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• Tuning and Analysis Utilities (16+ year 
project)

• Performance problem solving framework for 
HPC
– Integrated, scalable, flexible, portable
– Target all parallel programming / execution 

paradigms

• Integrated performance toolkit (open source) 
– Instrumentation, measurement, analysis, 

visualization
– Widely-ported performance profiling / tracing 

system
– Performance data management and data mining

• Broad application use (NSF, DOE, DOD, …)



TAU Performance System 
Components

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

3

TAU Architecture Program Analysis

Parallel Profile Analysis 

PD
T

Pe
rf

D
M

F
Pa

ra
Pr

of

Performance Data Mining

Performance Monitoring

T
A

U
ov

er
Su

pe
rm

on

PerfExplorer



Building Bridges to Other Tools
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TAU Instrumentation / 
Measurement
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Direct Performance Observation
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• Execution actions of interest exposed as events
– In general, actions reflect some execution state

• presence at a code location or change in data
• occurrence in parallelism context (thread of execution)

– Events encode actions for performance system to 
observe

• Observation is direct
– Direct instrumentation of program (system) code 

(probes)
– Instrumentation invokes performance measurement
– Event measurement: performance data, meta-data, 

context
• Performance experiment

– Actual events + performance measurements
• Contrast with (indirect) event-based sampling



TAU Instrumentation Approach
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• Support for standard program events
– Routines, classes and templates
– Statement-level blocks
– Begin/End events (Interval events)

• Support for user-defined events
– Begin/End events specified by user
– Atomic events (e.g., size of memory allocated/freed)
– Flexible selection of event statistics

• Provides static events and dynamic events
• Enables “semantic” mapping
• Specification of event groups (aggregation, 

selection)
• Instrumentation optimization



TAU Event Interface
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• Events have a type, a group association, and a 
name

• TAU events names are character strings
– Powerful way to encode event information
– Inefficient way to communicate each event 

occurrence
• TAU maps a new event name to an event ID

– Done when event is first encountered (get event 
handle)

– Event ID is used for subsequent event occurrences
– Assigning a uniform event ID a priori is problematic

• A new event is identified by a new event name in 
TAU
– Can create new event names at runtime
– Allows for dynamic events (TAU renames events)
– Allows for context-base, parameter-based, phase 

events



TAU Instrumentation 
Mechanisms
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• Source code
– Manual (TAU API, TAU component API)
– Automatic (robust)

• C, C++, F77/90/95 (Program Database Toolkit (PDT))
• OpenMP (directive rewriting (Opari), POMP2 spec)
• Library header wrapping

• Object code
– Pre-instrumented libraries (e.g., MPI using PMPI)
– Statically- and dynamically-linked (with LD_PRELOAD)

• Executable code
– Binary and dynamic instrumentation (Dyninst)
– Virtual machine instrumentation (e.g., Java using JVMPI)

• TAU_COMPILER to automate instrumentation process



Automatic Source-level Instrumentation
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Program Database Toolkit 
(PDT)
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MPI Wrapper Interposition 
Library
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• Uses standard MPI Profiling Interface
– Provides name shifted interface 

• MPI_Send = PMPI_Send
• Weak bindings 

• Create TAU instrumented MPI library
– Interpose between MPI and TAU
– Done during program link

• -lmpi replaced by –lTauMpi –lpmpi –lmpi

– No change to the source code!
– Just re-link application to generate performance 

data



MPI Shared Library Instrumentation

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

13

• Interpose the MPI wrapper library for 
applications that have already been compiled
– Avoid re-compilation or re-linking

• Requires shared library MPI
– Uses LD_PRELOAD for Linux
– On AIX use MPI_EUILIB / MPI_EUILIBPATH
– Does not work on XT3

• Approach will work with other shared libraries
• Use TAU tauex

– % mpirun -np 4 tauex a.out



Selective Instrumentation File
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• Specify a list of events to exclude or include
• # is a wildcard in a routine name

  BEGIN_EXCLUDE_LIST
  Foo
  Bar
  D#EMM
  END_EXCLUDE_LIST
  BEGIN_INCLUDE_LIST
  int main(int, char **)
  F1
  F3
  END_INCLUDE_LIST



Selective Instrumentation File
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• Optionally specify a list of files
• * and ? may be used as wildcard characters

