
TAU PERFORMANCE SYSTEM

Sameer Shende
Alan Morris, Wyatt Spear, Scott Biersdorff
Performance Research Lab

Allen D. Malony, Kevin Huck, Aroon Nataraj
Department of Computer and Information Science
University of Oregon

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

TAU Performance System®

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

2

• Tuning and Analysis Utilities (16+ year
project)

• Performance problem solving framework for
HPC
– Integrated, scalable, flexible, portable
– Target all parallel programming / execution

paradigms

• Integrated performance toolkit (open source)
– Instrumentation, measurement, analysis,

visualization
– Widely-ported performance profiling / tracing

system
– Performance data management and data mining

• Broad application use (NSF, DOE, DOD, …)

TAU Performance System
Components

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

3

TAU Architecture Program Analysis

Parallel Profile Analysis

PD
T

Pe
rf

D
M

F
Pa

ra
Pr

of

Performance Data Mining

Performance Monitoring

T
A

U
ov

er
Su

pe
rm

on

PerfExplorer

Building Bridges to Other Tools

4

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

TAU Instrumentation /
Measurement

5

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

Direct Performance Observation

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

6

• Execution actions of interest exposed as events
– In general, actions reflect some execution state

• presence at a code location or change in data
• occurrence in parallelism context (thread of execution)

– Events encode actions for performance system to
observe

• Observation is direct
– Direct instrumentation of program (system) code

(probes)
– Instrumentation invokes performance measurement
– Event measurement: performance data, meta-data,

context
• Performance experiment

– Actual events + performance measurements
• Contrast with (indirect) event-based sampling

TAU Instrumentation Approach

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

7

• Support for standard program events
– Routines, classes and templates
– Statement-level blocks
– Begin/End events (Interval events)

• Support for user-defined events
– Begin/End events specified by user
– Atomic events (e.g., size of memory allocated/freed)
– Flexible selection of event statistics

• Provides static events and dynamic events
• Enables “semantic” mapping
• Specification of event groups (aggregation,

selection)
• Instrumentation optimization

TAU Event Interface

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

8

• Events have a type, a group association, and a
name

• TAU events names are character strings
– Powerful way to encode event information
– Inefficient way to communicate each event

occurrence
• TAU maps a new event name to an event ID

– Done when event is first encountered (get event
handle)

– Event ID is used for subsequent event occurrences
– Assigning a uniform event ID a priori is problematic

• A new event is identified by a new event name in
TAU
– Can create new event names at runtime
– Allows for dynamic events (TAU renames events)
– Allows for context-base, parameter-based, phase

events

TAU Instrumentation
Mechanisms

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

9

• Source code
– Manual (TAU API, TAU component API)
– Automatic (robust)

• C, C++, F77/90/95 (Program Database Toolkit (PDT))
• OpenMP (directive rewriting (Opari), POMP2 spec)
• Library header wrapping

• Object code
– Pre-instrumented libraries (e.g., MPI using PMPI)
– Statically- and dynamically-linked (with LD_PRELOAD)

• Executable code
– Binary and dynamic instrumentation (Dyninst)
– Virtual machine instrumentation (e.g., Java using JVMPI)

• TAU_COMPILER to automate instrumentation process

Automatic Source-level Instrumentation

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

10

Program Database Toolkit
(PDT)

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

11

Application
/ Library

C / C++
parser

Fortran parser
F77/90/95

C / C++
IL analyzer

Fortran
IL analyzer

Program
Database

Files

IL IL

DUCTAPE
TAU

instrumentor
Automatic source
instrumentation

.

.

.

