

4th VI-HPS Tuning Workshop in conjunction with POINT hosted by HLRN in Bremen

Brian Wylie Jülich Supercomputing Centre b.wylie@fz-juelich.de 9-11 September 2009

NNESSEE U

Universität Stuttgart

- Presenters/Guides
 - Markus Geimer & Brian Wylie (Jülich Supercomputing Centre)
 - Tobias Hilbrich & Jens Doleschal (TU Dresden ZIH)
 - Allen Malony (University of Oregon)
- Thanks
 - Host: Universität Bremen
 - ► Thorsten Coordes (ZARM), ...
 - Norddeutscher Verbund f
 ür Hoch- und H
 öchstleistungsrechnen
 - Hinnerk Stüben & Wolfgang Baumann (ZIB), Lars Nerger (AWI), ...
 - VI-HPS/POINT partners
 - ► Sameer Shende & Alan Morris (UO), Agnes Mendes (RWTH), ...
 - You
 - ► Your Name Here

We'd like to know a little about you, your application(s), and your expectations and desires from this workshop

- What programming paradigms do you use in your app(s)?
 - only MPI, only OpenMP, mixed-mode/hybrid OpenMP/MPI, ...
 - Fortran, C, C++, mixed-language, ...
- What platforms/systems *must* your app(s) run well on?
 - SGI Altix ICE, SGI Altix, IBM Power/AIX, Linux cluster™, ...
- Who's already familiar with *serial* performance analysis?
 - Which tools have you used?
 - ► time, print/printf, prof/gprof, SpeedShop, VTune, ...
- Who's already familiar with *parallel* performance analysis?
 - Which tools have you used?
 - ► time, print/printf, prof/gprof, mpiP/ompP, MPInside, ...

Warning

The workshop concentrates on *hands-on* use of correctness and performance analysis tools with your own application(s):

- Who has prepared their app(s) to be analysed and tuned?
 - A small yet representative test case should build
 - ... and run (correctly) to completion within a few minutes
 - ... on a relatively small number of processors/cores
- Who has prepared to analyse and improve scalability?
 - One or more larger test cases should build
 - ... and run (correctly) to completion within less than an hour
 - ... on larger numbers of processors/cores (in batch mode)
 - Strong scaling = fixed total problem size
 - speed-up expected with increasing numbers of processors
 - Weak scaling = constant problem size per process/thread
 - time not expected to change for increasing numbers or processors

It happens

- You may experience problems with the HPC systems
 - They're continually being pushed to the limit (and beyond)
 - It's probably not your fault when they break
- You may discover bugs in your application(s)
 - That's presumably why you're here
 - ... and we're here to help
 - Think of identified bugs as opportunities for improvement, to make your application fitter and more competitive, as HPC systems continue to get larger and more complex
- You may encounter defects/deficiencies with the tools
 - We want to learn from you what should be improved
 - ► It's also nice to hear when they work well and are helpful

- **Goal**: Improve the quality and accelerate the development process of complex simulation codes running on highly-parallel computer systems
- Funded by Helmholtz Association of German Research Centres

- Activities
 - Development and integration of HPC programming tools
 - Correctness checking & performance analysis
 - Training workshops
 - Service
 - Support email lists
 - Application engagement
 - Academic workshops

www.vi-hps.org

Partners

- Forschungszentrum Jülich
 - Jülich Supercomputing Centre

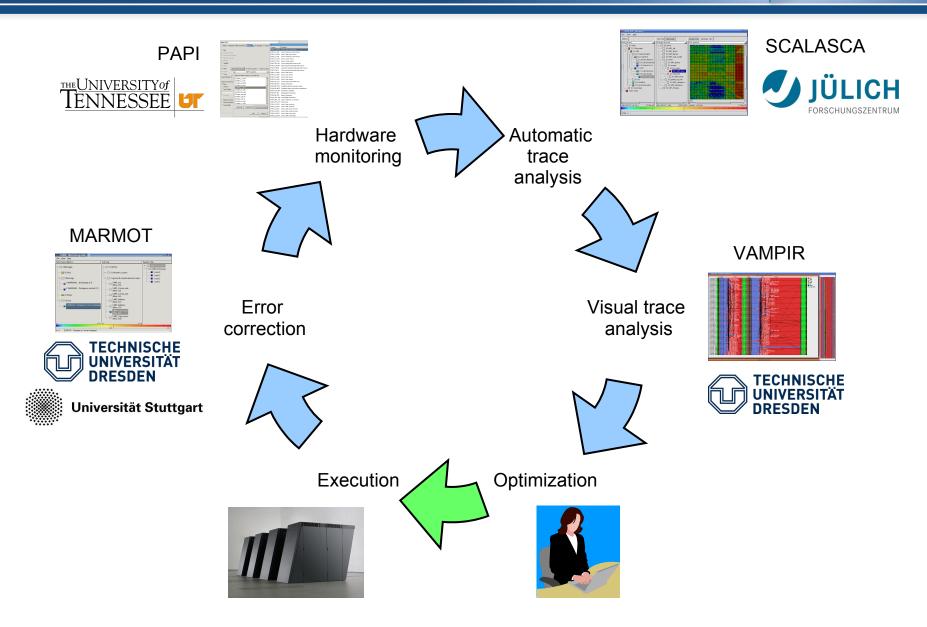
- RWTH Aachen University
 - Centre for Computing & Communication
- Technical University of Dresden
 - Centre for Information Services & HPC