BEGIN_FILE_EXCLUDE_LIST
f*.f90
Foo?.cpp 
END_FILE_EXCLUDE_LIST
BEGIN_FILE_INCLUDE_LIST
main.cpp
foo.f90
END_FILE_INCLUDE_LIST



Selective Instrumentation File
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• User instrumentation commands
– Placed in INSTRUMENT section
– Routine entry/exit
– Arbitrary code insertion
– Outer-loop level instrumentation

BEGIN_INSTRUMENT_SECTION
loops file=“foo.f90” routine=“matrix#”
memory file=“foo.f90” routine=“#” 
io routine=“matrix#”
[static/dynamic] phase routine=“MULTIPLY”
dynamic [phase/timer] name=“foo” file=“foo.cpp” line=22 to line=35
file=“foo.f90” line = 123 code = "  print *, \" Inside foo\""
exit routine = “int foo()” code = "cout <<\"exiting foo\"<<endl;”
END_INSTRUMENT_SECTION



TAU Measurement Approach
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• Portable and scalable parallel profiling solution
– Multiple profiling types and options
– Event selection and control (enabling/disabling, 

throttling)
– Online profile access and sampling
– Online performance profile overhead compensation

• Portable and scalable parallel tracing solution
– Trace translation to OTF, EPILOG, Paraver, and 

SLOG2
– Trace streams (OTF) and hierarchical trace merging

• Robust timing and hardware performance support
• Multiple counters (hardware, user-defined, system)
• Performance measurement of I/O and Linux kernel



TAU Measurement Mechanisms
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• Parallel profiling
– Function-level, block-level, statement-level
– Supports user-defined events and mapping events
– Support for flat, callgraph/callpath, phase profiling
– Support for parameter and context profiling
– Support for tracking I/O and memory (library 

wrappers)
– Parallel profile stored (dumped, shapshot) during 

execution
• Tracing

– All profile-level events
– Inter-process communication events
– Inclusion of multiple counter data in traced events



Types of Parallel Performance Profiling
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• Flat profiles
– Metric (e.g., time) spent in an event (callgraph 

nodes)
– Exclusive/inclusive, # of calls, child calls

• Callpath profiles (Calldepth profiles)
– Time spent along a calling path (edges in 

callgraph)
– “main=> f1 => f2 => MPI_Send” (event name)
– TAU_CALLPATH_DEPTH environment variable

• Phase profiles
– Flat profiles under a phase (nested phases are 

allowed)
– Default “main” phase
– Supports static or dynamic (per-iteration) phases



TAU Analysis

20

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS



Performance Analysis
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• Analysis of parallel profile and trace measurement
• Parallel profile analysis (ParaProf)

– Java-based analysis and visualization tool
– Support for large-scale parallel profiles

• Performance data management framework 
(PerfDMF)

• Parallel trace analysis
– Translation to VTF (V3.0), EPILOG, OTF formats
– Integration with Vampir / Vampir Server (TU Dresden)
– Profile generation from trace data

• Online parallel analysis and visualization
• Integration with CUBE browser (Scalasca, UTK / 

FZJ)



ParaProf Profile Analysis Framework
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Performance Data Management
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• Provide an open, flexible framework to support 
common data management tasks
– Foster multi-experiment performance evaluation 

• Extensible toolkit to promote integration and reuse 
across available performance tools (PerfDMF)
– Originally designed to address critical TAU 

requirements
– Supported profile formats:

TAU, CUBE (Scalasca), HPC Toolkit (Rice), HPM Toolkit (IBM), 
gprof, mpiP, psrun (PerfSuite), Open|SpeedShop, …

– Supported DBMS:
PostgreSQL, MySQL, Oracle, DB2, Derby/Cloudscape

– Profile query and analysis API
• Reference implementation for PERI-DB project



PerfDMF Architecture
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Metadata Collection
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• Integration of XML metadata for each parallel 
profile

• Three ways to incorporate metadata
– Measured hardware/system information (TAU, PERI-

DB)
• CPU speed, memory in GB, MPI node IDs, …

– Application instrumentation (application-specific)
• TAU_METADATA() used to insert any name/value pair
• Application parameters, input data, domain decomposition

– PerfDMF data management tools can incorporate an 
XML file of additional metadata

• Compiler flags, submission scripts, input files, …

• Metadata can be imported from / exported to 
PERI-DB



Performance Data Mining / 
Analytics
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• Conduct systematic and scalable analysis process
– Multi-experiment performance analysis
– Support automation, collaboration, and reuse