MPI Wrapper Interposition
Library

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

12

• Uses standard MPI Profiling Interface
– Provides name shifted interface

• MPI_Send = PMPI_Send
• Weak bindings

• Create TAU instrumented MPI library
– Interpose between MPI and TAU
– Done during program link

• -lmpi replaced by –lTauMpi –lpmpi –lmpi

– No change to the source code!
– Just re-link application to generate performance

data

MPI Shared Library Instrumentation

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

13

• Interpose the MPI wrapper library for
applications that have already been compiled
– Avoid re-compilation or re-linking

• Requires shared library MPI
– Uses LD_PRELOAD for Linux
– On AIX use MPI_EUILIB / MPI_EUILIBPATH
– Does not work on XT3

• Approach will work with other shared libraries
• Use TAU tauex

– % mpirun -np 4 tauex a.out

Selective Instrumentation File

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

14

• Specify a list of events to exclude or include
• # is a wildcard in a routine name

 BEGIN_EXCLUDE_LIST
 Foo
 Bar
 D#EMM
 END_EXCLUDE_LIST
 BEGIN_INCLUDE_LIST
 int main(int, char **)
 F1
 F3
 END_INCLUDE_LIST

Selective Instrumentation File

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

15

• Optionally specify a list of files
• * and ? may be used as wildcard characters

BEGIN_FILE_EXCLUDE_LIST
f*.f90
Foo?.cpp
END_FILE_EXCLUDE_LIST
BEGIN_FILE_INCLUDE_LIST
main.cpp
foo.f90
END_FILE_INCLUDE_LIST

Selective Instrumentation File

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

16

• User instrumentation commands
– Placed in INSTRUMENT section
– Routine entry/exit
– Arbitrary code insertion
– Outer-loop level instrumentation

BEGIN_INSTRUMENT_SECTION
loops file=“foo.f90” routine=“matrix#”
memory file=“foo.f90” routine=“#”
io routine=“matrix#”
[static/dynamic] phase routine=“MULTIPLY”
dynamic [phase/timer] name=“foo” file=“foo.cpp” line=22 to line=35
file=“foo.f90” line = 123 code = " print *, \" Inside foo\""
exit routine = “int foo()” code = "cout <<\"exiting foo\"<<endl;”
END_INSTRUMENT_SECTION

TAU Measurement Approach

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

17

• Portable and scalable parallel profiling solution
– Multiple profiling types and options
– Event selection and control (enabling/disabling,

throttling)
– Online profile access and sampling
– Online performance profile overhead compensation

• Portable and scalable parallel tracing solution
– Trace translation to OTF, EPILOG, Paraver, and

SLOG2
– Trace streams (OTF) and hierarchical trace merging

• Robust timing and hardware performance support
• Multiple counters (hardware, user-defined, system)
• Performance measurement of I/O and Linux kernel

TAU Measurement Mechanisms

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

18

• Parallel profiling
– Function-level, block-level, statement-level
– Supports user-defined events and mapping events
– Support for flat, callgraph/callpath, phase profiling
– Support for parameter and context profiling
– Support for tracking I/O and memory (library

wrappers)
– Parallel profile stored (dumped, shapshot) during

execution
• Tracing

– All profile-level events
– Inter-process communication events
– Inclusion of multiple counter data in traced events

Types of Parallel Performance Profiling

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

19

• Flat profiles
– Metric (e.g., time) spent in an event (callgraph

nodes)
– Exclusive/inclusive, # of calls, child calls

• Callpath profiles (Calldepth profiles)
– Time spent along a calling path (edges in

callgraph)
– “main=> f1 => f2 => MPI_Send” (event name)
– TAU_CALLPATH_DEPTH environment variable

• Phase profiles
– Flat profiles under a phase (nested phases are

allowed)
– Default “main” phase
– Supports static or dynamic (per-iteration) phases

TAU Analysis

20

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

Performance Analysis

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

21

• Analysis of parallel profile and trace measurement
• Parallel profile analysis (ParaProf)

– Java-based analysis and visualization tool
– Support for large-scale parallel profiles

• Performance data management framework
(PerfDMF)

• Parallel trace analysis
– Translation to VTF (V3.0), EPILOG, OTF formats
– Integration with Vampir / Vampir Server (TU Dresden)
– Profile generation from trace data

• Online parallel analysis and visualization
• Integration with CUBE browser (Scalasca, UTK /

FZJ)

ParaProf Profile Analysis Framework

22

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

Performance Data Management

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

23

• Provide an open, flexible framework to support
common data management tasks
– Foster multi-experiment performance evaluation

