; BHT: branch history table; BR: branch; DC: data cache access; DISP: dispatch; ECC: error-

correction code; EX: execute; FMT: formatting; IB: instruction buffer; IC0/IC1: instruction cache access; IFA: instruction

fetch access; ISS: issue; P1-P4: pre-decode; PD: post decode; RF: register file access

Technische Universität München

POWER6 Execution pipeline

H.Q. Le et al

AG: address generation; BHT: branch history table; BR: branch; DC: data cache access; DISP: dispatch; ECC: error-

correction code; EX: execute; FMT: formatting; IB: instruction buffer; IC0/IC1: instruction cache access; IFA: instruction

fetch access; ISS: issue; P1-P4: pre-decode; PD: post decode; RF: register file access

Periscope properties:
•Cycles lost due to no instruction to dispatch

•Cycles lost due to branch miss prediction

•Cycles lost due to I-Cache miss

•Branch miss prediction rate

Technische Universität München

POWER6 Execution pipeline

H.Q. Le et al

AG: address generation; BHT: branch history table; BR: branch; DC: data cache access; DISP: dispatch; ECC: error-

correction code; EX: execute; FMT: formatting; IB: instruction buffer; IC0/IC1: instruction cache access; IFA: instruction

fetch access; ISS: issue; P1-P4: pre-decode; PD: post decode; RF: register file access

Periscope properties:
•Cycles lost due to dispatch held

•Cycles lost due to GPR dependencies

•Cycles lost due to FP comparisons

•Cycles lost due to other thread active

Technische Universität München

POWER6 Execution pipeline

H.Q. Le et al

AG: address generation; BHT: branch history table; BR: branch; DC: data cache access; DISP: dispatch; ECC: error-

correction code; EX: execute; FMT: formatting; IB: instruction buffer; IC0/IC1: instruction cache access; IFA: instruction

fetch access; ISS: issue; P1-P4: pre-decode; PD: post decode; RF: register file access

Periscope properties:
•Cycles lost due to FX multiply/divide

•Cycles lost due to FX multiply dependency on GPR

Periscope properties:
•Cycles lost due to FPQ full

•FPU issue stall due to FPR dependencies

•FPU issue stall due to store

•FPU issue out of order

•FP divide/sqrt instructions rate

•FMA instructions rate

Technische Universität München

POWER6 Execution pipeline

H.Q. Le et al

AG: address generation; BHT: branch history table; BR: branch; DC: data cache access; DISP: dispatch; ECC: error-

correction code; EX: execute; FMT: formatting; IB: instruction buffer; IC0/IC1: instruction cache access; IFA: instruction

fetch access; ISS: issue; P1-P4: pre-decode; PD: post decode; RF: register file access

Periscope properties:
•Load performance

•Cycles lost due to demand load cache miss

•Average amount of cycles lost per cache miss

•L1 demand load miss rate

•L2 demand load miss rate

•L3 demand load miss rate

•L2 total load miss rate

•Prefetch for load to L1 rate

•Prefetch for load to L2 rate

•Store performance
•Store queue full per store operation

•Non-chained stores rate

•Address translation performance
•Cycles lost due to DERAT misses

•DERAT 4K page miss rate

•DERAT 64K page miss rate

Technische Universität München

POWER6 Execution pipeline

H.Q. Le et al

AG: address generation; BHT: branch history table; BR: branch; DC: data cache access; DISP: dispatch; ECC: error-

correction code; EX: execute; FMT: formatting; IB: instruction buffer; IC0/IC1: instruction cache access; IFA: instruction

fetch access; ISS: issue; P1-P4: pre-decode; PD: post decode; RF: register file access

Periscope property
•Memory Access Pattern:

•Streaming from memory

•Non-local data access

•Poor cached data reusage

•Non-optimal prefetch engine performance

•Too many consequent stores

Technische Universität München

Optimization of hardware counters utilization
 Total cycles spent

 Memory access pattern

 Cycles lost due to demand load miss L1

 Average amount of cycles lost per L1 miss

 L1 demand load miss rate

 Prefetch for load to L1 rate

 L2 demand load miss rate

 Prefetch for load to L2 rate

 L3 demand load miss rate

 L2 total load miss rate

 Cycles lost due to D-ERAT miss

 D-ERAT 4K/64K/16M/16G page miss rates

 Cycles lost due to store queue full

 L2 store miss rate

 Percentage of not chained stores

 Cycles lost due to FPQ full

 FPU issue stall due to FPR dependencies

 FPU issue stall due to store

 FPU issue out of order

 FP divide/sqrt instructions rate

 FMA instructions rate

 Cycles lost due to FX multiply divide

 Cycles lost due to FX multiply dependencies

 Cycles lost due to load-hits-store

 Cycles lost due to no instruction to dispatch

 Cycles lost due to branch miss prediction

 Cycles lost due to I-Cache miss

 Branch miss prediction rate

…

 POWER6 hardware counters:

 6 counters available

 Cycles and instruction completed

 4 programmable counters

 552 hardware events total

 grouped into 200 Hardware

counters sets

 Total number of events used: 74

 43 iterations per region

 Cross-iterations performance deviation

 Countermeasures:

 Performance properties hierarchy

 Optimal hardware events grouping

 Search strategies

 Phase deviation control

Technische Universität München

P6 Breadth First Strategy

M

A

I

N

Prop1

do

end do

do

end do CALL SUB2

CALL SUB1

Prop1 Prop1 Prop1 Prop1

Refine step 1 Experiment 1

Prop2Prop3

Refine step 2

Prop2Prop3 Prop2Prop3

Experiment 2

Technische Universität München

Running Periscope on Power575
● Available POWER6 Strategies:

━ POWER6 Depth First “--strategy=P6” – many iterations, minimum memory usage

━ POWER6 Breadth First “--strategy=P6BF” – min iterations, some memory overhead

━ POWER6 Breadth First + Memory Access Pattern Analysis “--strategy=P6BF_Memory”

● Phase performance deviation control:

━ Enabled with “--with-deviation-control”

● Access:

% module load periscope

% export MP_HOSTFILE=<hostfile path>

% cp $(PERISCOPE_ROOT)/etc/periscope.sample ~/.periscope

● Instrumentation:

━ Substitute FC or CC in makefile by:

IFC=psc_instrument -t “all user loop mpi par sync sub call” $(FC)

● Run (both interactively and under LoadLeveler):

% psc_regsrv &

% psc_frontend --apprun=./stream --sir=stream.sir --mpinumprocs=1

--strategy=P6BF_Memory --with-deviation-control

Technische Universität München

Experiment 1: COPY and Divide loop size=8M

DO j=1,n

c(j)=a(j)/scalar

END DO

Properties found:

•Cycles lost FPQ full 73%

•Costly FP div/sqrt rate 100%

Total cycles: 321M

Technische Universität München

Experiment 2: COPY and FP2INT conv loop

DO j=1,n

c(j)=integers(j)*scalar

END DO

Properties found:

•LHS reject per load 99%

•SRQ full per store 5%

Total cycles: 252M

Technische Universität München

Experiment 3: STREAM COPY loop size=8M

DO j=1,n

c(j)=a(j)

END DO

Properties found:

•Cycles lost cache miss 21%

•Average cyc per miss 270

•L1 miss rate 1%

•L2 miss rate 16%

•L3 miss rate 100%

•Prefetch to L1 99%

•Prefetch to L2 99%

•SRQ full per store 40%

•Memory access pattern: Streaming from memory; Poor cached data reusage;

Store queue flooded, too many consequent stores

Total cycles: 114M

Technische Universität München

Experiment 4: LOAD loop size=8M

DO j=1,n

scalar=a(j)

END DO

Properties found:

•Cycles lost cache miss 56%

•Average cyc per miss 203

•L1 miss rate 3%

•L2 miss rate 6.5%

•L3 miss rate 100%

•Prefetch to L1 99%

•Prefetch to L2 99%

Total cycles: 84M

Technische Universität München

Experiment 5: non-local COPY loop size=8M

DO j=1,n

DO i=0,m-1

c(i*n+i)=a(i*n+j)

END DO

END DO

Properties found:

Cycles lost cache miss 12%

•Average cyc per miss 22

•L1 miss rate 57%

•L2 miss rate 0.04%

•L3 miss rate 55%

•Prefetch to L1 0.02%

•Prefetch to L2 1.597%

•Cycles lost DERAT miss 68%

•64K DERAT page miss 23%

Total cycles: 801M

•Memory access pattern: Severe non-local data access; L1 miss rate is too high;

Non-optimal prefetch engine performance; Store queue flooded, too many consequent stores;

L2 dominate data access

Total cycles: 801MTotal cycles: 801MTotal cycles: 801MTotal cycles: 801M

Technische Universität München

Experiment 6: GENE memory intensive subroutine
do n=ln1,ln2

do m=lm1,lm2
do l=ll1,ll2

f_s(li0*lj0*nzb:li0*lj0*(lk0+nzb)-1,l,m,n) =&
&g_s(:,l,m,n) + pre_s(:,l,m,n)* &

&psi_s(li0*lj0*nzb:li0*lj0*(lk0+nzb)-1)
End Do
f_s(:,lbv:ll1-1,m,n)=0.
f_s(:,ll2+1:ubv,m,n)=0.

enddo
enddo

Properties found:

•Cycles lost cache miss 8.5%

•Average cyc per miss 250

•L1 miss rate 0.26%

•L2 miss rate 24%

•L3 miss rate 95%

•Prefetch to L1 118%

•Prefetch to L2 118%

•SRQ full per store 49%

•Cycles lost FPQ 17%

•Cyc lost DERAT 3%

•Memory access pattern: Streaming from memory; Poor cached data reusage;

Non-optimal prefetch engine performance; Store queue flooded, too many consequent stores

← Bottleneck

← Memory access problem...

← beyond L2 latencies

← slightly non-local access

← streaming from memory

Technische Universität München

Conclusion

• Single core performance analysis is much easier now with Periscope!
• More then 30 performance properties cover the majority of potential bottlenecks

• Automatically searches for inefficiencies through the whole code, pointing to important ones

• Hides hardware details from user

• Automatic search for memory access patterns

• Also MPI ill communication pattern and OpenMP overheads analysis available

• Performance Analysis smoothly integrated into development environment

• Easy to run both interactively and under LoadLeveller

• In case found properties are not correct, please, send us properties.psc,

appl.sir + source or short description of what the code is doing.

Your feed back will help us to implement new properties for you!

Technische Universität München

Thank you for your attention!

Questions?

Yury Oleynik <oleynik@.in.tum.de>