• Performance knowledge discovery framework
– Data mining analysis applied to parallel performance 

data
• comparative, clustering, correlation, dimension reduction, …

– Use the existing TAU infrastructure
• PerfExplorer v1 performance data mining 

framework
– Multiple experiments and parametric studies
– Integrate available statistics and data mining 

packages
• Weka, R, Matlab / Octave

– Apply data mining operations in interactive enviroment



How to explain performance?
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• Should not just redescribe the performance results
• Should explain performance phenomena

– What are the causes for performance observed?
– What are the factors and how do they interrelate?
– Performance analytics, forensics, and decision 

support
• Need to add knowledge to do more intelligent 

things
– Automated analysis needs good informed feedback

• iterative tuning, performance regression testing
– Performance model generation requires interpretation

• We need better methods and tools for
– Integrating meta-information
– Knowledge-based performance problem solving



Role of Metadata and Knowledge 
Role
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Performance KnowledgePerformance Knowledge

SourceSource
CodeCode

Build Build 
EnvironmentEnvironment

Run Run 
EnvironmentEnvironment

Performance Result

Execution

You have to 
capture these...

...to understand 
this

ApplicationApplication MachineMachine

Performance Performance 
ProblemsProblems

Context KnowledgeContext Knowledge



PerfExplorer v2 – Requirements
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• Component-based analysis process
– Analysis operations implemented as modules
– Linked together in analysis process and workflow

• Scripting
– Provides process/workflow development and 

automation
• Metadata input, management, and access
• Inference engine

– Reasoning about causes of performance phenomena
– Analysis knowledge captured in expert rules

• Persistence of intermediate analysis results
• Provenance

– Provides historical record of analysis results



PerfExplorer v2 Architecture
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Parallel Profile Analysis – pprof
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Parallel Profile Analysis – ParaProf

HPMToolkit

MpiP

TAU

Raw files

PerfDMF
managed
(database)

Metadata

Application

Experiment

Trial
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Metadata for Each Experiment

Multiple PerfDMF DBs
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ParaProf – Flat Profile

8K processorsnode, context, thread

Miranda
 hydrodynamics
 Fortran + MPI
 LLNL BG/L
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ParaProf – Stacked View 
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ParaProf – Callpath Profile
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Flash
 thermonuclear
      flashes
 Fortran + MPI
 Argonne
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ParaProf  – Scalable Histogram
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8k processors 16k processors



ParaProf – 3D View (Full 
Profile)

256 processors

Matrix multiplication
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ParaProf – 3D View (Full 
Profile)

16k processors

Miranda

39

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS



ParaProf – 3D Scatterplot
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• Each point is a “thread” of execution

• A total of four metrics
shown in relation

• ParaProf’s
visualization
library
– JOGL

• Miranda



Performance Mapping

• Example: Particles distributed on cube 
surfaceParticle* P[MAX]; /* Array of particles */

int GenerateParticles() {

/* distribute particles over all faces of the cube */

for (int face=0, last=0; face < 6; face++){ 

/* particles on this face */

int particles_on_this_face = num(face);

for (int i=last; i < particles_on_this_face; i++) {

/* particle properties are a function of face */ 
P[i] = ... f(face);

...

}

last+= particles_on_this_face;

}

}
41
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Performance Mapping
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• How much time (flops) spent processing face i 
particles?

• What is the distribution of performance among faces?

int ProcessParticle(Particle *p) {

/* perform some computation on p */

}

int main() {

GenerateParticles();

/* create a list of particles */

for (int i = 0; i < N; i++)

/* iterates over the list */

ProcessParticle(P[i]);

}

…

engine

work
packets



No Mapping versus Mapping

• Typical performance 
tools report 
performance with 
respect to routines

• Does not provide 
support for mapping

• TAU’s performance 
mapping can observe 
performance with 
respect to scientist’s 
programming and 
problem abstractions 

TAU (no mapping) TAU (w/ mapping)

43
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NAS BT – Flat Profile

How is MPI_Wait()
distributed relative to
solver direction?