• Extensible toolkit to promote integration and reuse
across available performance tools (PerfDMF)
– Originally designed to address critical TAU

requirements
– Supported profile formats:

TAU, CUBE (Scalasca), HPC Toolkit (Rice), HPM Toolkit (IBM),
gprof, mpiP, psrun (PerfSuite), Open|SpeedShop, …

– Supported DBMS:
PostgreSQL, MySQL, Oracle, DB2, Derby/Cloudscape

– Profile query and analysis API
• Reference implementation for PERI-DB project

PerfDMF Architecture

24

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

Metadata Collection

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

25

• Integration of XML metadata for each parallel
profile

• Three ways to incorporate metadata
– Measured hardware/system information (TAU, PERI-

DB)
• CPU speed, memory in GB, MPI node IDs, …

– Application instrumentation (application-specific)
• TAU_METADATA() used to insert any name/value pair
• Application parameters, input data, domain decomposition

– PerfDMF data management tools can incorporate an
XML file of additional metadata

• Compiler flags, submission scripts, input files, …

• Metadata can be imported from / exported to
PERI-DB

Performance Data Mining /
Analytics

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

26

• Conduct systematic and scalable analysis process
– Multi-experiment performance analysis
– Support automation, collaboration, and reuse

• Performance knowledge discovery framework
– Data mining analysis applied to parallel performance

data
• comparative, clustering, correlation, dimension reduction, …

– Use the existing TAU infrastructure
• PerfExplorer v1 performance data mining

framework
– Multiple experiments and parametric studies
– Integrate available statistics and data mining

packages
• Weka, R, Matlab / Octave

– Apply data mining operations in interactive enviroment

How to explain performance?

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

27

• Should not just redescribe the performance results
• Should explain performance phenomena

– What are the causes for performance observed?
– What are the factors and how do they interrelate?
– Performance analytics, forensics, and decision

support
• Need to add knowledge to do more intelligent

things
– Automated analysis needs good informed feedback

• iterative tuning, performance regression testing
– Performance model generation requires interpretation

• We need better methods and tools for
– Integrating meta-information
– Knowledge-based performance problem solving

Role of Metadata and Knowledge
Role

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

28

Performance KnowledgePerformance Knowledge

SourceSource
CodeCode

Build Build
EnvironmentEnvironment

Run Run
EnvironmentEnvironment

Performance Result

Execution

You have to
capture these...

...to understand
this

ApplicationApplication MachineMachine

Performance Performance
ProblemsProblems

Context KnowledgeContext Knowledge

PerfExplorer v2 – Requirements

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

29

• Component-based analysis process
– Analysis operations implemented as modules
– Linked together in analysis process and workflow

• Scripting
– Provides process/workflow development and

automation
• Metadata input, management, and access
• Inference engine

– Reasoning about causes of performance phenomena
– Analysis knowledge captured in expert rules

• Persistence of intermediate analysis results
• Provenance

– Provides historical record of analysis results

PerfExplorer v2 Architecture

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

30

Parallel Profile Analysis – pprof

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

31

Parallel Profile Analysis – ParaProf

HPMToolkit

MpiP

TAU

Raw files

PerfDMF
managed
(database)

Metadata

Application

Experiment

Trial

32

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

Metadata for Each Experiment

Multiple PerfDMF DBs

33

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

ParaProf – Flat Profile

8K processorsnode, context, thread

Miranda
 hydrodynamics
 Fortran + MPI
 LLNL BG/L

34

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

ParaProf – Stacked View

35

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

ParaProf – Callpath Profile

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

Flash
 thermonuclear
 flashes
 Fortran + MPI
 Argonne

36

ParaProf – Scalable Histogram

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

37

8k processors 16k processors

ParaProf – 3D View (Full
Profile)

256 processors

Matrix multiplication

38

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

ParaProf – 3D View (Full
Profile)

16k processors

Miranda

39

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

ParaProf – 3D Scatterplot

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

40

• Each point is a “thread” of execution

• A total of four metrics
shown in relation

• ParaProf’s
visualization
library
– JOGL

• Miranda

Performance Mapping

• Example: Particles distributed on cube
surfaceParticle* P[MAX]; /* Array of particles */

int GenerateParticles() {

/* distribute particles over all faces of the cube */

for (int face=0, last=0; face < 6; face++){

/* particles on this face */

int particles_on_this_face = num(face);

for (int i=last; i < particles_on_this_face; i++) {

/* particle properties are a function of face */
P[i] = ... f(face);

...

