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Performance Optimization Cycle
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• Expose factors

• Collect performance data
• Calculate metrics

• Analyze results

• Visualize results

• Identify problems
• Tune performance

Instrumentation

Presentation

Measurement

Optimization

Analysis



Parallel Performance Properties
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• Parallel code performance is influenced by 
both sequential and parallel factors?

• Sequential factors
– Computation and memory use
– Input / output

• Parallel factors
– Thread / process interactions
– Communication and synchronization



Performance Observation
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• Understanding performance requires 
observation of performance properties

• Performance tools and methodologies are 
primarily distinguished by what 
observations are made and how
– What aspects of performance factors are seen
– What performance data is obtained

• Tools and methods cover broad range



Metrics and Measurement
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• Observability depends on measurement

• A metric represents a type of measured 
data
– Count, time, hardware counters

• A measurement records performance data
– Associates with program execution aspects

• Derived metrics are computed
– Rates (e.g., flops)

• Metrics / measurements decided by need 



Execution Time
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• Wall-clock time
– Based on realtime clock

• Virtual process time
– Time when process is executing

• ser time and system time

– Does not include time when process is stalled

• Parallel execution time
– Runs whenever any parallel part is executing
– Global time basis



Direct Performance Observation
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• Execution actions exposed as events
– In general, actions reflect some execution state

• presence at a code location or change in data
• occurrence in parallelism context (thread of execution)

– Events encode actions for observation

• Observation is direct
– Direct instrumentation of program code (probes)
– Instrumentation invokes performance measurement
– Event measurement = performance data + context

• Performance experiment
– Actual events + performance measurements



Indirect Performance 
Observation
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• Program code instrumentation is not used
• Performance is observed indirectly

– Execution is interrupted
• can be triggered by different events

– Execution state is queried (sampled)
• different performance data measured

– Event-based sampling (EBS)

• Performance attribution is inferred
– Determined by execution context (state)
– Observation resolution determined by interrupt period
– Performance data associated with context for period



Direct Observation: Events
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• Event types
– Interval events (begin/end events)

• measures performance between begin and end
• metrics monotonically increase

– Atomic events
• used to capture performance data state

• Code events
– Routines, classes, templates
– Statement-level blocks, loops

• User-defined events
– Specified by the user

• Abstract mapping events



Direct Observation: Instrumentation
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• Events defined by instrumentation access

• Instrumentation levels
– Source code –  Library code

– Object code –  Executable code
– Runtime system –  Operating system

• Different levels provide different 
information

• Different tools needed for each level

• Levels can have different granularity 



Direct Observation: Techniques
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• Static instrumentation
– Program instrumented prior to execution

• Dynamic instrumentation
– Program instrumented at runtime

• Manual and automatic mechanisms
• Tool required for automatic support

– Source time: preprocessor, translator, compiler
– Link time: wrapper library, preload
– Execution time: binary rewrite, dynamic

• Advantages / disadvantages



Direct Observation: Mapping
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• Associate 
performance data 
with high-level 
semantic 
abstractions

• Abstract events at 
user-level provide 
semantic context



Indirect Observation: 
Events/Triggers
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• Events are actions external to program 
code
– Timer countdown, HW counter overflow, …
– Consequence of program execution
– Event frequency determined by:

• Type, setup, number enabled (exposed)

• Triggers used to invoke measurement tool
– Traps when events occur (interrupt)
– Associated with events
– May add differentiation to events



Indirect Observation: Context
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• When events trigger, execution context 
determined at time of trap (interrupt)
– Access to PC from interrupt frame
– Access to information about process/thread

– Possible access to call stack
• requires call stack unwinder

• Assumption is that the context was the same 
during the preceding period
– Between successive triggers
– Statistical approximation valid for long running 

programs



Direct / Indirect Comparison

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

16

• Direct performance observation
 Measures performance data exactly
 Links performance data with application events
 Requires instrumentation of code
 Measurement overhead can cause execution 

intrusion and possibly performance perturbation

• Indirect performance observation
 Argued to have less overhead and intrusion
 Can observe finer granularity
 No code modification required (may need symbols)
 Inexact measurement and attribution



Measurement Techniques
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• When is measurement triggered?
– External agent (indirect, asynchronous)

• interrupts, hardware counter overflow, …
– Internal agent (direct, synchronous)

• through code modification

• How are measurements made?
– Profiling

• summarizes performance data during execution
• per process / thread and organized with respect to context

– Tracing
• trace record with performance data and timestamp
• per process / thread



Measured Performance
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• Counts

• Durations
• Communication costs

• Synchronization costs

• Memory use

• Hardware counts
• System calls



Critical issues
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• Accuracy
– Timing and counting accuracy depends on resolution
– Any performance measurement generates overhead