Application routine names
reflect phase semantics
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NAS BT – Phase Profile
Main phase shows nested phases and immediate events
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Phase Profiling of HW Counters
• GTC particle-in-cell simulation of fusion turbulence
• Phases assigned to

iterations
• Poor temporal locality for

one important data
• Automatically generated

by PE2 python script

increasing phase
execution time

decreasing 
flops rate

declining cache
performance

46
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Profile Snapshots in ParaProf
• Profile snapshots are parallel profiles recorded at 

runtime
• Shows performance profile dynamics (all types 

allowed)

Initialization

Checkpointing

Finalization

47
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SC ‘09: Productive Performance Engineering of Petascale Applications 
with POINT and VI-HPS

Profile Snapshot Views

• Only show main loop • Percentage 
breakdown

48



Snapshot Replay in ParaProf
All windows dynamically update

49
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PerfExplorer – Runtime Breakdown

MPI_Waitall

WRITE_SAVEFILE
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PerfExplorer – Relative 
Comparisons

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

51

• Total execution time
• Timesteps per second
• Relative efficiency
• Relative efficiency per event
• Relative speedup
• Relative speedup per event
• Group fraction of total
• Runtime breakdown
• Correlate events with total runtime
• Relative efficiency per phase
• Relative speedup per phase
• Distribution visualizations



PerfExplorer – Correlation Analysis

Data: FLASH on BGL(LLNL), 64 nodes  

Strong negative linear correlation between
CALC_CUT_BLOCK_CONTRIBUTIONS

and MPI_Barrier

52
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PerfExplorer – Correlation Analysis
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• -0.995 indicates 
strong, negative 
relationship

• As CALC_CUT_
BLOCK_CONTRIB
UTIONS() 
increases in 
execution time, 
MPI_Barrier() 
decreases



PerfExplorer – Cluster Analysis 
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PerfExplorer – Cluster Analysis

• Four significant events automatically 
selected

• Clusters and correlations are visible
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PerfExplorer – Performance 
Regression
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Other Projects in TAU
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• TAU Portal
– Support collaborative performance study

• Kernel-level system measurements (KTAU)
– Application to OS noise analysis and I/O system 

analysis
• TAU performance monitoring

– TAUoverSupermon and TAUoverMRNet
• PerfExplorer integration and expert-based analysis

– OpenUH compiler optimizations
– Computational quality of service in CCA

• Eclipse CDT and PTP integration
• Performance tools integration (NSF POINT 

project)



Using TAU
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• Install TAU
– % configure [options]; make clean install   

• Modify application makefile and choose TAU 
configuration
– Select TAU’s stub makefile
– Change name of compiler in makefile

• Set environment variables
– Directory where profiles/traces are to be stored/counter 

selection
– TAU options

• Execute application
– % mpirun –np <procs> a.out; 

• Analyze performance data
– paraprof, vampir, pprof, paraver …



Application Build Environment
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• Minimize impact on user’s application build 
procedures

• Handle parsing, instrumentation, compilation, 
linking

• Dealing with Makefiles
– Minimal change to application Makefile
– Avoid changing compilation rules in application 

Makefile
– No explicit inclusion of rules for process stages

• Some applications do not use Makefiles
– Facilitate integration in whatever procedures used

• Two techniques:
– TAU shell scripts (tau_<compiler>.sh)

• Invokes all PDT parser, TAU instrumenter, and compiler
– TAU_COMPILER



Configuring TAU
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• TAU can measure several metrics with 
profiling and tracing approaches

• Different tools can also be invoked to 
instrument programs for TAU measurement

• Each configuration of TAU produces a 
measurement library for an architecture

• Each measurement configuration of TAU also 
creates a corresponding stub makefile that 
can be used to compile programs

• Typically configure multiple measurement 
libraries



TAU Measurement System 
Configuration
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• configure [OPTIONS]
– {-c++=<CC>, -cc=<cc>} Specify C++ and C compilers
– -pdt=<dir> Specify location of PDT 
– -opari=<dir> Specify location of Opari OpenMP tool
– -papi=<dir> Specify location of PAPI 
– -vampirtrace=<dir> Specify location of VampirTrace
– -mpi[inc/lib]=<dir> Specify MPI library instrumentation 
– -dyninst=<dir> Specify location of DynInst Package
– -shmem[inc/lib]=<dir> Specify PSHMEM library instrumentation
– -python[inc/lib]=<dir> Specify Python instrumentation
– -tag=<name> Specify a unique configuration name
– -epilog=<dir> Specify location of EPILOG 
– -slog2 Build SLOG2/Jumpshot tracing package
– -otf=<dir> Specify location of OTF trace package
– -arch=<architecture> Specify architecture explicitly 