}

last+= particles_on_this_face;

}

}
41

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

Performance Mapping

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

42

• How much time (flops) spent processing face i
particles?

• What is the distribution of performance among faces?

int ProcessParticle(Particle *p) {

/* perform some computation on p */

}

int main() {

GenerateParticles();

/* create a list of particles */

for (int i = 0; i < N; i++)

/* iterates over the list */

ProcessParticle(P[i]);

}

…

engine

work
packets

No Mapping versus Mapping

• Typical performance
tools report
performance with
respect to routines

• Does not provide
support for mapping

• TAU’s performance
mapping can observe
performance with
respect to scientist’s
programming and
problem abstractions

TAU (no mapping) TAU (w/ mapping)

43

SC ‘09: Productive Performance Engineering of Petascale Applications
with POINT and VI-HPS

NAS BT – Flat Profile

How is MPI_Wait()
distributed relative to
solver direction?

Application routine names
reflect phase semantics

44

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

NAS BT – Phase Profile
Main phase shows nested phases and immediate events

45

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

Phase Profiling of HW Counters
• GTC particle-in-cell simulation of fusion turbulence
• Phases assigned to

iterations
• Poor temporal locality for

one important data
• Automatically generated

by PE2 python script

increasing phase
execution time

decreasing
flops rate

declining cache
performance

46

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

Profile Snapshots in ParaProf
• Profile snapshots are parallel profiles recorded at

runtime
• Shows performance profile dynamics (all types

allowed)

Initialization

Checkpointing

Finalization

47

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

SC ‘09: Productive Performance Engineering of Petascale Applications
with POINT and VI-HPS

Profile Snapshot Views

• Only show main loop • Percentage
breakdown

48

Snapshot Replay in ParaProf
All windows dynamically update

49

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

PerfExplorer – Runtime Breakdown

MPI_Waitall

WRITE_SAVEFILE

50

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

PerfExplorer – Relative
Comparisons

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

51

• Total execution time
• Timesteps per second
• Relative efficiency
• Relative efficiency per event
• Relative speedup
• Relative speedup per event
• Group fraction of total
• Runtime breakdown
• Correlate events with total runtime
• Relative efficiency per phase
• Relative speedup per phase
• Distribution visualizations

PerfExplorer – Correlation Analysis

Data: FLASH on BGL(LLNL), 64 nodes

Strong negative linear correlation between
CALC_CUT_BLOCK_CONTRIBUTIONS

and MPI_Barrier

52

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

PerfExplorer – Correlation Analysis

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

53

• -0.995 indicates
strong, negative
relationship

• As CALC_CUT_
BLOCK_CONTRIB
UTIONS()
increases in
execution time,
MPI_Barrier()
decreases

PerfExplorer – Cluster Analysis

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

54

PerfExplorer – Cluster Analysis

• Four significant events automatically
selected

• Clusters and correlations are visible

55

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

PerfExplorer – Performance
Regression

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

56

Other Projects in TAU

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

57

• TAU Portal
– Support collaborative performance study

• Kernel-level system measurements (KTAU)
– Application to OS noise analysis and I/O system

analysis
• TAU performance monitoring

– TAUoverSupermon and TAUoverMRNet
• PerfExplorer integration and expert-based analysis

– OpenUH compiler optimizations
– Computational quality of service in CCA

• Eclipse CDT and PTP integration
• Performance tools integration (NSF POINT

project)

Using TAU

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

58

• Install TAU
– % configure [options]; make clean install

• Modify application makefile and choose TAU
configuration
– Select TAU’s stub makefile
– Change name of compiler in makefile