University of Tennessee (Knoxville)Innovative Computing Laboratory

- Technical University of Munich
 - Chair for Computer Architecture
- University of Stuttgart
 - High Performance Computing Centre

RNTHAACHEN

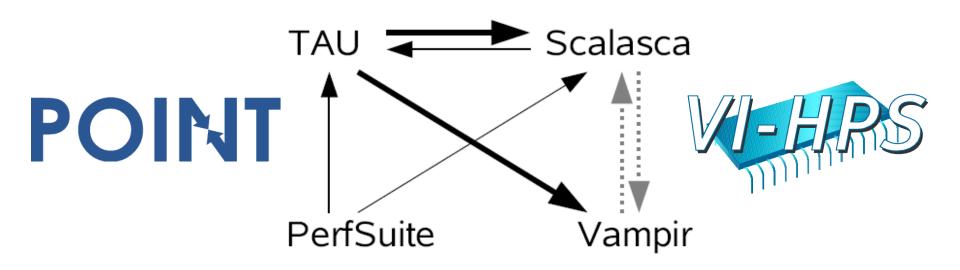
Universität Stuttgart



- Marmot
 - Free MPI correctness checking tool
- PAPI
 - Free library interfacing to hardware performance counters
- Scalasca
 - Open-source toolset for analysing the performance behaviour of parallel applications to automatically identify inefficiencies
- Vampir
 - Commercial framework and graphical analysis tool to display and analyse event traces
- VampirTrace
 - Open-source tool generating event traces for analysis and visualization by Vampir

[Tuning Workshop Live-DVD contains latest tools releases]

Technologies and their integration



VI-HPS component technologies

- Key tool components also provided as open-source
 - Program/library instrumentation
 - ► OPARI, POMP
 - MPI library/tool integration
 - ► UniMCI
 - Scalable I/O
 - ► SIONIib
 - Libraries & tools for handling (and converting) traces
 - ► EPILOG, EARL, PEARL, OTF, Œ
 - Analysis algebra & hierarchical/topological presentation
 - ► CUBE

- PerfSuite can generate reports in CUBE format
- TAU can use Scalasca & VampirTrace measurement libs and can present reports in PerfSuite & CUBE formats
- TAU & Vampir use OPARI to instrument OpenMP sources, and Scalasca can use TAU source instrumenter
- Scalasca & Vampir traces can be inter-converted

- Goals
 - Give an overview of the programming tools suite
 - Explain the functionality of individual tools
 - Teach how to use the tools effectively
 - Offer hands-on experience and expert assistance using tools
 - Receive feedback from users to guide future development
- For best results, bring & analyse/tune your own code(s)!
- VI-HPS Tuning Workshop series
 - Aachen (3/08), Dresden (10/08), Jülich (2/09), Bremen (9/09)
- Joint POINT/VI-HPS Tutorial series
 - SC (11/08), ICCS (5/09), SC (11/09)
- Training with individual tools & platforms (e.g., BlueGene)

- Monday 9th September
 - 08:30 (registration & notebook set-up)
 - 09:00 Welcome & Introduction to VI-HPS [Wylie, JSC]
 - Virtual Institute High Productivity Supercomputing
 - Building and running the tutorial exercise NPB3.3-MPI/BT
 - 09:30 Parallel performance engineering [Malony, U.Oregon]
 Introduction to performance analysis techniques and tools
 - 10:15 Marmot correctness checking tool [Hilbrich, TUD-ZIH]
 Hands-on tutorial exercise with Marmot
 - 10:45 (break)
 - 11:15 TAU performance analysis toolset [Malony, U.Oregon]
 - ► Hands-on tutorial exercise with TAU
 - Case studies using TAU
 - 12:30 (lunch)

- Wednesday 9th September
 - 13:30 Scalasca performance analysis toolset [Geimer, JSC]
 - Scalable performance analysis of large-scale parallel applications
 - Hands-on tutorial exercises with Scalasca
 - Case studies using Scalasca
 - 14:45 (break)
 - 15:15 Introduction to the Vampir toolset [Doleschal, TUD-ZIH]
 - Vampir, VampirServer & VampirTrace
 - Hands-on tutorial exercises with Vampir
 - Case studies using Vampir
 - 16:30 Review and preparation for rest of workshop
 - Prepare participants' own codes for analysis on HLRN systems
 - Further exercises with tools
 - 17:30 (adjourn)

- Thursday 10th September
 - 09:00 Scalasca hands-on [Geimer & Wylie, JSC]
 - Advanced use of the Scalasca toolset
 - 12:30 (lunch)
 - 13:30 Vampir/Marmot hands-on [Doleschal & Hilbrich, ZIH]
 - Advanced used of Vampir & Marmot
 - 17:00 Review of day and schedule for tomorrow
 - 17:30 (adjourn)
- Friday 11th September
 - 09:00 Tools coaching & possible additional presentations
 - 12:00 (lunch)
 - 14:30 Review of workshop and participants' experiences
 - 15:00 (adjourn or continue to work to 17:30)

- Bootable Linux installation on DVD
- Includes everything needed to try out our tools on an x86architecture notebook computer
 - GCC compiler suite (with OpenMP support), OpenMPI library
 - POINT tools: PAPI, PerfSuite, TAU
 - VI-HPS tools: MARMOT, Scalasca, VT/Vampir*
 - Other tools: Eclipse, TotalView*
 - * time/capability-limited evaluation licences provided for commercial products
 - Manuals/User Guides
 - Tutorial exercises and examples
- Prepared by U. Oregon Performance Research Laboratory
 - Sameer Shende & Alan Morris