(bgl, xt3,ibm64,ibm64linux…) 
– {-pthread, -sproc} Use pthread or SGI sproc threads
– -openmp Use OpenMP threads
– -jdk=<dir> Specify Java instrumentation (JDK) 
– -fortran=[vendor] Specify Fortran compiler



TAU Measurement System 
Configuration
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• configure [OPTIONS]
– -TRACE Generate binary TAU traces
– -PROFILE (default) Generate profiles (summary)
– -PROFILECALLPATH Generate call path profiles
– -PROFILEPHASE Generate phase based profiles
– -PROFILEMEMORY Track heap memory for each routine
– -PROFILEHEADROOM Track memory headroom to grow
– -MULTIPLECOUNTERS Use hardware counters + time
– -COMPENSATE Compensate timer overhead
– -CPUTIME Use usertime+system time 
– -PAPIWALLCLOCK Use PAPI’s wallclock time
– -PAPIVIRTUAL Use PAPI’s process virtual time
– -SGITIMERS Use fast IRIX timers
– -LINUXTIMERS Use fast x86 Linux timers



TAU Configuration – Examples
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• Configure using PDT and MPI for x86_64 Linux
./configure –pdt=/usr/pkgs/pkgs/pdtoolkit-3.14 

-mpiinc=/usr/pkgs/mpich/include -mpilib=
/usr/pkgs/mpich/lib 
-mpilibrary=‘-lmpich -L/usr/gm/lib64 -lgm -lpthread -ldl’

• Use PAPI counters (one or more) with C/C++/F90 
automatic instrumentation for Cray CNL. Also 
instrument the MPI library. Use PGI compilers.
./configure -arch=craycnl -cc=cc -c++=CC -fortran=pgi -papi=

/opt/xt-tools/papi/3.2.1 -mpi -MULTIPLECOUNTERS; make 
clean install

• Stub makefiles
/usr/pkgs/tau/x86_64/lib/Makefile.tau-mpi-pdt-pgi
/usr/pkgs/tau/x86_64/lib/Makefile.tau-multiplecounters-

mpi-papi-pdt-pgi



Stub Makefiles Configuration 
Parameters
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• TAU scripts use stub makefiles to select performance 
measurements

• Variables:
– TAU_CXX Specify the C++ compiler used by TAU
– TAU_CC, TAU_F90 Specify the C, F90 compilers
– TAU_DEFS Defines used by TAU (add to CFLAGS)
– TAU_LDFLAGS Linker options (add to LDFLAGS)
– TAU_INCLUDE Header files include path (add to CFLAGS)
– TAU_LIBS Statically linked TAU library (add to LIBS)
– TAU_SHLIBS Dynamically linked TAU library
– TAU_MPI_LIBS TAU’s MPI wrapper library for C/C++
– TAU_MPI_FLIBS TAU’s MPI wrapper library for F90
– TAU_FORTRANLIBS Must be linked in with C++ linker for F90
– TAU_CXXLIBS Must be linked in with F90 linker 
– TAU_INCLUDE_MEMORY Use TAU’s malloc/free wrapper lib
– TAU_DISABLE TAU’s dummy F90 stub library
– TAU_COMPILER Instrument using tau_compiler.sh script



TAU Measurement Configuration
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• % cd /opt/tau-2.18/x86_64/lib; ls Makefile.*
– Makefile.tau-pdt
– Makefile.tau-mpi-pdt
– Makefile.tau-callpath-mpi-pdt
– Makefile.tau-mpi-pdt-trace
– Makefile.tau-mpi-compensate-pdt
– Makefile.tau-multiplecounters-mpi-papi-pdt
– Makefile.tau-multiplecounters-mpi-papi-pdt-trace
– Makefile.tau-pthread-pdt…

• For an MPI+F90 application, you may want to start with:
– Makefile.tau-mpi-pdt
– Supports MPI instrumentation & PDT for automatic source 

instrumentation
• % setenv TAU_MAKEFILE 

    /opt/tau-2.18/x86_64/lib/Makefile.tau-mpi-pdt



-PROFILE Option 
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• Generates flat profiles
– One for each MPI process
– It is the default option.

• Uses wallclock time
– gettimeofday() sys call

• Calculates exclusive, inclusive time spent 
in each timer and number of calls



Generating a Flat Profile with 
MPI
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% setenv TAU_MAKEFILE /opt/tau-2.18/x86_64
/lib/Makefile.tau-mpi-pdt

% set path=(/opt/tau-2.18/x86_64/bin $path)
% make F90=tau_f90.sh
(Or edit Makefile and change F90=tau_f90.sh)

% qsub run.job
% paraprof -–pack app.ppk
Move the app.ppk file to your desktop. 