• Set environment variables
– Directory where profiles/traces are to be stored/counter

selection
– TAU options

• Execute application
– % mpirun –np <procs> a.out;

• Analyze performance data
– paraprof, vampir, pprof, paraver …

Application Build Environment

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

59

• Minimize impact on user’s application build
procedures

• Handle parsing, instrumentation, compilation,
linking

• Dealing with Makefiles
– Minimal change to application Makefile
– Avoid changing compilation rules in application

Makefile
– No explicit inclusion of rules for process stages

• Some applications do not use Makefiles
– Facilitate integration in whatever procedures used

• Two techniques:
– TAU shell scripts (tau_<compiler>.sh)

• Invokes all PDT parser, TAU instrumenter, and compiler
– TAU_COMPILER

Configuring TAU

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

60

• TAU can measure several metrics with
profiling and tracing approaches

• Different tools can also be invoked to
instrument programs for TAU measurement

• Each configuration of TAU produces a
measurement library for an architecture

• Each measurement configuration of TAU also
creates a corresponding stub makefile that
can be used to compile programs

• Typically configure multiple measurement
libraries

TAU Measurement System
Configuration

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

61

• configure [OPTIONS]
– {-c++=<CC>, -cc=<cc>} Specify C++ and C compilers
– -pdt=<dir> Specify location of PDT
– -opari=<dir> Specify location of Opari OpenMP tool
– -papi=<dir> Specify location of PAPI
– -vampirtrace=<dir> Specify location of VampirTrace
– -mpi[inc/lib]=<dir> Specify MPI library instrumentation
– -dyninst=<dir> Specify location of DynInst Package
– -shmem[inc/lib]=<dir> Specify PSHMEM library instrumentation
– -python[inc/lib]=<dir> Specify Python instrumentation
– -tag=<name> Specify a unique configuration name
– -epilog=<dir> Specify location of EPILOG
– -slog2 Build SLOG2/Jumpshot tracing package
– -otf=<dir> Specify location of OTF trace package
– -arch=<architecture> Specify architecture explicitly

(bgl, xt3,ibm64,ibm64linux…)
– {-pthread, -sproc} Use pthread or SGI sproc threads
– -openmp Use OpenMP threads
– -jdk=<dir> Specify Java instrumentation (JDK)
– -fortran=[vendor] Specify Fortran compiler

TAU Measurement System
Configuration

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

62

• configure [OPTIONS]
– -TRACE Generate binary TAU traces
– -PROFILE (default) Generate profiles (summary)
– -PROFILECALLPATH Generate call path profiles
– -PROFILEPHASE Generate phase based profiles
– -PROFILEMEMORY Track heap memory for each routine
– -PROFILEHEADROOM Track memory headroom to grow
– -MULTIPLECOUNTERS Use hardware counters + time
– -COMPENSATE Compensate timer overhead
– -CPUTIME Use usertime+system time
– -PAPIWALLCLOCK Use PAPI’s wallclock time
– -PAPIVIRTUAL Use PAPI’s process virtual time
– -SGITIMERS Use fast IRIX timers
– -LINUXTIMERS Use fast x86 Linux timers

TAU Configuration – Examples

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

63

• Configure using PDT and MPI for x86_64 Linux
./configure –pdt=/usr/pkgs/pkgs/pdtoolkit-3.14

-mpiinc=/usr/pkgs/mpich/include -mpilib=
/usr/pkgs/mpich/lib
-mpilibrary=‘-lmpich -L/usr/gm/lib64 -lgm -lpthread -ldl’

• Use PAPI counters (one or more) with C/C++/F90
automatic instrumentation for Cray CNL. Also
instrument the MPI library. Use PGI compilers.
./configure -arch=craycnl -cc=cc -c++=CC -fortran=pgi -papi=

