
INTRODUCTION TO
PERFORMANCE
ENGINEERING

Allen D. Malony

Performance Research Laboratory

University of Oregon

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

Performance Engineering

2

• Optimization process
• Effective use of performance technology

characterization

Performance
Tuning

Performance
Diagnosis

Performance
Experimentation

Performance
Observation

hypotheses

properties

• Instrumentation
• Measurement
• Analysis
• Visualization

Performance
Technology

• Experiment
management

• Performance
storage

Performance
Technology

• Data mining
• Models
• Expert systems

Performance
Technology

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

Performance Optimization Cycle

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

3

• Expose factors

• Collect performance data
• Calculate metrics

• Analyze results

• Visualize results

• Identify problems
• Tune performance

Instrumentation

Presentation

Measurement

Optimization

Analysis

Parallel Performance Properties

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

4

• Parallel code performance is influenced by
both sequential and parallel factors?

• Sequential factors
– Computation and memory use
– Input / output

• Parallel factors
– Thread / process interactions
– Communication and synchronization

Performance Observation

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

5

• Understanding performance requires
observation of performance properties

• Performance tools and methodologies are
primarily distinguished by what
observations are made and how
– What aspects of performance factors are seen
– What performance data is obtained

• Tools and methods cover broad range

Metrics and Measurement

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

6

• Observability depends on measurement

• A metric represents a type of measured
data
– Count, time, hardware counters

• A measurement records performance data
– Associates with program execution aspects

• Derived metrics are computed
– Rates (e.g., flops)

• Metrics / measurements decided by need

Execution Time

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

7

• Wall-clock time
– Based on realtime clock

• Virtual process time
– Time when process is executing

• ser time and system time

– Does not include time when process is stalled

• Parallel execution time
– Runs whenever any parallel part is executing
– Global time basis

Direct Performance Observation

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

8

• Execution actions exposed as events
– In general, actions reflect some execution state

• presence at a code location or change in data
• occurrence in parallelism context (thread of execution)

– Events encode actions for observation

• Observation is direct
– Direct instrumentation of program code (probes)
– Instrumentation invokes performance measurement
– Event measurement = performance data + context

• Performance experiment
– Actual events + performance measurements

Indirect Performance
Observation

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

9

• Program code instrumentation is not used
• Performance is observed indirectly

– Execution is interrupted
• can be triggered by different events

– Execution state is queried (sampled)
• different performance data measured

– Event-based sampling (EBS)

• Performance attribution is inferred
– Determined by execution context (state)
– Observation resolution determined by interrupt period
– Performance data associated with context for period

Direct Observation: Events

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

10

• Event types
– Interval events (begin/end events)

• measures performance between begin and end
• metrics monotonically increase

– Atomic events
• used to capture performance data state

• Code events
– Routines, classes, templates
– Statement-level blocks, loops

• User-defined events
– Specified by the user

• Abstract mapping events

Direct Observation: Instrumentation

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

11

• Events defined by instrumentation access

• Instrumentation levels
– Source code – Library code

– Object code – Executable code
– Runtime system – Operating system

• Different levels provide different
information

• Different tools needed for each level

• Levels can have different granularity

Direct Observation: Techniques

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

12

• Static instrumentation
– Program instrumented prior to execution

• Dynamic instrumentation
– Program instrumented at runtime

• Manual and automatic mechanisms
• Tool required for automatic support

– Source time: preprocessor, translator, compiler
– Link time: wrapper library, preload
– Execution time: binary rewrite, dynamic

• Advantages / disadvantages

Direct Observation: Mapping

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

13

• Associate
performance data
with high-level
semantic
abstractions

• Abstract events at
user-level provide
semantic context

Indirect Observation:
Events/Triggers

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

14

• Events are actions external to program
code
– Timer countdown, HW counter overflow, …
– Consequence of program execution
– Event frequency determined by:

• Type, setup, number enabled (exposed)

• Triggers used to invoke measurement tool
– Traps when events occur (interrupt)
– Associated with events
– May add differentiation to events

Indirect Observation: Context

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

15

• When events trigger, execution context
determined at time of trap (interrupt)
– Access to PC from interrupt frame
– Access to information about process/thread

– Possible access to call stack
• requires call stack unwinder

• Assumption is that the context was the same
during the preceding period
– Between successive triggers
– Statistical approximation valid for long running

programs

Direct / Indirect Comparison

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

16

• Direct performance observation
 Measures performance data exactly
 Links performance data with application events
 Requires instrumentation of code
 Measurement overhead can cause execution

intrusion and possibly performance perturbation

• Indirect performance observation
 Argued to have less overhead and intrusion
 Can observe finer granularity
 No code modification required (may need symbols)
 Inexact measurement and attribution

Measurement Techniques

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

17

• When is measurement triggered?
– External agent (indirect, asynchronous)