• Execution on performance measurement code
– Measurement overhead can lead to intrusion
– Intrusion can cause perturbation

• alters program behavior

• Granularity
– How many measurements are made 
– How much overhead per measurement 

• Tradeoff (general wisdom)
– Accuracy is inversely correlated with granularity



Profiling

SC ‘09: Productive Performance Engineering of Petascale Applications with POINT and VI-HPS

20

• Recording of aggregated information
– Counts, time, …

• … about program and system entities
– Functions, loops, basic blocks, …
– Processes, threads

• Methods
– Event-based sampling (indirect, statistical)
– Direct measurement (deterministic) 



inclusive
duration

exclusive
duration

int foo() 
{
       int a;
       a = a + 1;

     bar();

       a = a + 1;
       return a;
}

Inclusive and Exclusive Profiles
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• Performance with respect to code regions
• Exclusive measurements for region only
• Inclusive measurements includes child regions



Flat and Callpath Profiles
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• Static call graph
– Shows all parent-child calling relationships in a program

• Dynamic call graph
– Reflects actual execution time calling relationships 

• Flat profile
– Performance metrics for when event is active
– Exclusive and inclusive

• Callpath profile
– Performance metrics for calling path (event chain)
– Differentiate performance with respect to program 

execution state
– Exclusive and inclusive



Tracing Measurement 
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void master {
  
  ...
  
  send(B, tag, buf);
  ...
  
}

Process A:

void slave {
  
  ...
  recv(A, tag, buf);
  
  ...
  
}

Process B:
void worker {
  
  ...
  recv(A, tag, buf);
  
  ...
  
}

void master {
  
  ...
  
  send(B, tag, buf);
  ...
  
} 58 A ENTER 1

60 B ENTER 2

62 A SEND B

64 A EXIT 1

68 B RECV A

...

69 B EXIT 2

...

1 master

2 worker

3 ...

  trace(ENTER, 1);
  
  trace(SEND, B);
  
  
  trace(EXIT, 1);

  trace(ENTER, 2);
  
  
  trace(RECV, A);
  
  trace(EXIT, 2);

MONITOR



Tracing Analysis and 
Visualization
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1 master

2 worker

3 ...

58 A ENTER 1

60 B ENTER 2

62 A SEND B

64 A EXIT 1

68 B RECV A

...

69 B EXIT 2

...

main
master
worker

58 60 62 64 66 68 70

B

A



Trace Formats
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• Different tools produce different formats
– Differ by event types supported
– Differ by ASCII and binary representations

• Vampir Trace Format (VTF)
• KOJAK (EPILOG)
• Jumpshot (SLOG-2)
• Paraver

• Open Trace Format (OTF)
– Supports interoperation between tracing tools



Profiling / Tracing Comparison
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• Profiling
 Finite, bounded performance data size
 Applicable to both direct and indirect methods
 Loses time dimension (not entirely)
 Lacks ability to fully describe process interaction

• Tracing
 Temporal and spatial dimension to performance data
 Capture parallel dynamics and process interaction
 Some inconsistencies with indirect methods
 Unbounded performance data size (large)
 Complex event buffering and clock synchronization



Performance Problem Solving 
Goals
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• Answer questions at multiple levels of interest
– High-level performance data spanning dimensions

• machine, applications, code revisions, data sets
• examine broad performance trends

– Data from low-level measurements
• use to predict application performance

• Discover general correlations
– performance and features of external environment
– Identify primary performance factors

• Benchmarking analysis for application prediction
• Workload analysis for machine assessment



Performance Analysis 
Questions
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• How does performance vary with different compilers?
• Is poor performance correlated with certain OS features?
• Has a recent change caused unanticipated 

performance?
• How does performance vary with MPI variants?

• Why is one application version faster than another?
• What is the reason for the observed scaling behavior?
• Did two runs exhibit similar performance?
• How are performance data related to application events?
• Which machines will run my code the fastest and why?
• Which benchmarks predict my code performance best?