/opt/xt-tools/papi/3.2.1 -mpi -MULTIPLECOUNTERS; make
clean install

• Stub makefiles
/usr/pkgs/tau/x86_64/lib/Makefile.tau-mpi-pdt-pgi
/usr/pkgs/tau/x86_64/lib/Makefile.tau-multiplecounters-

mpi-papi-pdt-pgi

Stub Makefiles Configuration
Parameters

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

64

• TAU scripts use stub makefiles to select performance
measurements

• Variables:
– TAU_CXX Specify the C++ compiler used by TAU
– TAU_CC, TAU_F90 Specify the C, F90 compilers
– TAU_DEFS Defines used by TAU (add to CFLAGS)
– TAU_LDFLAGS Linker options (add to LDFLAGS)
– TAU_INCLUDE Header files include path (add to CFLAGS)
– TAU_LIBS Statically linked TAU library (add to LIBS)
– TAU_SHLIBS Dynamically linked TAU library
– TAU_MPI_LIBS TAU’s MPI wrapper library for C/C++
– TAU_MPI_FLIBS TAU’s MPI wrapper library for F90
– TAU_FORTRANLIBS Must be linked in with C++ linker for F90
– TAU_CXXLIBS Must be linked in with F90 linker
– TAU_INCLUDE_MEMORY Use TAU’s malloc/free wrapper lib
– TAU_DISABLE TAU’s dummy F90 stub library
– TAU_COMPILER Instrument using tau_compiler.sh script

TAU Measurement Configuration

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

65

• % cd /opt/tau-2.18/x86_64/lib; ls Makefile.*
– Makefile.tau-pdt
– Makefile.tau-mpi-pdt
– Makefile.tau-callpath-mpi-pdt
– Makefile.tau-mpi-pdt-trace
– Makefile.tau-mpi-compensate-pdt
– Makefile.tau-multiplecounters-mpi-papi-pdt
– Makefile.tau-multiplecounters-mpi-papi-pdt-trace
– Makefile.tau-pthread-pdt…

• For an MPI+F90 application, you may want to start with:
– Makefile.tau-mpi-pdt
– Supports MPI instrumentation & PDT for automatic source

instrumentation
• % setenv TAU_MAKEFILE

 /opt/tau-2.18/x86_64/lib/Makefile.tau-mpi-pdt

-PROFILE Option

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

66

• Generates flat profiles
– One for each MPI process
– It is the default option.

• Uses wallclock time
– gettimeofday() sys call

• Calculates exclusive, inclusive time spent
in each timer and number of calls

Generating a Flat Profile with
MPI

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

67

% setenv TAU_MAKEFILE /opt/tau-2.18/x86_64
/lib/Makefile.tau-mpi-pdt

% set path=(/opt/tau-2.18/x86_64/bin $path)
% make F90=tau_f90.sh
(Or edit Makefile and change F90=tau_f90.sh)

% qsub run.job
% paraprof -–pack app.ppk
Move the app.ppk file to your desktop.

% paraprof app.ppk

Generating a Loop-level Profile

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

68

% setenv TAU_MAKEFILE /opt/tau-2.18/x86_64
/lib/Makefile.tau-mpi-pdt

% setenv TAU_OPTIONS ‘-optTauSelectFile=select.tau –optVerbose’
% cat select.tau
 BEGIN_INSTRUMENT_SECTION
 loops routine=“#”
 END_INSTRUMENT_SECTION

% set path=(/opt/tau-2.18/x86_64/bin $path)
% make F90=tau_f90.sh
(Or edit Makefile and change F90=tau_f90.sh)
% qsub run.job
% paraprof -–pack app.ppk
Move the app.ppk file to your desktop.

% paraprof app.ppk

Compiler-based Instrumentation

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

69

% setenv TAU_MAKEFILE /opt/tau-2.18/x86_64
/lib/Makefile.tau-mpi

% setenv TAU_OPTIONS ‘-optCompInst –optVerbose’
% % set path=(/opt/tau-2.18/x86_64/bin $path)
% make F90=tau_f90.sh
(Or edit Makefile and change F90=tau_f90.sh)

% qsub run.job
% paraprof -–pack app.ppk
Move the app.ppk file to your desktop.