• interrupts, hardware counter overflow, …
– Internal agent (direct, synchronous)

• through code modification

• How are measurements made?
– Profiling

• summarizes performance data during execution
• per process / thread and organized with respect to context

– Tracing
• trace record with performance data and timestamp
• per process / thread

Measured Performance

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

18

• Counts

• Durations
• Communication costs

• Synchronization costs

• Memory use

• Hardware counts
• System calls

Critical issues

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

19

• Accuracy
– Timing and counting accuracy depends on resolution
– Any performance measurement generates overhead

• Execution on performance measurement code
– Measurement overhead can lead to intrusion
– Intrusion can cause perturbation

• alters program behavior

• Granularity
– How many measurements are made
– How much overhead per measurement

• Tradeoff (general wisdom)
– Accuracy is inversely correlated with granularity

Profiling

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

20

• Recording of aggregated information
– Counts, time, …

• … about program and system entities
– Functions, loops, basic blocks, …
– Processes, threads

• Methods
– Event-based sampling (indirect, statistical)
– Direct measurement (deterministic)

inclusive
duration

exclusive
duration

int foo()
{
 int a;
 a = a + 1;

 bar();

 a = a + 1;
 return a;
}

Inclusive and Exclusive Profiles

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

21

• Performance with respect to code regions
• Exclusive measurements for region only
• Inclusive measurements includes child regions

Flat and Callpath Profiles

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

22

• Static call graph
– Shows all parent-child calling relationships in a program

• Dynamic call graph
– Reflects actual execution time calling relationships

• Flat profile
– Performance metrics for when event is active
– Exclusive and inclusive

• Callpath profile
– Performance metrics for calling path (event chain)
– Differentiate performance with respect to program

execution state
– Exclusive and inclusive

Tracing Measurement

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

23

void master {

 ...

 send(B, tag, buf);
 ...

}

Process A:

void slave {

 ...
 recv(A, tag, buf);

 ...

}

Process B:
void worker {

 ...
 recv(A, tag, buf);

 ...

}

void master {

 ...

 send(B, tag, buf);
 ...

} 58 A ENTER 1

60 B ENTER 2

62 A SEND B

64 A EXIT 1

68 B RECV A

...

69 B EXIT 2

...

1 master

2 worker

3 ...

 trace(ENTER, 1);

 trace(SEND, B);

 trace(EXIT, 1);

 trace(ENTER, 2);

 trace(RECV, A);

 trace(EXIT, 2);

MONITOR

Tracing Analysis and
Visualization

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

24

1 master

2 worker

3 ...

58 A ENTER 1

60 B ENTER 2

62 A SEND B

64 A EXIT 1

68 B RECV A

...

69 B EXIT 2

...

main
master
worker

58 60 62 64 66 68 70

B

A

Trace Formats

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

25

• Different tools produce different formats
– Differ by event types supported
– Differ by ASCII and binary representations

• Vampir Trace Format (VTF)
• KOJAK (EPILOG)
• Jumpshot (SLOG-2)
• Paraver

• Open Trace Format (OTF)
– Supports interoperation between tracing tools

Profiling / Tracing Comparison

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

26

• Profiling
 Finite, bounded performance data size
 Applicable to both direct and indirect methods
 Loses time dimension (not entirely)
 Lacks ability to fully describe process interaction

• Tracing
 Temporal and spatial dimension to performance data
 Capture parallel dynamics and process interaction
 Some inconsistencies with indirect methods
 Unbounded performance data size (large)
 Complex event buffering and clock synchronization

Performance Problem Solving
Goals

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

27

• Answer questions at multiple levels of interest
– High-level performance data spanning dimensions

• machine, applications, code revisions, data sets
• examine broad performance trends

– Data from low-level measurements
• use to predict application performance

• Discover general correlations
– performance and features of external environment
– Identify primary performance factors

• Benchmarking analysis for application prediction
• Workload analysis for machine assessment

Performance Analysis
Questions

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

28

• How does performance vary with different compilers?
• Is poor performance correlated with certain OS features?
• Has a recent change caused unanticipated

performance?
• How does performance vary with MPI variants?

• Why is one application version faster than another?
• What is the reason for the observed scaling behavior?
• Did two runs exhibit similar performance?
• How are performance data related to application events?
• Which machines will run my code the fastest and why?
• Which benchmarks predict my code performance best?