% paraprof app.ppk



Generating a Loop-level Profile
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% setenv TAU_MAKEFILE /opt/tau-2.18/x86_64
/lib/Makefile.tau-mpi-pdt

% setenv TAU_OPTIONS ‘-optTauSelectFile=select.tau –optVerbose’
% cat select.tau
  BEGIN_INSTRUMENT_SECTION
  loops routine=“#”
  END_INSTRUMENT_SECTION

% set path=(/opt/tau-2.18/x86_64/bin $path)
% make F90=tau_f90.sh
(Or edit Makefile and change F90=tau_f90.sh)
% qsub  run.job
% paraprof -–pack app.ppk
Move the app.ppk file to your desktop. 

% paraprof app.ppk



Compiler-based Instrumentation
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% setenv TAU_MAKEFILE /opt/tau-2.18/x86_64
/lib/Makefile.tau-mpi

% setenv TAU_OPTIONS ‘-optCompInst –optVerbose’
% % set path=(/opt/tau-2.18/x86_64/bin $path)
% make F90=tau_f90.sh
(Or edit Makefile and change F90=tau_f90.sh)

% qsub  run.job
% paraprof -–pack app.ppk
Move the app.ppk file to your desktop. 

% paraprof app.ppk 
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• Instead of one metric, profile or trace with more than one 
metric
– Set environment variables COUNTER[1-25] to specify the metric

• % setenv COUNTER1 GET_TIME_OF_DAY
• % setenv COUNTER2 PAPI_L2_DCM
• % setenv COUNTER3 PAPI_FP_OPS
• % setenv COUNTER4 PAPI_NATIVE_<native_event>
• % setenv COUNTER5 P_WALL_CLOCK_TIME  …

• When used with –TRACE option, the first counter must be 
GET_TIME_OF_DAY

• % setenv COUNTER1 GET_TIME_OF_DAY
• Provides a globally synchronized real time clock for tracing

• -multiplecounters appears in the name of the stub Makefile
• Often used with –papi=<dir> to measure hardware 

performance counters and time
• papi_native_avail and papi_avail are two useful tools
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% setenv TAU_MAKEFILE /opt/tau-2.18/x86_64
/lib/Makefile.tau-multiplecounters-papi-mpi-pdt

% setenv TAU_OPTIONS ‘-optTauSelectFile=select.tau –optVerbose’
% cat select.tau
  BEGIN_INSTRUMENT_SECTION
  loops routine=“#”
  END_INSTRUMENT_SECTION

% set path=(/opt/tau-2.18/x86_64/bin $path)
% make F90=tau_f90.sh
(Or edit Makefile and change F90=tau_f90.sh)
% setenv COUNTER1 GET_TIME_OF_DAY
% setenv COUNTER2 PAPI_FP_INS
% qsub  run.job
% paraprof -–pack app.ppk

Move the app.ppk file to your desktop. 
% paraprof app.ppk
  Choose Options -> Show Derived Panel -> Arg 1 = PAPI_FP_INS, 

 Arg 2 = GET_TIME_OF_DAY, Operation = Divide -> Apply, choose.
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• Generates profiles that show the calling 
order (edges and nodes in callgraph)
– A=>B=>C shows the time spent in C when it 

was called by B and B was called by A

– Control the depth of callpath using 
TAU_CALLPATH_DEPTH environment 
variable

– -callpath in the name of the stub Makefile 
name or setting TAU_CALLPATH= 1 at 
runtime
(TAU v2.18.1+)
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• Allows users to enable instrumentation at runtime 
based on the depth of a calling routine on a callstack
– Disables instrumentation in all routines a certain depth 

away from the root in a callgraph
•  TAU_DEPTH_LIMIT environment variable specifies 

depth 
– % setenv TAU_DEPTH_LIMIT 1
– enables instrumentation in only “main”
– % setenv TAU_DEPTH_LIMIT 2
– enables instrumentation in main and routines that are 

directly called by main

•  Stub makefile has  -depthlimit in its name:
– setenv TAU_MAKEFILE <taudir>/<arch>/lib/Makefile.tau-

icpc-mpi-depthlimit-pdt
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% setenv TAU_MAKEFILE /opt/tau-2.18/x86_64
/lib/Makefile.tau-callpath-mpi-pdt

% set path=(/opt/tau-2.18/x86_64/bin $path)

% make F90=tau_f90.sh

(Or edit Makefile and change F90=tau_f90.sh)

% setenv TAU_CALLPATH_DEPTH 100

NOTE: In TAU v2.18.1+ you may simply use: 

% setenv TAU_CALLPATH 1

to generate the callpath profiles without any recompilation.