% paraprof app.ppk

-MULTIPLECOUNTERS Option

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

70

• Instead of one metric, profile or trace with more than one
metric
– Set environment variables COUNTER[1-25] to specify the metric

• % setenv COUNTER1 GET_TIME_OF_DAY
• % setenv COUNTER2 PAPI_L2_DCM
• % setenv COUNTER3 PAPI_FP_OPS
• % setenv COUNTER4 PAPI_NATIVE_<native_event>
• % setenv COUNTER5 P_WALL_CLOCK_TIME …

• When used with –TRACE option, the first counter must be
GET_TIME_OF_DAY

• % setenv COUNTER1 GET_TIME_OF_DAY
• Provides a globally synchronized real time clock for tracing

• -multiplecounters appears in the name of the stub Makefile
• Often used with –papi=<dir> to measure hardware

performance counters and time
• papi_native_avail and papi_avail are two useful tools

Generate a PAPI profile

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

71

% setenv TAU_MAKEFILE /opt/tau-2.18/x86_64
/lib/Makefile.tau-multiplecounters-papi-mpi-pdt

% setenv TAU_OPTIONS ‘-optTauSelectFile=select.tau –optVerbose’
% cat select.tau
 BEGIN_INSTRUMENT_SECTION
 loops routine=“#”
 END_INSTRUMENT_SECTION

% set path=(/opt/tau-2.18/x86_64/bin $path)
% make F90=tau_f90.sh
(Or edit Makefile and change F90=tau_f90.sh)
% setenv COUNTER1 GET_TIME_OF_DAY
% setenv COUNTER2 PAPI_FP_INS
% qsub run.job
% paraprof -–pack app.ppk

Move the app.ppk file to your desktop.
% paraprof app.ppk
 Choose Options -> Show Derived Panel -> Arg 1 = PAPI_FP_INS,

 Arg 2 = GET_TIME_OF_DAY, Operation = Divide -> Apply, choose.

-PROFILECALLPATH Option

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

72

• Generates profiles that show the calling
order (edges and nodes in callgraph)
– A=>B=>C shows the time spent in C when it

was called by B and B was called by A

– Control the depth of callpath using
TAU_CALLPATH_DEPTH environment
variable

– -callpath in the name of the stub Makefile
name or setting TAU_CALLPATH= 1 at
runtime
(TAU v2.18.1+)

-DEPTHLIMIT Option

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

73

• Allows users to enable instrumentation at runtime
based on the depth of a calling routine on a callstack
– Disables instrumentation in all routines a certain depth

away from the root in a callgraph
• TAU_DEPTH_LIMIT environment variable specifies

depth
– % setenv TAU_DEPTH_LIMIT 1
– enables instrumentation in only “main”
– % setenv TAU_DEPTH_LIMIT 2
– enables instrumentation in main and routines that are

directly called by main

• Stub makefile has -depthlimit in its name:
– setenv TAU_MAKEFILE <taudir>/<arch>/lib/Makefile.tau-

icpc-mpi-depthlimit-pdt

Generate a Callpath Profile

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

74

% setenv TAU_MAKEFILE /opt/tau-2.18/x86_64
/lib/Makefile.tau-callpath-mpi-pdt

% set path=(/opt/tau-2.18/x86_64/bin $path)

% make F90=tau_f90.sh

(Or edit Makefile and change F90=tau_f90.sh)

% setenv TAU_CALLPATH_DEPTH 100

NOTE: In TAU v2.18.1+ you may simply use:

% setenv TAU_CALLPATH 1

to generate the callpath profiles without any recompilation.

% qsub run.job

% paraprof -–pack app.ppk

Move the app.ppk file to your desktop.