Automatic Performance
Analysis

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

29

Performance
database

Build
application

Execute
application

Simple
analysis
feedback

72%
Faster!

build
information

environment /
performance

data

Offline
analysis

Performance Data Management

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

30

• Performance diagnosis and optimization involves
multiple performance experiments

• Support for common performance data
management tasks augments tool use
– Performance experiment data and metadata storage
– Performance database and query

• What type of performance data should be
stored?
– Parallel profiles or parallel traces
– Storage size will dictate
– Experiment metadata helps in meta analysis tasks

• Serves tool integration objectives

Metadata Collection

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

31

• Integration of metadata with each parallel profile
– Separate information from performance data

• Three ways to incorporate metadata
– Measured hardware/system information

• CPU speed, memory in GB, MPI node IDs, …
– Application instrumentation (application-specific)

• Application parameters, input data, domain decomposition
• Capture arbitrary name/value pair and save with experiment

– Data management tools can read additional metadata
• Compiler flags, submission scripts, input files, …
• Before or after execution

• Enhances analysis capabilities

Performance Data Mining

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

32

• Conduct parallel performance analysis in a
systematic, collaborative and reusable manner
– Manage performance complexity and automate

process
– Discover performance relationship and properties
– Multi-experiment performance analysis

• Data mining applied to parallel performance data
– Comparative, clustering, correlation, characterization,

…
– Large-scale performance data reduction

• Implement extensible analysis framework
– Abstraction / automation of data mining operations
– Interface to existing analysis and data mining tools

How to explain performance?

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

33

• Should not just redescribe performance results
• Should explain performance phenomena

– What are the causes for performance observed?
– What are the factors and how do they interrelate?
– Performance analytics, forensics, and decision

support
• Add knowledge to do more intelligent things

– Automated analysis needs good informed feedback
– Performance model generation requires

interpretation
• Performance knowledge discovery framework

– Integrating meta-information
– Knowledge-based performance problem solving

Metadata and Knowledge Role

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

34

Performance KnowledgePerformance Knowledge

SourceSource
CodeCode

Build Build
EnvironmentEnvironment

Run Run
EnvironmentEnvironment

Performance Result

Execution

You have to
capture these...

...to understand
this

ApplicationApplication MachineMachine

Performance Performance
ProblemsProblems

Context KnowledgeContext Knowledge

Performance Optimization
Process

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

35

• Performance characterization
– Identify major performance contributors
– Identify sources of performance inefficiency
– Utilize timing and hardware measures

• Performance diagnosis (Performance
Debugging)
– Look for conditions of performance problems
– Determine if conditions are met and their severity
– What and where are the performance bottlenecks

• Performance tuning
– Focus on dominant performance contributors
– Eliminate main performance bottlenecks

POINT Project

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

36

• “High-Productivity Performance Engineering
(Tools, Methods, Training) for NSF HPC
Applications”
– NSF SDCI, Software Improvement and Support
– University of Oregon, University of Tennessee,

National Center for Supercomputing Applications,
Pittsburgh Supercomputing Center

• POINT project
– Petascale Productivity from Open, Integrated Tools
– http://www.nic.uoregon.edu/point

Motivation

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

37

• Promise of HPC through scalable scientific
and engineering applications

• Performance optimization through
effective performance engineering
methods
– Performance analysis / tuning “best practices”

• Productive petascale HPC will require
– Robust parallel performance tools
– Training good performance problem solvers

Objectives

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

38

• Robust parallel performance environment
– Uniformly available across NSF HPC

platforms

• Promote performance engineering
– Training in performance tools and methods
– Leverage NSF TeraGrid EOT

• Work with petascale applications teams

• Community building

Challenges

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

39

• Consistent performance tool environment
– Tool integration, interoperation, and scalability
– Uniform deployment across NSF HPC

platforms

• Useful evaluation metrics and process
– Make part of code development routine

– Recording performance engineering history

• Develop performance engineering culture
– Proceed beyond “hand holding” engagements

Performance Engineering
Levels

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

40

• Target different performance tool users
– Different levels of expertise
– Different performance problem solving needs

• Level 0 (entry)
– Simpler tool use, limited performance data

• Level 1 (intermediate)
– More tool sophistication, increased

information

• Level 2 (advanced)
– Access to powerful performance techniques

POINT Project Organization

41

Testbed Apps
ENZO
NAMD
NEMO3D

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

Parallel Performance Technology

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

42

• PAPI
– University of Tennessee, Knoxville

• PerfSuite
– National Center for Supercomputing Applications

• TAU Performance System
– University of Oregon

• Kojak / Scalasca
– Research Centre Juelich

• Vampir and VampirTrace
– T.U. Dresden

Parallel Engineering Training

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

43

• User engagement

• User support in TeraGrid
• Training workshops

• Quantify tool impact

• POINT lead pilot site
– Pittsburgh Supercomputing Center
– NSF TeraGrid site

Testbed Applications

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

44

• ENZO
– Adaptive mesh refinement (AMR), grid-based hybrid

code (hydro+Nbody) designed to do simulations of
cosmological structure formation

• NAMD
– Mature community parallel molecular dynamics

application deployed for research in large-scale
biomolecular systems

• NEMO3D
– Quantum mechanical based simulation tool created to

provide quantitative predictions for nanometer-scale
semiconductor devices