% qsub  run.job

% paraprof -–pack app.ppk

Move the app.ppk file to your desktop. 

% paraprof app.ppk

(Windows -> Thread -> Call Graph)
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• Generates event-trace logs, rather than summary profiles
• Traces show when and where an event occurred in terms of 

location and the process that executed it
• Traces from multiple processes are merged:

– % tau_treemerge.pl
• generates tau.trc and tau.edf as merged trace and event definition file

• TAU traces can be converted to Vampir’s OTF/VTF3, 
Jumpshot SLOG2, Paraver trace formats:
– % tau2otf tau.trc tau.edf app.otf 
– % tau2vtf tau.trc tau.edf app.vpt.gz
– % tau2slog2 tau.trc tau.edf -o app.slog2
– % tau_convert -paraver tau.trc tau.edf app.prv

• Stub Makefile has -trace in its name
– % setenv TAU_MAKEFILE <taudir>/<arch>/lib/Makefile.tau-icpc-

mpi-pdt-trace
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% setenv TAU_MAKEFILE /opt/tau-2.18/x86_64
/lib/Makefile.tau-mpi-pdt-trace

% set path=(/opt/tau-2.18/x86_64/bin $path)
% make F90=tau_f90.sh
(Or edit Makefile and change F90=tau_f90.sh)
% qsub  run.job
% tau_treemerge.pl
(merges binary traces to create tau.trc and tau.edf files)
JUMPSHOT:
% tau2slog2 tau.trc tau.edf –o app.slog2 
% jumpshot app.slog2
   OR
VAMPIR:
% tau2otf tau.trc tau.edf app.otf –n 4 –z
(4 streams, compressed output trace)
% vampir app.otf
(or vng client with vngd server)
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% tau_instrumentor
Usage : tau_instrumentor <pdbfile> <sourcefile> [-o <outputfile>] [-noinline] 
[-g groupname] [-i headerfile] [-c|-c++|-fortran] [-f <instr_req_file> ] 
For selective instrumentation, use –f option
% tau_instrumentor foo.pdb foo.cpp –o foo.inst.cpp –f selective.dat
% cat selective.dat
# Selective instrumentation: Specify an exclude/include list of routines/files.
BEGIN_EXCLUDE_LIST
void quicksort(int *, int, int)
void sort_5elements(int *)
void interchange(int *, int *)
END_EXCLUDE_LIST

BEGIN_FILE_INCLUDE_LIST
Main.cpp
Foo?.c
*.C
END_FILE_INCLUDE_LIST
# Instruments routines in Main.cpp, Foo?.c and *.C files only
# Use BEGIN_[FILE]_INCLUDE_LIST with END_[FILE]_INCLUDE_LIST
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BEGIN_INSTRUMENT_SECTION
loops file="loop_test.cpp" routine="multiply"
# it also understands # as the wildcard in routine name
# and * and ? wildcards in file name. 
# You can also specify the full
# name of the routine as is found in profile files. 
#loops file="loop_test.cpp" routine="double multiply#"
END_INSTRUMENT_SECTION

% pprof 
NODE 0;CONTEXT 0;THREAD 0:
---------------------------------------------------------------------------------------
%Time    Exclusive    Inclusive       #Call      #Subrs  Inclusive Name
              msec   total msec                          usec/call 
---------------------------------------------------------------------------------------
100.0         0.12       25,162           1           1   25162827 int main(int, char **)  
100.0        0.175       25,162           1           4   25162707 double multiply()  
 90.5       22,778       22,778           1           0   22778959 Loop: double multiply()[ 
file = <loop_test.cpp> line,col = <23,3> to <30,3> ]  
  9.3        2,345        2,345           1           0    2345823 Loop: double multiply()[ 
file = <loop_test.cpp> line,col = <38,3> to <46,7> ]  
  0.1           33           33           1           0      33964 Loop: double 
multiply()[ file = <loop_test.cpp> line,col = <16,10> to <21,12> ]  
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• TAU Website:
http://tau.uoregon.edu 

– Software

– Release notes
– Documentation