% paraprof app.ppk

(Windows -> Thread -> Call Graph)

-TRACE Configuration Option

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

75

• Generates event-trace logs, rather than summary profiles
• Traces show when and where an event occurred in terms of

location and the process that executed it
• Traces from multiple processes are merged:

– % tau_treemerge.pl
• generates tau.trc and tau.edf as merged trace and event definition file

• TAU traces can be converted to Vampir’s OTF/VTF3,
Jumpshot SLOG2, Paraver trace formats:
– % tau2otf tau.trc tau.edf app.otf
– % tau2vtf tau.trc tau.edf app.vpt.gz
– % tau2slog2 tau.trc tau.edf -o app.slog2
– % tau_convert -paraver tau.trc tau.edf app.prv

• Stub Makefile has -trace in its name
– % setenv TAU_MAKEFILE <taudir>/<arch>/lib/Makefile.tau-icpc-

mpi-pdt-trace

Generate a Trace File

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

76

% setenv TAU_MAKEFILE /opt/tau-2.18/x86_64
/lib/Makefile.tau-mpi-pdt-trace

% set path=(/opt/tau-2.18/x86_64/bin $path)
% make F90=tau_f90.sh
(Or edit Makefile and change F90=tau_f90.sh)
% qsub run.job
% tau_treemerge.pl
(merges binary traces to create tau.trc and tau.edf files)
JUMPSHOT:
% tau2slog2 tau.trc tau.edf –o app.slog2
% jumpshot app.slog2
 OR
VAMPIR:
% tau2otf tau.trc tau.edf app.otf –n 4 –z
(4 streams, compressed output trace)
% vampir app.otf
(or vng client with vngd server)

Instrumentation Specification

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

77

% tau_instrumentor
Usage : tau_instrumentor <pdbfile> <sourcefile> [-o <outputfile>] [-noinline]
[-g groupname] [-i headerfile] [-c|-c++|-fortran] [-f <instr_req_file>]
For selective instrumentation, use –f option
% tau_instrumentor foo.pdb foo.cpp –o foo.inst.cpp –f selective.dat
% cat selective.dat
Selective instrumentation: Specify an exclude/include list of routines/files.
BEGIN_EXCLUDE_LIST
void quicksort(int *, int, int)
void sort_5elements(int *)
void interchange(int *, int *)
END_EXCLUDE_LIST

BEGIN_FILE_INCLUDE_LIST
Main.cpp
Foo?.c
*.C
END_FILE_INCLUDE_LIST
Instruments routines in Main.cpp, Foo?.c and *.C files only
Use BEGIN_[FILE]_INCLUDE_LIST with END_[FILE]_INCLUDE_LIST

Outer Loop Level
Instrumentation

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

78

BEGIN_INSTRUMENT_SECTION
loops file="loop_test.cpp" routine="multiply"
it also understands # as the wildcard in routine name
and * and ? wildcards in file name.
You can also specify the full
name of the routine as is found in profile files.
#loops file="loop_test.cpp" routine="double multiply#"
END_INSTRUMENT_SECTION

% pprof
NODE 0;CONTEXT 0;THREAD 0:

%Time Exclusive Inclusive #Call #Subrs Inclusive Name
 msec total msec usec/call

100.0 0.12 25,162 1 1 25162827 int main(int, char **)
100.0 0.175 25,162 1 4 25162707 double multiply()
 90.5 22,778 22,778 1 0 22778959 Loop: double multiply()[
file = <loop_test.cpp> line,col = <23,3> to <30,3>]
 9.3 2,345 2,345 1 0 2345823 Loop: double multiply()[
file = <loop_test.cpp> line,col = <38,3> to <46,7>]
 0.1 33 33 1 0 33964 Loop: double
multiply()[file = <loop_test.cpp> line,col = <16,10> to <21,12>]

Support Acknowledgements
• Department of Energy (DOE)

– Office of Science
• MICS, Argonne National Lab

– ASC/NNSA
• University of Utah ASC/NNSA Level 1
• ASC/NNSA, Lawrence Livermore National Lab

• Department of Defense (DoD)
– HPC Modernization Office (HPCMO)

• NSF Software Development for Cyberinfrastructure (SDCI)
• Research Centre Juelich
• Los Alamos National Laboratory
• TU Dresden
• ParaTools, Inc.

79

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

For more information

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

80

• TAU Website:
http://tau.uoregon.edu

– Software

– Release notes
– Documentation