Automatic Performance 
Analysis
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Performance
database

Build
application

Execute
application

Simple
analysis
feedback

72%
Faster!

build
information

environment /
performance

data

Offline
analysis



Performance Data Management
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• Performance diagnosis and optimization involves 
multiple performance experiments

• Support for common performance data 
management tasks augments tool use
– Performance experiment data and metadata storage
– Performance database and query

• What type of performance data should be 
stored?
– Parallel profiles or parallel traces
– Storage size will dictate 
– Experiment metadata helps in meta analysis tasks

• Serves tool integration objectives



Metadata Collection
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• Integration of metadata with each parallel profile
– Separate information from performance data

• Three ways to incorporate metadata
– Measured hardware/system information

• CPU speed, memory in GB, MPI node IDs, …
– Application instrumentation (application-specific)

• Application parameters, input data, domain decomposition
• Capture arbitrary name/value pair and save with experiment

– Data management tools can read additional metadata
• Compiler flags, submission scripts, input files, …
• Before or after execution

• Enhances analysis capabilities



Performance Data Mining
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• Conduct parallel performance analysis in a 
systematic, collaborative and reusable manner
– Manage performance complexity and automate 

process
– Discover performance relationship and properties
– Multi-experiment performance analysis

• Data mining applied to parallel performance data
– Comparative, clustering, correlation, characterization, 

…
– Large-scale performance data reduction

• Implement extensible analysis framework
– Abstraction / automation of data mining operations
– Interface to existing analysis and data mining tools



How to explain performance?
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• Should not just redescribe performance results
• Should explain performance phenomena

– What are the causes for performance observed?
– What are the factors and how do they interrelate?
– Performance analytics, forensics, and decision 

support
• Add knowledge to do more intelligent things

– Automated analysis needs good informed feedback
– Performance model generation requires 

interpretation
• Performance knowledge discovery framework

– Integrating meta-information
– Knowledge-based performance problem solving



Metadata and Knowledge Role
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Performance KnowledgePerformance Knowledge

SourceSource
CodeCode

Build Build 
EnvironmentEnvironment

Run Run 
EnvironmentEnvironment

Performance Result

Execution

You have to 
capture these...

...to understand 
this

ApplicationApplication MachineMachine

Performance Performance 
ProblemsProblems

Context KnowledgeContext Knowledge



Performance Optimization 
Process
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• Performance characterization
– Identify major performance contributors
– Identify sources of performance inefficiency
– Utilize timing and hardware measures

• Performance diagnosis (Performance 
Debugging)
– Look for conditions of performance problems
– Determine if conditions are met and their severity
– What and where are the performance bottlenecks

• Performance tuning
– Focus on dominant performance contributors
– Eliminate main performance bottlenecks



POINT Project
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• “High-Productivity Performance Engineering 
(Tools, Methods, Training) for NSF HPC 
Applications”
– NSF SDCI, Software Improvement and Support
– University of Oregon, University of Tennessee, 

National Center for Supercomputing Applications, 
Pittsburgh Supercomputing Center

• POINT project
– Petascale Productivity from Open, Integrated Tools
– http://www.nic.uoregon.edu/point



Motivation
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• Promise of HPC through scalable scientific 
and engineering applications

• Performance optimization through 
effective performance engineering 
methods
– Performance analysis / tuning “best practices”

• Productive petascale HPC will require
– Robust parallel performance tools
– Training good performance problem solvers



Objectives
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• Robust parallel performance environment
– Uniformly available across NSF HPC 

platforms

• Promote performance engineering
– Training in performance tools and methods
– Leverage NSF TeraGrid EOT

• Work with petascale applications teams

• Community building



Challenges
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• Consistent performance tool environment
– Tool integration, interoperation, and scalability
– Uniform deployment across NSF HPC 

platforms

• Useful evaluation metrics and process
– Make part of code development routine

– Recording performance engineering history

• Develop performance engineering culture
– Proceed beyond “hand holding” engagements



Performance Engineering 
Levels
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• Target different performance tool users
– Different levels of expertise
– Different performance problem solving needs

• Level 0 (entry)
– Simpler tool use, limited performance data

• Level 1 (intermediate)
– More tool sophistication, increased 

information

• Level 2 (advanced)
– Access to powerful performance techniques



POINT Project Organization
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Testbed Apps
ENZO
NAMD
NEMO3D
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Parallel Performance Technology
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• PAPI
– University of Tennessee, Knoxville

• PerfSuite
– National Center for Supercomputing Applications

• TAU Performance System
– University of Oregon

• Kojak / Scalasca
– Research Centre Juelich

• Vampir and VampirTrace
– T.U. Dresden



Parallel Engineering Training
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• User engagement

• User support in TeraGrid
• Training workshops

• Quantify tool impact

• POINT lead pilot site
– Pittsburgh Supercomputing Center
– NSF TeraGrid site



Testbed Applications
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• ENZO
– Adaptive mesh refinement (AMR), grid-based hybrid 

code (hydro+Nbody) designed to do simulations of 
cosmological structure formation

• NAMD
– Mature community parallel molecular dynamics 

application deployed for research in large-scale 
biomolecular systems

• NEMO3D
– Quantum mechanical based simulation tool created to 

provide quantitative predictions for nanometer-scale 
semiconductor devices


